1
|
Nguyen LHT, Mirzaei A, Kim JY, Phan TB, Tran LD, Wu KCW, Kim HW, Kim SS, Doan TLH. Advancements in MOF-based resistive gas sensors: synthesis methods and applications for toxic gas detection. NANOSCALE HORIZONS 2025; 10:1025-1053. [PMID: 40201945 DOI: 10.1039/d4nh00662c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Gas sensors are essential tools for safeguarding public health and safety because they allow the detection of hazardous gases. To advance gas-sensing technologies, novel sensing materials with distinct properties are needed. Metal-organic frameworks (MOFs) hold great potential because of their extensive surface areas, high porosity, unique chemical properties, and capabilities for preconcentration and molecular sieving. These attributes make MOFs highly suitable for designing and creating innovative resistive gas sensors. This review article examines resistive gas sensors made from pristine, doped, decorated, and composite MOFs. The first part of the review focuses on the synthesis strategies of MOFs, while the second part discusses MOF-based resistive gas sensors that operate based on changes in resistance.
Collapse
Affiliation(s)
- Linh Ho Thuy Nguyen
- Faculty of Pharmacy, University of Health Sciences, Ho Chi Minh City 70000, Vietnam
- Vietnam National University, Ho Chi Minh City 70000, Vietnam.
| | - Ali Mirzaei
- Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 71557-13876, Iran
| | - Jin-Young Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Thang Bach Phan
- Vietnam National University, Ho Chi Minh City 70000, Vietnam.
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 70000, Vietnam
| | - Lam Dai Tran
- Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi 11300, Vietnam
| | - Kevin C-W Wu
- Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan 32003, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea.
| | - Tan Le Hoang Doan
- Vietnam National University, Ho Chi Minh City 70000, Vietnam.
- Center for Innovative Materials and Architectures (INOMAR), Ho Chi Minh City 70000, Vietnam
| |
Collapse
|
2
|
Tran TV, Jalil AA, Nguyen DTC, Hassan NS, Alhassan M, Bahari MB. Highly enhanced chloramphenicol adsorption performance of MIL-53-NH 2(Al)-derived porous carbons modified with tannic acid. ENVIRONMENTAL RESEARCH 2024; 259:119447. [PMID: 38908660 DOI: 10.1016/j.envres.2024.119447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/04/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
The worldwide demand for antibiotics has experienced a notable surge, propelled by the repercussions of the COVID-19 pandemic and advancements in the global healthcare sector. A prominent challenge confronting humanity is the unregulated release of antibiotic-laden wastewater into the environment, posing significant threats to public health. The adoption of affordable carbon-based adsorbents emerges as a promising strategy for mitigating the contamination of antibiotic wastewater. Here, we report the synthesis of novel porous carbons (MPC) through a direct pyrolysis of MIL-53-NH2(Al) and tannic acid (TANA) under N2 atmosphere at 800 °C for 4 h. The effect of TANA amount ratios (0%-20%, wt wt-1) on porous carbon structure and adsorption performance was investigated. Results showed that TANA modification resulted in decreased surface area (1,600 m2 g-1-949 m2 g-1) and pore volume (2.3 cm3 g-1-1.7 cm3 g-1), but supplied hydroxyl functional groups. Adsorption kinetic, intraparticle diffusion, and isotherm were examined, indicating the best fit of Elovich and Langmuir models. 10%-TANA-MPC obtained an ultrahigh adsorption capacity of 564.4 mg g-1, which was approximately 2.1 times higher than that of unmodified porous carbon. 10%-TANA-MPC could be easily recycled up to 5 times, and after reuse, this adsorbent still remained highly stable in morphology and surface area. The contribution of H bonding, pore-filling, electrostatic and π-π interactions to chloramphenicol adsorption was clarified. It is recommended that TANA-modified MIL-53-NH2(Al)-derived porous carbons act as a potential adsorbent for removal of pollutants effectively.
Collapse
Affiliation(s)
- Thuan Van Tran
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - A A Jalil
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - Duyen Thi Cam Nguyen
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - N S Hassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - M Alhassan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Department of Chemistry, Sokoto State University, PMB 2134, Airport Road, Sokoto, Nigeria
| | - M B Bahari
- Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| |
Collapse
|
3
|
Heidari S, Alavinia S, Ghorbani-Vaghei R. Green synthesis of thiourea derivatives from nitrobenzenes using Ni nanoparticles immobilized on triazine-aminopyridine-modified MIL-101(Cr) MOF. Sci Rep 2023; 13:12964. [PMID: 37563182 PMCID: PMC10415257 DOI: 10.1038/s41598-023-40190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Nanohybrid metal-organic frameworks (MOF) have recently been considered next-generation catalysts regarding their unique features like large surface-to-volume ratio, tailorable geometry, uniform pore sizes, and homogeneous distribution of active sites. In this report, we address the triazine-aminopyridine-modified 3D Cr-centred MOF MIL-101(Cr)-NH2 following a post-synthetic modification approach. The excellent chelating ability of triazine-aminopyridine was applied to immobilize Ni ions over the host matrix MOF. The as-synthesized material was physicochemically characterized using various analytical techniques like FT-IR, electron microscopy, EDS, elemental mapping, XRD, and ICP-OES. Subsequently, the material has been catalytically employed in synthesizing new thiourea derivatives by reacting to nitrobenzene derivatives and phenyl isocyanate. The catalyst was isolated by centrifugation and recycled in 6 consecutive runs without momentous loss of its reactivity.
Collapse
Affiliation(s)
- Sara Heidari
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 6517838683, Iran
| | - Sedigheh Alavinia
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 6517838683, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamadan, 6517838683, Iran.
| |
Collapse
|
4
|
Saeed M, Firdous A, Zaman MS, Izhar F, Riaz M, Haider S, Majeed M, Tariq S. MOFs
for desulfurization of fuel oil: Recent advances and future insights. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202200546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Muhammad Saeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Aswa Firdous
- Department of Chemistry Quaid‐i‐Azam University Islamabad Pakistan
| | - Muhammad Saleh Zaman
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| | - Fatima Izhar
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Mubeshar Riaz
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Sabah Haider
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Muzamil Majeed
- School of Chemistry University of the Punjab Lahore Pakistan
| | - Shahzaib Tariq
- Department of Chemistry and Chemical Engineering Lahore University of Management Sciences (LUMS) Lahore Pakistan
| |
Collapse
|
5
|
Doraghi F, Yousefnejad F, Farzipour S, Aledavoud SP, Larijani B, Mahdavi M. Recent advances in synthesis of stilbene derivatives via cross-coupling reaction. Org Biomol Chem 2023; 21:1846-1861. [PMID: 36752124 DOI: 10.1039/d2ob01982e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The stilbenes are undoubtedly some of the most significant moieties in various bioactive natural and synthetic structures, and they are considered privileged structures. In recent years, the preparation of these structures via cross-coupling reactions has attracted much attention. In the current review, we present a summary of the recent developments in the construction of stilbene and stilbene derivatives by carbon-carbon coupling reactions of organic compounds in the presence of transition metal catalysts or under metal-free conditions. In this context, we outline the features of the important reactions, some product yields, and challenging reaction mechanisms.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Faeze Yousefnejad
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Soghra Farzipour
- Department of radiopharmaceutical, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Sadjadi S, Abedian-Dehaghani N, Heydari A, Heravi MM. Chitosan bead containing metal-organic framework encapsulated heteropolyacid as an efficient catalyst for cascade condensation reaction. Sci Rep 2023; 13:2797. [PMID: 36797436 PMCID: PMC9935902 DOI: 10.1038/s41598-023-29548-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Using cyclodextrin and chitosan that are bio-based compounds, a novel bi-functional catalytic composite is designed, in which metal-organic framework encapsulated phosphomolybdic acid was incorporated in a dual chitosan-cyclodextrin nanosponge bead. The composite was characterized via XRD, TGA, ICP, BET, NH3-TPD, FTIR, FE-SEM/EDS, elemental mapping analysis and its catalytic activity was examined in alcohol oxidation and cascade alcohol oxidation-Knoevenagel condensation reaction. It was found that the designed catalyst that possess both acidic feature and redox potential could promote both reactions in aqueous media at 55 °C and various substrates with different electronic features could tolerate the aforementioned reactions to furnish the products in 75-95% yield. Furthermore, the catalyst could be readily recovered and recycled for five runs with slight loss of the catalytic activity. Notably, in this composite the synergism between the components led to high catalytic activity, which was superior to each component. In fact, the amino groups on the chitosan served as catalysts, while cyclodextrin nanosponge mainly acted as a phase transfer agent. Moreover, measurement of phosphomolybdic acid leaching showed that its incorporation in metal-organic framework and bead structure could suppress its leaching, which is considered a drawback for this compound. Other merits of this bi-functional catalyst were its simplicity, use of bio-based compounds and true catalysis, which was proved via hot filtration.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran.
| | - Neda Abedian-Dehaghani
- grid.411354.60000 0001 0097 6984Department of Chemistry, School of Physics and Chemistry, Alzahra University, P.O. Box 1993891176, Vanak, Tehran, Iran
| | - Abolfazl Heydari
- grid.429924.00000 0001 0724 0339Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia
| | - Majid M. Heravi
- grid.411354.60000 0001 0097 6984Department of Chemistry, School of Physics and Chemistry, Alzahra University, P.O. Box 1993891176, Vanak, Tehran, Iran
| |
Collapse
|
7
|
Marset X, Guillena G. Deep Eutectic Solvents as à-la-Carte Medium for Transition-Metal-Catalyzed Organic Processes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238445. [PMID: 36500536 PMCID: PMC9736881 DOI: 10.3390/molecules27238445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Our society is facing a tremendous challenge to become more sustainable in every sphere of life. Regarding the chemical industry, one of the most significant issues to be addressed is the use of volatile organic compounds (VOCs) as solvents because they are petrol-derived and most of them are toxic and flammable. Among the possible solutions, deep eutectic solvents (DESs) have emerged as sustainable alternatives to VOCs in organic catalyzed transformations and other fields. The advantages of these new reaction media are not only related to their more benign physical and chemical properties and, for most of them, their renewable sources but also due to the possibility of being recycled after their use, increasing the sustainability of the catalyzed process in which they are involved. However, their use as media in catalytic transformations introduces new challenges regarding the compatibility and activity of known catalysts. Therefore, designed catalysts and "à-la-carte" DESs systems have been developed to overcome this problem, to maximize the reaction outcomes and to allow the recyclability of the catalyst/media system. Over the last decade, the popularity of these solvents has steadily increased, with several examples of efficient metal-catalyzed organic transformations, showing the efficiency of the catalysts/DES system, compared to the related transformations carried out in VOCs. Additionally, due to the inherent properties of the DES, unknown transformations can be carried out using the appropriated catalyst/DES system. All these examples of sustainable catalytic processes are compiled in this review.
Collapse
Affiliation(s)
- Xavier Marset
- Correspondence: (X.M.); (G.G.); Tel.: +34-965903400 (G.G.)
| | | |
Collapse
|
8
|
Nie F, Feng C, Ahmad N, Tian M, Liu Q, Wang W, Lin Z, Li C, Zhao C. A new green alternative solvent for extracting echinacoside and acteoside from Cistanche deserticola based on ternary natural deep eutectic solvent. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|