1
|
Chen L, Zhou D, Li X, Yang B, Xu T. Bioprinting of Human Cord Blood-Derived CD34+ Cells and Exploration of the Multilineage Differentiation Ability in Vitro. ACS Biomater Sci Eng 2021; 7:2592-2604. [PMID: 33939424 DOI: 10.1021/acsbiomaterials.0c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The three-dimensional (3D) marrow microenvironment plays an essential role in regulating human cord blood-derived CD34+ cells (hCB-CD34+) migration, proliferation, and differentiation. Extensive in vitro and in vivo studies have aimed to recapitulate the main components of the bone marrow (BM) niche. Nonetheless, the models are limited by a lack of heterogeneity and compound structure. Here, we fabricated coaxial extruded core-shell tubular scaffolds and extrusion-based bioprinted cell-laden mesh scaffolds to mimic the functional niche in vitro. A multicellular mesh scaffold and two different core-shell tubular scaffolds were developed with human bone marrow-derived mesenchymal stromal cells (BMSCs) in comparison with a conventional 2D coculture system. A clear cell-cell connection was established in all three bioprinted constructs. Cell distribution and morphology were observed in different systems with scanning electron microscopy (SEM). Collected hCB-CD34+ cells were characterized by various stem cell-specific and lineage-specific phenotypic parameters. The results showed that compared with hCB-CD34+ cells cocultured with BMSCs in Petri dishes, the self-renewal potential of hCB-CD34+ cells was stronger in the tubular scaffolds after 14 days. Besides, cells in these core-shell constructs tended to obtain stronger differentiation potential of lymphoid and megakaryocytes, while cells encapsulated in mesh scaffolds obtained stronger differentiation tendency into erythroid cells. Consequently, 3D bioprinting technology could partially simulate the niche of human hematopoietic stem cells. The three models have their potential in stemness maintenance and multilineage differentiation. This study can provide initial effective guidance in the directed differentiation research and related screening of drug models for hematological diseases.
Collapse
Affiliation(s)
- Lidan Chen
- Centre of Maxillofacial Surgery and Digital Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, People's Republic of China
| | - Dezhi Zhou
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Xinda Li
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,East China Institute of Digital Medical Engineering, Shangrao 334000, People's Republic of China
| | - Bin Yang
- Centre of Maxillofacial Surgery and Digital Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, People's Republic of China
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.,Department of Precision Medicine and Healthcare, Tsinghua Berkeley Shenzhen Institute, Shenzhen 518055, People's Republic of China
| |
Collapse
|
2
|
Generation of clinical-grade red blood cells from human umbilical cord blood mononuclear cells. Cell Tissue Res 2018; 375:437-449. [PMID: 30284087 DOI: 10.1007/s00441-018-2919-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/03/2018] [Indexed: 01/18/2023]
Abstract
A xeno-free method for ex vivo generation of red blood cells (RBCs) is attempted in order to replicate for large-scale production and clinical applications. An efficient milieu was formulated using injectable drugs substituting the animal-derived components in the culture medium. Unfractionated mononuclear cells isolated from human umbilical cord blood were used hypothesizing that the heterogeneous cell population could effectively contribute to erythroid cell generation. The strategy adopted includes a combination of erythropoietin and other injectable drugs under low oxygen levels, which resulted in an increase in the number of mature RBCs produced in vitro. The novelty in this study is the addition of supplements to the medium in a stage-specific manner for the differentiation of unfractionated umbilical cord blood mononuclear cells (MNCs) into erythropoietic lineage. The erythropoietic lineage was well established by day 21, wherein the mean cell count of RBCs was found to be 21.36 ± 0.9 × 108 and further confirmed by an upregulated expression of CD235a+ specific to RBCs. The rationale was to have a simple method to produce erythroid cells from umbilical cord blood isolates in vitro by mitigating the effects of multiple erythroid-activating agents and batch to batch variability.
Collapse
|
3
|
Mettananda S, Clark K, Fisher CA, Sloane-Stanley JA, Gibbons RJ, Higgs DR. Phenotypic and molecular characterization of a serum-free miniature erythroid differentiation system suitable for high-throughput screening and single-cell assays. Exp Hematol 2018; 60:10-20. [PMID: 29329925 DOI: 10.1016/j.exphem.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/22/2017] [Accepted: 01/01/2018] [Indexed: 11/15/2022]
Abstract
In vitro erythroid differentiation systems are used to study the mechanisms underlying normal and abnormal erythropoiesis and to test the effects of various extracellular factors on erythropoiesis. The use of serum or conditioned medium in liquid cultures and the seeding of cultures with heterogeneous peripheral blood mononuclear cells confound the reproducibility of these systems. Newer erythroid differentiation culture systems have overcome some of these limitations by using a fully defined, serum-free medium and initiating cultures using purified CD34+ cells. Although widely used in bulk cultures, these protocols have not been rigorously tested in high-throughput or single-cell assays. Here, we describe a serum-free erythroid differentiation system suitable for small-scale and single-cell experiments. This system generates large numbers of terminally differentiated erythroid cells of very high purity. Here we have adapted this culture system to a 96-well format and have developed a protocol to grow erythroid colonies from single erythroid progenitors in minute culture volumes.
Collapse
Affiliation(s)
- Sachith Mettananda
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Kevin Clark
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Chris A Fisher
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Jackie A Sloane-Stanley
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Richard J Gibbons
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Douglas R Higgs
- Medical Research Council (MRC) Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom; Oxford National Institute for Health Research Biomedical Research Centre, Blood Theme, Oxford University Hospital, John Radcliffe Hospital, Headington, Oxford, United Kingdom.
| |
Collapse
|
4
|
Kim HO, Baek EJ. Red Blood Cell Engineering in Stroma and Serum/Plasma-Free Conditions and Long Term Storage. Tissue Eng Part A 2012; 18:117-26. [DOI: 10.1089/ten.tea.2010.0711] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Hyun Ok Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jung Baek
- Department of Laboratory Medicine, Hanyang University, Gyeonggi-do, Korea
| |
Collapse
|
5
|
Lim M, Panoskaltsis N, Ye H, Mantalaris A. Optimization of in vitro erythropoiesis from CD34+ cord blood cells using design of experiments (DOE). Biochem Eng J 2011. [DOI: 10.1016/j.bej.2011.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Watt SM, Athanassopoulos A, Harris AL, Tsaknakis G. Human endothelial stem/progenitor cells, angiogenic factors and vascular repair. J R Soc Interface 2010; 7 Suppl 6:S731-51. [PMID: 20843839 PMCID: PMC2988281 DOI: 10.1098/rsif.2010.0377.focus] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 08/23/2010] [Indexed: 12/13/2022] Open
Abstract
Neovascularization or new blood vessel formation is of utmost importance not only for tissue and organ development and for tissue repair and regeneration, but also for pathological processes, such as tumour development. Despite this, the endothelial lineage, its origin, and the regulation of endothelial development and function either intrinsically from stem cells or extrinsically by proangiogenic supporting cells and other elements within local and specific microenvironmental niches are still not fully understood. There can be no doubt that for most tissues and organs, revascularization represents the holy grail for tissue repair, with autologous endothelial stem/progenitor cells, their proangiogenic counterparts and the products of these cells all being attractive targets for therapeutic intervention. Historically, a great deal of controversy has surrounded the identification and origin of cells and factors that contribute to revascularization, the use of such cells or their products as biomarkers to predict and monitor tissue damage and repair or tumour progression and therapeutic responses, and indeed their efficacy in revascularizing and repairing damaged tissues. Here, we will review the role of endothelial progenitor cells and of supporting proangiogenic cells and their products, principally in humans, as diagnostic and therapeutic agents for wound repair and tissue regeneration.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Laboratory and Stem Cells and Immunotherapies, NHS Blood and Transplant, John Radcliffe Hospital, Headington, Oxford OX3 9DU, UK.
| | | | | | | |
Collapse
|
7
|
Nichols JE, Niles J, Walls S, Cortiella J. In vitro human bone marrow analog: clinical potential. Regen Med 2010; 5:289-98. [PMID: 20210588 DOI: 10.2217/rme.10.7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bone marrow is the primary site of hematopoiesis in adult humans. Bone marrow can be cultured in vitro but few simple culture systems fully support hematopoiesis beyond a few months. Human bone marrow analogs are long-term in vitro cultures of marrow stromal and hematopoietic stem cells that can be used to produce cells and products normally harvested from human donors. Bone marrow analog systems should exhibit confluence of the stromal cell populations, persistence of hematopoietic progenitor cells, presence of active regions of hematopoiesis and capacity to produce mature cell types for extended periods of time. Although we are still years away from realizing clinical application of products formed by artificial bone marrow analogs, the process of transitioning this research tool from bench to bedside should be fairly straightforward. The most obvious application of artificial marrow would be for production of autologous hematopoietic CD34(+) stem cells as a stem cell therapy for individuals experiencing bone marrow failure due to disease or injury. Another logical application is for 'blood farming', a process for large-scale in vitro production of red blood cells, white blood cells or platelets, for transfusion or treatment. Other possibilities include production of nonhematopoietic stem cells such as osteogenic stromal cells, osteoblasts and rare pluripotent stem cells. Bone marrow analogs also have great potential as ex vivo human test systems and could play a critical role in drug discovery, drug development and toxicity testing in the future.
Collapse
Affiliation(s)
- Joan E Nichols
- Laboratory of Regenerative & Nano-Medicine, Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX 77555-0435, USA.
| | | | | | | |
Collapse
|
8
|
Petiot E, Fournier F, Gény C, Pinton H, Marc A. Rapid Screening of Serum-Free Media for the Growth of Adherent Vero Cells by Using a Small-Scale and Non-invasive Tool. Appl Biochem Biotechnol 2009; 160:1600-15. [DOI: 10.1007/s12010-009-8674-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 05/18/2009] [Indexed: 11/24/2022]
|
9
|
Dorn I, Lazar-Karsten P, Boie S, Ribbat J, Hartwig D, Driller B, Kirchner H, Schlenke P. In vitro proliferation and differentiation of human CD34+ cells from peripheral blood into mature red blood cells with two different cell culture systems. Transfusion 2008; 48:1122-32. [DOI: 10.1111/j.1537-2995.2008.01653.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Ronzoni L, Bonara P, Rusconi D, Frugoni C, Libani I, Cappellini MD. Erythroid differentiation and maturation from peripheral CD34+ cells in liquid culture: cellular and molecular characterization. Blood Cells Mol Dis 2007; 40:148-55. [PMID: 17889571 DOI: 10.1016/j.bcmd.2007.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Revised: 07/23/2007] [Accepted: 07/25/2007] [Indexed: 10/22/2022]
Abstract
In vitro models of human erythropoiesis are useful in studying the mechanisms of erythroid differentiation from BFU-E to mature erythrocytes both in normal and pathological conditions. Most of the available in vitro liquid cultures are from cell lines or are limited by the production of few erythroid cells mixed with myeloid cells. Here we describe an erythroid liquid culture system starting from CD34(+)-enriched cells obtained from peripheral blood. CD34(+) cells were cultured for 21 days in different conditions. Precisely stem cell factor (SCF, 20 ng/mL) and IL-3 (10 ng/mL) were added at starting point plus Epo (3 U/mL) at day 0 or 7 of culture with or without cyclosporine A (Cy; 1 mg/mL). In all the conditions, the highest recovery was obtained at day 14 of culture. Epo and Cy added at day 0 produced the highest cell expansion (170-fold mean amplification of the initial cell input by day 14) and recovery of erythroid cell. Sixty seven percent of the cells were GP(+) at day 7 and 97% by day 14 respectively. Most of the cells were proerythroblasts at day 7 and mature erythroblasts at day 14 (>90% were benzidine(pos)). The presence of Cy favoured erythroid differentiation and maturation and reduced the percentage of non-erythroid CD45(+) cells (2% with Cy versus 5% without Cy). Cells cultured with Epo and Cy reproduced erythropoiesis also at the molecular level. The results suggest that in 14 days different steps of human erythropoiesis from peripheral CD34(+) cells could be reproduced, with high recovery of highly purified erythroid cells. The high number and purity of erythroid cells produced from a small amount of peripheral blood make this method useful for studying either normal or pathological erythropoiesis.
Collapse
Affiliation(s)
- Luisa Ronzoni
- Department of Internal Medicine, University of Milano, Fondazione Policlinico Mangiagalli, Regina Elena, IRCCS, Milano, Italy
| | | | | | | | | | | |
Collapse
|