1
|
Recombinant Rotaviruses Rescued by Reverse Genetics Reveal the Role of NSP5 Hyperphosphorylation in the Assembly of Viral Factories. J Virol 2019; 94:JVI.01110-19. [PMID: 31619556 PMCID: PMC6912106 DOI: 10.1128/jvi.01110-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
The rotavirus (RV) double-stranded RNA genome is replicated and packaged into virus progeny in cytoplasmic structures termed viroplasms. The nonstructural protein NSP5, which undergoes a complex hyperphosphorylation process during RV infection, is required for the formation of these virus-induced organelles. However, its roles in viroplasm formation and RV replication have never been directly assessed due to the lack of a fully tractable reverse-genetics (RG) system for rotaviruses. Here, we show a novel application of a recently developed RG system by establishing a stable trans-complementing NSP5-producing cell line required to rescue rotaviruses with mutations in NSP5. This approach allowed us to provide the first direct evidence of the pivotal role of this protein during RV replication. Furthermore, using recombinant RV mutants, we shed light on the molecular mechanism of NSP5 hyperphosphorylation during infection and its involvement in the assembly and maturation of replication-competent viroplasms. Rotavirus (RV) replicates in round-shaped cytoplasmic viral factories, although how they assemble remains unknown. During RV infection, NSP5 undergoes hyperphosphorylation, which is primed by the phosphorylation of a single serine residue. The role of this posttranslational modification in the formation of viroplasms and its impact on virus replication remain obscure. Here, we investigated the role of NSP5 during RV infection by taking advantage of a modified fully tractable reverse-genetics system. A trans-complementing cell line stably producing NSP5 was used to generate and characterize several recombinant rotaviruses (rRVs) with mutations in NSP5. We demonstrate that an rRV lacking NSP5 was completely unable to assemble viroplasms and to replicate, confirming its pivotal role in rotavirus replication. A number of mutants with impaired NSP5 phosphorylation were generated to further interrogate the function of this posttranslational modification in the assembly of replication-competent viroplasms. We showed that the rRV mutant strains exhibited impaired viral replication and the ability to assemble round-shaped viroplasms in MA104 cells. Furthermore, we investigated the mechanism of NSP5 hyperphosphorylation during RV infection using NSP5 phosphorylation-negative rRV strains, as well as MA104-derived stable transfectant cell lines expressing either wild-type NSP5 or selected NSP5 deletion mutants. Our results indicate that NSP5 hyperphosphorylation is a crucial step for the assembly of round-shaped viroplasms, highlighting the key role of the C-terminal tail of NSP5 in the formation of replication-competent viral factories. Such a complex NSP5 phosphorylation cascade may serve as a paradigm for the assembly of functional viral factories in other RNA viruses. IMPORTANCE The rotavirus (RV) double-stranded RNA genome is replicated and packaged into virus progeny in cytoplasmic structures termed viroplasms. The nonstructural protein NSP5, which undergoes a complex hyperphosphorylation process during RV infection, is required for the formation of these virus-induced organelles. However, its roles in viroplasm formation and RV replication have never been directly assessed due to the lack of a fully tractable reverse-genetics (RG) system for rotaviruses. Here, we show a novel application of a recently developed RG system by establishing a stable trans-complementing NSP5-producing cell line required to rescue rotaviruses with mutations in NSP5. This approach allowed us to provide the first direct evidence of the pivotal role of this protein during RV replication. Furthermore, using recombinant RV mutants, we shed light on the molecular mechanism of NSP5 hyperphosphorylation during infection and its involvement in the assembly and maturation of replication-competent viroplasms.
Collapse
|
2
|
Matić S, Noris E, Contin R, Marian D, Thompson JR. Engineering partial resistance to cucumber mosaic virus in tobacco using intrabodies specific for the viral polymerase. PHYTOCHEMISTRY 2019; 162:99-108. [PMID: 30877900 DOI: 10.1016/j.phytochem.2019.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
A single-chain variable antibody fragment (scFv) library tested against the non-structural NSP5 protein of human rotavirus A was screened by a yeast two-hybrid system against three proteins derived from the RNA-dependent RNA polymerase (RdRp) of cucumber mosaic virus (CMV), with the aim of blocking their function and preventing viral infection once expressed in planta. The constructs tested were (i) '2a' consisting of the full-length 2a gene (839 amino acids, aa), (ii) 'Motifs' covering the conserved RdRp motifs (IV-VII) (132 aa) and (iii) 'GDD' located within the conserved RdRp motif VI (GDD, 22 aa). In yeast two-hybrid (Y2H) selection assays the '2a' and 'Motifs' constructs interacted with 96 and 25 library constructs, respectively, while the 'GDD' construct caused transactivation. Y2H-interacting scFvs were analyzed in vivo for their interaction with the 2a and Motifs proteins in a mammalian transient expression system. Eighteen tobacco lines stably transformed with four selected scFvs were produced and screened for resistance against two different CMV isolates. Different levels of resistance and rate of recovery were observed with CMV of both groups I and II, particularly in lines expressing intrabodies against the full-length 2a protein. This work describes for the first time the use of intrabodies against the RdRp of CMV to obtain plants that reduce infection of a pandemic virus, showing that the selected scFvs can modulate virus infection and induce premature recovery in tobacco plants.
Collapse
Affiliation(s)
- Slavica Matić
- Plant Virology Group, ICGEB Biosafety Outstation, Ca'Tron di Roncade (TV), Italy; Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin (TO), Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin (TO), Italy
| | - Roberta Contin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste (TS), Italy
| | - Daniele Marian
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Turin (TO), Italy
| | - Jeremy R Thompson
- Plant Virology Group, ICGEB Biosafety Outstation, Ca'Tron di Roncade (TV), Italy; Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, USA.
| |
Collapse
|
3
|
Nguyen TD, Nagamune T, Kawahara M. A Suicide Switch Directly Eliminates Intracellular scFv Oligomers in the Cytoplasm of Mammalian Cells. Biotechnol J 2018; 14:e1800350. [PMID: 30171736 DOI: 10.1002/biot.201800350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/25/2018] [Indexed: 11/10/2022]
Abstract
As intracellular antibodies (intrabodies) are highly promising tools for drug discovery, an innovative antibody screening platform in mammalian cells was previously developed by a single-chain Fv (scFv)-c-kit growth sensor, which successfully selected rabies nucleoprotein and phosphoprotein-specific intrabodies from a synthetic scFv library. Since the scFv-c-kit growth sensor releases a growth signal after forming oligomers due to binding to an oligomeric antigen, it is critical to use a library which does not contain self-oligomeric scFvs to avoid the off-target signal of the growth sensor. Here, a novel method to eliminate self-oligomeric scFvs directly in the cytoplasm of mammalian cells is presented. A suicide switch by fusing an scFv with a cell-death signaling domain to eliminate scFv oligomers is developed. It is found that among four cell-death signaling domains, a suicide switch by fusing scFv with Fas-associated death domain (FADD) can selectively reduce oligomeric scFvs. Furthermore, the library after eliminating scFv oligomers results in higher efficiency in the intrabody selection platform with a growth sensor. Collectively, the scFv-FADD suicide switch can be applied to eliminate oligomeric scFvs from a library, which can consequently improve the quality of intracellular scFv libraries and accelerate the discovery of intrabodies in the future.
Collapse
Affiliation(s)
- Thuy Duong Nguyen
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Teruyuki Nagamune
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Masahiro Kawahara
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
4
|
Lee S, Kaku Y, Inoue S, Nagamune T, Kawahara M. Growth signalobody selects functional intrabodies in the mammalian cytoplasm. Biotechnol J 2016; 11:565-73. [PMID: 26647155 DOI: 10.1002/biot.201500364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/03/2015] [Accepted: 12/08/2015] [Indexed: 12/18/2022]
Abstract
A versatile strategy to inhibit protein functions in the cytoplasmic environment is eagerly anticipated for drug discovery. In this study, we demonstrate a novel system to directly select functional intrabodies from a library in the mammalian cytoplasm. In this system, a target homo-oligomeric antigen is expressed together with a single-chain Fv (scFv) library that is linked to the cytoplasmic domain of a receptor tyrosine kinase (RTK) in the cytoplasm of murine interleukin-3 (IL-3)-dependent cells. As the tyrosine kinase is activated by dimerization, only scFv-RTK clones that can bind to the target antigen would be oligomerized and transduce a growth signal under the IL-3-deprived condition, which leads to selection of functional intrabodies. To demonstrate this system, we used rabies virus phosphoprotein (RV-P) that forms dimers in the cytoplasm as a target antigen. As a result, functional intrabodies were selected using our system from a naïve scFv library as well as from a pre-selected anti-RV-P library generated by phage display. This system may be applied for screening intrabodies that can prevent progression of various severe diseases.
Collapse
Affiliation(s)
- Songhee Lee
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Kaku
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Teruyuki Nagamune
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Masahiro Kawahara
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
5
|
Single Domain Antibody Fragments as Drug Surrogates Targeting Protein–Protein Interactions inside Cells. Antibodies (Basel) 2013. [DOI: 10.3390/antib2020306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
6
|
Fu X, Gao X, He S, Huang D, Zhang P, Wang X, Zhang S, Dang R, Yin S, Du E, Yang Z. Design and selection of a camelid single-chain antibody yeast two-hybrid library produced de novo for the cap protein of porcine circovirus type 2 (PCV2). PLoS One 2013; 8:e56222. [PMID: 23469171 PMCID: PMC3585807 DOI: 10.1371/journal.pone.0056222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 01/07/2013] [Indexed: 01/12/2023] Open
Abstract
Nanobodies (or variable domain of the heavy chain of the heavy-chain antibodies, VHHs) are single-domain antigen-binding fragments derived from camelid heavy chain antibodies. Their comparatively small size, monomeric behavior, high stability, high solubility, and ability to bind epitopes inaccessible to conventional antibodies make them especially suitable for many therapeutic and biotechnological applications. In this paper, for the first time, we created the immunized Camelus Bactrianus VHH yeast two-hybrid (Y2H) library according to the Clontech Mate & Plate library construction system. The transformation efficiency and titer of the VHH Y2H library were 7.26×106 cfu/3 µg and 2×109 cfu/ml, which met the demand for Y2H library screening. Using as an example the porcine circovirus type 2 (PCV2) Cap protein as bait, we screened 21 positive Cap-specific VHH sequences. Among these sequences, 7 of 9 randomly selected clones were strongly positive as indicated by enzyme-linked immunosorbent assay, either using PCV2 viral lysis or purified Cap protein as coated antigen. Additionally, the immunocytochemistry results further indicated that the screened VHHs could specifically detected PCV2 in the infected cells. All this suggests the feasibility of in vivo VHH throughput screening based on Y2H strategy.
Collapse
Affiliation(s)
- Xiangjing Fu
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Pellis M, Pardon E, Zolghadr K, Rothbauer U, Vincke C, Kinne J, Dierynck I, Hertogs K, Leonhardt H, Messens J, Muyldermans S, Conrath K. A bacterial-two-hybrid selection system for one-step isolation of intracellularly functional Nanobodies. Arch Biochem Biophys 2012; 526:114-23. [PMID: 22583807 DOI: 10.1016/j.abb.2012.04.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 10/28/2022]
Abstract
Camel single-domain antibody fragments or Nanobodies, are practical in a wide range of applications. Their unique biochemical and biophysical properties permit an intracellular expression and antigen targeting. The availability of an efficient intracellular selection step would immediately identify the best intracellularly performing functional antibody fragments. Therefore, we assessed a bacterial-two-hybrid system to retrieve such Nanobodies. With GFP as an antigen we demonstrate that antigen-specific Nanobodies of sub-micromolar affinity and stability above 30 kJ/mol, at a titer of 10(-4) can be retrieved in a single-step selection. This was further proven practically by the successful recovery from an 'immune' library of multiple stable, antigen-specific Nanobodies of good affinity for HIV-1 integrase or nucleoside hydrolase. The sequence diversity, intrinsic domain stability, antigen-specificity and affinity of these binders compare favorably to those that were retrieved in parallel by phage display pannings.
Collapse
Affiliation(s)
- Mireille Pellis
- Laboratory Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim KM, Kang M, Yi EC. Applications of cell-based phage display panning to proteomic analysis. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0150-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Pérez-Martínez D, Tanaka T, Rabbitts TH. Intracellular antibodies and cancer: new technologies offer therapeutic opportunities. Bioessays 2010; 32:589-98. [PMID: 20544739 DOI: 10.1002/bies.201000009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since the realisation that the antigen-binding regions of antibodies, the variable (V) regions, can be uncoupled from the rest of the molecule to create fragments that recognise and abrogate particular protein functions in cells, the use of antibody fragments inside cells has become an important tool in bioscience. Diverse libraries of antibody fragments plus in vivo screening can be used to isolate single chain variable fragments comprising VH and VL segments or single V-region domains. Some of these are interfering antibody fragments that compete with protein-protein interactions, providing lead molecules for drug interactions that until now have been considered difficult or undruggable. It may be possible to deliver or express antibody fragments in target cells as macrodrugs per se. In future incarnations of intracellular antibodies, however, the structural information of the interaction interface of target and antibody fragment should facilitate development of binding site mimics as small drug-like molecules. This is a new dawn for intracellular antibody fragments both as macrodrugs and as precursors of drugs to treat human diseases and should finally lead to the removal of the epithet of the 'undruggable' protein-protein interactions.
Collapse
Affiliation(s)
- David Pérez-Martínez
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, Section of Experimental Therapeutics, St. James's University Hospital, University of Leeds, Leeds, UK
| | | | | |
Collapse
|
11
|
Seo MJ, Jeong KJ, Leysath CE, Ellington AD, Iverson BL, Georgiou G. Engineering antibody fragments to fold in the absence of disulfide bonds. Protein Sci 2009; 18:259-67. [PMID: 19177559 DOI: 10.1002/pro.31] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Disulfide bonds play a critical role in the stabilization of the immunoglobulin beta-sandwich sandwich. Under reducing conditions, such as those that prevail in the cytoplasm, disulfide bonds do not normally form and as a result most antibodies expressed in that compartment (intrabodies) accumulate in a misfolded and inactive state. We have developed a simple method for the quantitative isolation of antibody fragments that retain full activity under reducing conditions from large mutant libraries. In E. coli, inactivation of the cysteine oxidoreductase DsbA abolishes protein oxidation in the periplasm, which leads to the accumulation of scFvs and other disulfide-containing proteins in a reduced form. Libraries of mutant scFvs were tethered onto the inner membrane of dsbA cells and mutants that could bind fluorescently labeled antigen in the reducing periplasm were screened by Anchored Periplasmic Expression (APEx; Harvey et al., Proc Natl Acad Sci USA 2004;101:9193-9198.). Using this approach, we isolated scFv antibody variants that are fully active when expressed in the cytoplasm or when the four Cys residues that normally form disulfides are substituted by Ser residues.
Collapse
Affiliation(s)
- Min Jeong Seo
- Department of Chemical Engineering, University of Texas, Austin, 78712, USA
| | | | | | | | | | | |
Collapse
|
12
|
Meli G, Visintin M, Cannistraci I, Cattaneo A. Direct in Vivo Intracellular Selection of Conformation-sensitive Antibody Domains Targeting Alzheimer's Amyloid-β Oligomers. J Mol Biol 2009; 387:584-606. [DOI: 10.1016/j.jmb.2009.01.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 12/21/2022]
|
13
|
Xiong H, Li S, Yang Z, Burgess RR, Dynan WS. E. coli expression of a soluble, active single-chain antibody variable fragment containing a nuclear localization signal. Protein Expr Purif 2009; 66:172-80. [PMID: 19281848 DOI: 10.1016/j.pep.2009.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/02/2009] [Indexed: 01/10/2023]
Abstract
Single-chain antibody variable fragment (scFv) proteins consist of an antibody heavy chain variable sequence joined via a flexible linker to a light chain variable sequence. Prior work has shown that ScFv 18-2 binds the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and sensitizes cancer cells to radiation following nuclear microinjection. A potential clinical delivery strategy is based on modification of the scFv so that it can be taken up into cells and imported to the nucleus. This will require development of an expression system for a nuclear localization signal (NLS)-tagged scFv derivative. We found, however, that addition of the highly basic NLS severely compromised expression in the host-vector system used for the parental scFv. After testing a variety of host strains, fusion partners, and NLS sequences and placements, successful expression was obtained with a construct containing a stabilizing N-terminal maltose binding protein tag and a single, optimized, C-terminal NLS moiety. Amylose affinity-purified ScFv 18-2 NLS protein was stable to storage at 4 degrees C in the presence of glycerol or trehalose, bound selectively to an epitope peptide, and was cleavable at an engineered Factor Xa protease site. Following lipid-mediated uptake into cultured cells, NLS-tagged ScFv 18-2, unlike the parental ScFv 18-2, localized predominantly in the cell nucleus.
Collapse
Affiliation(s)
- Hairong Xiong
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912, USA
| | | | | | | | | |
Collapse
|
14
|
Saerens D, Ghassabeh GH, Muyldermans S. Antibody technology in proteomics. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:275-82. [DOI: 10.1093/bfgp/eln028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|