1
|
da Silva J, da Silva AFV, Cesca K, Ribeiro PRV, de Brito ES, Ferreira SRS. Efficient and sustainable recovery of bioactive compounds from cashew nut testa shell (Anacardium occidentale L.) using pressurized liquid extraction. Anal Bioanal Chem 2025:10.1007/s00216-025-05881-5. [PMID: 40281234 DOI: 10.1007/s00216-025-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Cashew nut processing generates large quantities of byproducts daily, such as cashew nut testa shell (CNTS), which is discarded, leading to environmental and economic issues. However, CNTS contains bioactive substances such as polyphenols and antioxidant components, with potential for applications in the food, pharmaceutical, and chemical industries. This study investigated the optimization of pressurized liquid extraction (PLE) with composite central rotational design (CCRD) to evaluate the effect of the independent variables of temperature (T °C) and ethanol concentration (EtOH %) in aqueous solutions on the extraction of bioactive compounds from CNTS. The process conditions were evaluated, considering extraction yield and content of polyphenols and antioxidants from the extracts, which were identified and quantified by UPLC-PDA-ESI-QDa, and the ability of the extracts to inhibit foodborne pathogens was evaluated. Besides, a techno-economic assessment of the PLE process was also performed. The PLE conditions were optimized at 170.7 °C and 92.4% EtOH, providing better performance compared to maceration (MC) in terms of yield, phenolic content, and antioxidant potential. The recovered extracts contain catechin and epicatechin, with a higher concentration from the PLE sample compared to MC. The CNTS extracts demonstrated inhibitory effects on pathogen strains, notably inhibiting E. coli at concentrations below 0.7 mg mL-1. Scaling up the PLE process for large-scale production of CNTS extract was economically promising, considering the current market price.
Collapse
Affiliation(s)
- Jonas da Silva
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina, EQA/CTC/UFSC, Florianópolis, SC, 88040 - 900, Brazil
| | - Anderson Felipe Viana da Silva
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina, EQA/CTC/UFSC, Florianópolis, SC, 88040 - 900, Brazil
| | - Karina Cesca
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina, EQA/CTC/UFSC, Florianópolis, SC, 88040 - 900, Brazil
| | | | | | - Sandra Regina Salvador Ferreira
- Chemical Engineering and Food Engineering Department, Federal University of Santa Catarina, EQA/CTC/UFSC, Florianópolis, SC, 88040 - 900, Brazil.
| |
Collapse
|
2
|
Chamika WAS, Ho TC, Park JS, Marasinghe CK, Je JY, Chun BS. Thermally optimized subcritical water hydrolysis for green extraction of bioactive compounds from sea cucumber Stichopus japonicus. Food Chem 2025; 484:144368. [PMID: 40262291 DOI: 10.1016/j.foodchem.2025.144368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
This study investigated the bioactive compounds in Stichopus japonicus extracts obtained using subcritical water hydrolysis (SWH) at nine temperatures (115 °C-235 °C at 15 °C intervals). Increasing temperature enhanced the extraction efficiency and decreased the average molecular weight, extracts had abundant amino acids and phenolic compounds. Maximum protein (832.66 ± 15.00 mg BSA/g) and polysachchrides (32.02 ± 0.88 mg glucose/g) contents were achieved at 175 °C, while the highest phenolic content (23.93 ± 0.16 mg GAE/g) and antioxidant activity were observed at 220 °C. The highest α-amylase (18.62 % ± 1.17 %) and α-glucosidase (24.31 % ± 1.43 %) activities were observed at 115 °C. However, there was no significant trend between temperature and anti-inflammatory or anticholesterol activities. GC-MS analysis confirmed the presence of bioactive compounds with antioxidant, anti-inflammatory, antidiabetic, and anticholesterol potential. In conclusion, our results indicate that SWH is a sustainable approach for extracting bioactive compounds from S. japonicus, with promising applications in functional foods and therapeutics.
Collapse
Affiliation(s)
- Weerathunga Arachchige Shiran Chamika
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea; Institute for Research & Development, 393/3, Lily Avenue, Robert Gunawardane Mawatha, Battaramulla, 10120, Sri Lanka
| | - Truc Cong Ho
- PL MICROMED Co., Ltd., 1F, 15-5, Yangju 3-gil, Yangsan-si, Gyeongsangnam-do 50620, Republic of Korea
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea
| | | | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Nam-Gu, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Teh JL, Walvekar R, Ho KC, Khalid M. Biolubricants from waste cooking oil: A review of extraction technologies, conversion techniques, and performance enhancement using natural antioxidants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124267. [PMID: 39879924 DOI: 10.1016/j.jenvman.2025.124267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/26/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Effective management of agricultural and industrial by-products is essential for promoting circular economic practices and enhancing environmental sustainability. Agri-food wastes and waste cooking oil (WCO) represent two abundant residual streams with significant potential for sustainable biolubricant production. Valorizing biomass and WCO aligns with Sustainable Development Goal (SDG) 7, as it improves energy efficiency through enhanced lubricant performance and reduced energy loss. Furthermore, this sustainable approach contributes to SDG 12 and SDG 13 by minimizing waste production and accumulation, thereby mitigating negative environmental impacts and climate change. This critical review addresses existing gaps in the production of biolubricants from WCO and the incorporation of natural antioxidants as versatile additives. It examines and compares various techniques for the extraction, chemical and physical modification, and characterization of WCO-derived biolubricants. Specific methods, including esterification, transesterification, and antioxidant incorporation, are evaluated for their effectiveness in converting WCO into biolubricants. The review also discusses the influence of residual bioactive compounds on oxidative stability and lubricating properties. While vegetable oils demonstrate superior friction-reducing capabilities compared to petroleum-based lubricants, their triglyceride structure often results in poor oxidative stability, limiting their practical applications. Modification strategies and antioxidant inclusion are proposed to enhance this stability. A comprehensive analysis of the physicochemical properties and tribological performance of biolubricants, both pre- and post-processing, is presented. This systematic evaluation of extraction and upgrading methodologies aims to facilitate the development and industrial adoption of sustainable biolubricants.
Collapse
Affiliation(s)
- Jia Leang Teh
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Rashmi Walvekar
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| | - Kah Chun Ho
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
4
|
Baek SH, Lee JW, Ho TC, Park Y, Ata SM, Yun HJ, Gang G, Getachew AT, Chun BS, Lee SG, Cao L. A comparative study of extraction methods for recovery of bioactive components from brown algae Sargassum serratifolium. Food Sci Biotechnol 2025; 34:237-244. [PMID: 39758719 PMCID: PMC11695544 DOI: 10.1007/s10068-024-01649-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 01/07/2025] Open
Abstract
Species of Sargassum genus are known to be rich sources of bioactive compounds. However, there is a lack of studies comparing extraction methods for these bioactive components. This study aimed to compare the total phenolic contents, total antioxidant capacity, tyrosinase inhibitory effect, sargahydroquinoic acid (SHQA) and sargachromenol (SCM), two algal meroterpenoids, of Sargassum serratifolium extracts acquired by different extraction methods. The methods employed in this study included conventional solid-liquid extraction using methanol (SME), supercritical fluid extraction using CO2 with ethanol as a co-solvent (SC-CO2 + ethanol), and pressurized liquid extraction (PLE) at two temperatures (25 and 100 °C). PLE at 100 °C (PLE100) exhibited the highest total yield, total phenolic content, total antioxidant capacity and tyrosinase inhibitory activity. Notably, SME resulted in the highest recovery of both SHQA and SCM. Compared to SME, PLE100 exhibited a two-fold increase in antioxidant capacity but a minimal increase in phenolic content.
Collapse
Affiliation(s)
- Su Hyeon Baek
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Joo Won Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
| | - Truc Cong Ho
- PL MICROMED Co., Ltd., Yangsan-si, Gyeongsangnam-do Korea
| | - Yena Park
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Shymaa M. Ata
- Department of Home Economics, School of Specific Education, Menofia University, Menofia, Egypt
| | - Hyun Jung Yun
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, Korea
| | - Gyoungok Gang
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Adane Tilahun Getachew
- Research Group for Bioactives-Analysis and Application, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Busan, Korea
| | - Sang Gil Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan, Korea
- Department of Food Science and Nutrition, Pukyong National University, Busan, Korea
| | - Lei Cao
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Korea
| |
Collapse
|
5
|
Park JS, Han JM, Park YS, Shin YN, Shin YR, Chun BS, Lee HJ. Optimization and evaluation of Atrina pectinata polysaccharides recovered by subcritical water extraction: A promising path to natural products. Int J Biol Macromol 2024; 259:129130. [PMID: 38181917 DOI: 10.1016/j.ijbiomac.2023.129130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
In this study, the recovery of Atrina pectinata posterior adductor polysaccharides (APP-PS) using subcritical water extraction (SWE) was optimized by response surface methodology (RSM) and the physicochemical and biological properties of the recovered APP-PS were evaluated. The optimal extraction conditions, which resulted in a maximum yield of 55.58 ± 1.12 %, were temperature, 152.08 °C; extraction time, 10 min; solid-liquid ratio, 30 g/600 mL. The obtained APP-PS was found to be 88.05 ± 0.17 % total sugar. Fourier transform infrared (FT-IR) and Nuclear magnetic resonance (NMR) analyses confirmed the presence of the α-coordination of D-glucan in the polymer sample. The analysis of monosaccharide composition, along with thermogravimetric analysis, revealed the typical structure of the sample, composed of glucose alone. Total phenolic contents of APP-PS were measured as 5.47 ± 0.01 mg Gallic acid/g of dry sample and total flavonoids contents were determined to be 0.78 ± 0.06 mg Quercetin/g of dry sample. For biological activities, ABTS+, DPPH and FRAP antioxidant activities were measured to be 20.00 ± 0.71, 2.35 ± 0.05 and 4.02 ± 0.07 μg Trolox equivalent/100 g of dry sample, respectively. Additionally ACE inhibitory was confirmed to be 87.02 ± 0.47 %. These results showed that SWE is an effective method to recover biofunctional materials from marine organisms.
Collapse
Affiliation(s)
- Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Ji-Min Han
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Ye-Seul Park
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Yu-Na Shin
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Ye-Ryeon Shin
- Department of Food Science and Technology, Pukyong National University, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Republic of Korea.
| | - Hee-Jeong Lee
- Department of Food Science and Nutrition, Kyungsung University, Republic of Korea.
| |
Collapse
|
6
|
Frohlich PC, Santos KA, Ascari J, Santos Refati JRD, Palú P, Cardozo-Filho L, da Silva EA. Antioxidant compounds and eugenol quantification of clove (Syzygium aromaticum) leaves extracts obtained by pressurized liquid extraction and supercritical fluid extraction. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|