1
|
Christophersen A. Peptide-MHC class I and class II tetramers: From flow to mass cytometry. HLA 2020; 95:169-178. [PMID: 31891448 DOI: 10.1111/tan.13789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/26/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022]
Abstract
To develop better vaccines and more targeted treatments for cancer and autoimmune disorders, the disease-specific T cells and their cognate antigens need to be better characterized. For more than two decades, peptide-major histocompatibility complex (pMHC) tetramers and flow cytometry have been the gold standard for detection of CD8+ and CD4+ T cells specific to antigens in the context of MHC class I and class II, respectively. Nonetheless, more recent studies combining such reagents with mass cytometry, that is, cytometry by time of flight (CyTOF), have offered far more comprehensive profiling of antigen-specific T-cell responses. In addition, mass cytometry has enabled ex vivo screening of CD8+ T-cell reactivities against hundreds of MHC class I restricted candidate epitopes. MHC class II molecules, on the other hand, have been challenging to combine with mass cytometry as they are more complex and bind with lower affinities to cognate T-cell receptors than MHC class I molecules. In this review, I discuss how techniques originally developed to improve the staining capacity of pMHC tetramers in flow cytometry led to the successful combination of such reagents with mass cytometry. Especially, I will highlight very recent advances facilitating the combination with pMHC class II tetramers. Together, these mass cytometry-based studies can help develop more targeted treatments for cancer and autoimmune disorders.
Collapse
Affiliation(s)
- Asbjørn Christophersen
- KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Norway.,Department of Immunology, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Hartlage AS, Murthy S, Kumar A, Trivedi S, Dravid P, Sharma H, Walker CM, Kapoor A. Vaccination to prevent T cell subversion can protect against persistent hepacivirus infection. Nat Commun 2019; 10:1113. [PMID: 30846697 PMCID: PMC6405742 DOI: 10.1038/s41467-019-09105-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
Efforts to develop an effective vaccine against the hepatitis C virus (HCV; human hepacivirus) have been stymied by a lack of small animal models. Here, we describe an experimental rat model of chronic HCV-related hepacivirus infection and its response to T cell immunization. Immune-competent rats challenged with a rodent hepacivirus (RHV) develop chronic viremia characterized by expansion of non-functional CD8+ T cells. Single-dose vaccination with a recombinant adenovirus vector expressing hepacivirus non-structural proteins induces effective immunity in majority of rats. Resolution of infection coincides with a vigorous recall of intrahepatic cellular responses. Host selection of viral CD8 escape variants can subvert vaccine-conferred immunity. Transient depletion of CD8+ cells from vaccinated rats prolongs infection, while CD4+ cell depletion results in chronic viremia. These results provide direct evidence that co-operation between CD4+ and CD8+ T cells is important for hepacivirus immunity, and that subversion of responses can be prevented by prophylactic vaccination. Development of a HCV vaccine is hampered by a lack of appropriate small animal models. Here, Hartlage et al. describe a rat model of hepacivirus persistence and show that persistence can be prevented by vaccination with viral non-structural proteins.
Collapse
Affiliation(s)
- Alex S Hartlage
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Medical Scientist Training Program, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Sheetal Trivedi
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Piyush Dravid
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Himanshu Sharma
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA.,Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH, 43205, USA. .,Department of Pediatrics, College of Medicine and Public Health, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Altman JD, Davis MM. MHC‐Peptide Tetramers to Visualize Antigen‐Specific T Cells. ACTA ACUST UNITED AC 2016; 115:17.3.1-17.3.44. [DOI: 10.1002/cpim.14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Mark M. Davis
- Stanford University School of Medicine and The Howard Hughes Medical Institute Palo Alto California
| |
Collapse
|
4
|
Liu A, Hu J, Wu W, Huang Y, Liang H, Wang H, Yang R, Fan J. Preliminary exploration of HLA-A 1101-restricted human cytomegalovirus glycoprotein B-specific CD8⁺ T cells in allogeneic stem-cell transplant recipients. Virus Res 2014; 188:38-44. [PMID: 24704672 DOI: 10.1016/j.virusres.2014.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 03/16/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
T-cell responses directed against human cytomegalovirus (HCMV) glycoprotein B (gB) contribute to protective immunity against HCMV infection in both animal models and humans. However, the gB-specific human CD8(+) T cell responses remain poorly understood. gB antigen-specific CD8(+) T cells were stained with seven major histocompatibility complex (MHC)-peptide pentamers in 16 human leukocyte antigen (HLA)-A 1101-positive, HCMV-seropositive patients following hematopoietic stem cell transplantation (HSCT). Of these seven pentamers, the most frequent CD8(+) T-cell responses were directed against the gB332-340 peptide. These gB332-340-specific CD8(+) T cells were strongly associated with the presence of plasma HCMV immunoglobulin M in all HSCT recipients and exhibited a probable causal relationship with the level of pp65 antigenemia. Together, these data suggest a role for gB332-340-specific CD8(+) T cells in HCMV reactivation after HSCT. Furthermore, the pentamer assay may be valuable in detecting antigen-specific CD8(+) T cells.
Collapse
Affiliation(s)
- Anbing Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Jianhua Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Yaping Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Huiqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Rong Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, China.
| |
Collapse
|
5
|
Blanchfield JL, Shorter SK, Evavold BD. Monitoring the Dynamics of T Cell Clonal Diversity Using Recombinant Peptide:MHC Technology. Front Immunol 2013; 4:170. [PMID: 23840195 PMCID: PMC3699728 DOI: 10.3389/fimmu.2013.00170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/14/2013] [Indexed: 12/31/2022] Open
Abstract
The capacity to probe antigen specific T cells within the polyclonal repertoire has been revolutionized by the advent of recombinant peptide:MHC (pMHC) technology. Monomers and multimers of pMHC molecules can enrich for and identify antigen specific T cells to elucidate the contributions of T cell frequency, localization, and T cell receptor (TCR) affinity during immune responses. Two-dimensional (2D) measurements of TCR–pMHC interactions are at the forefront of this field because the biological topography is replicated such that TCR and pMHC are membrane anchored on opposing cells, allowing for biologically pertinent measures of TCR antigen specificity and diversity. 2D measurements of TCR-pMHC kinetics have also demonstrated increased fidelity compared to three-dimensional surface plasmon resonance data and are capable of detecting T cell affinities that are below the detection level of most pMHC multimers. Importantly, 2D techniques provide a platform to evaluate T cell affinity and antigen specificity against multiple protein epitopes within the polyclonal repertoire directly ex vivo from sites of ongoing immune responses. This review will discuss how antigen specific pMHC molecules, with a focus on 2D technologies, can be used as effective tools to evaluate the range of TCR affinities that comprise an immune response and more importantly how the breadth of affinities determine functional outcome against a given exposure to antigen.
Collapse
Affiliation(s)
- J Lori Blanchfield
- Department of Microbiology and Immunology, Emory University, Atlanta, GA , USA
| | | | | |
Collapse
|
6
|
Tischer S, Kaireit T, Figueiredo C, Hiller O, Maecker-Kolhoff B, Geyeregger R, Immenschuh S, Blasczyk R, Eiz-Vesper B. Establishment of the reversible peptide-major histocompatibility complex (pMHC) class I Histamer technology: tool for visualization and selection of functionally active antigen-specific CD8(+) T lymphocytes. Int Immunol 2012; 24:561-72. [PMID: 22740564 DOI: 10.1093/intimm/dxs059] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multimers of soluble peptide-major histocompatibilty complex (pMHC) molecules are used in both basic and clinical immunology. They allow the specific visualization and isolation of antigen-specific T cells from ex vivo samples. Adoptive transfer of antigen-specific T cells sorted by pMHC multimers is an effective strategy for treatment of patients with malignancies or infectious diseases after transplantation. We developed a new reversible pMHC multimer called 'Histamer' to enable the specific detection and isolation of antiviral T cells from peripheral blood. HLA-A*02:01/CMVpp65 (495-503) Histamer (A02/CMV Histamer) was generated by coupling 6xHis-tagged pMHC molecules onto cobalt-based magnetic beads. The specificity of the Histamer was evaluated by flow cytometry. Sorting of antiviral CD8(+) cytotoxic T lymphocytes (CTLs) was performed by magnetic cell separation, followed by the monomerization of the Histamer after addition of the competitor L-histidine. Sorted T cells were analyzed for phenotype and function. The reversible pMHC Histamer proved to be highly specific and sensitive. CMV-specific T cells of up to 99.6% purity were isolated using the Histamer technology. Rapid and complete disassembly of the T-cell surface-bound A02/CMV Histamer followed by the subsequent dissociation of the pMHC monomers from CD8(+) CTL receptors was achieved using 100 mM L-histidine. The function of CMV-specific T cells enriched by Histamer staining did not differ from CTLs induced by standard T-cell assays. This reversible T-cell staining procedure preserves the functionality of antigen-specific T cells and can be adapted to good manufacturing practice conditions. The pMHC Histamer technology offers full flexibility and fulfills all requirements to generate clinical-grade T lymphocytes.
Collapse
Affiliation(s)
- Sabine Tischer
- Institute for Transfusion Medicine, Hannover Medical School, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Lee S, Park JB, Kim EY, Joo SY, Shin EC, Kwon CH, Joh JW, Kim SJ. Monitoring of cytomegalovirus-specific CD8+ T-cell response with major histocompatibility complex pentamers in kidney transplant recipients. Transplant Proc 2012; 43:2636-40. [PMID: 21911137 DOI: 10.1016/j.transproceed.2011.05.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/09/2011] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Cytomegalovirus (CMV) can reactivate causing serious clinical problems during immunosuppression. CMV-specific CD8(+) T cells play an important role in the control of CMV reactivation. Using pentameric major histocompatibility complex (MHC) peptide complexes, we investigated cellular immune responses to CMV among healthy individuals and kidney transplantation recipients in Korea, which is an endemic area of CMV infection. MATERIALS AND METHODS Analysis of CMV-specific T cells was performed on 28 healthy individuals and 40 recipients who bore human leukocyte antigen (HLA)-A2 or -A24. CMV pp65 pentamer-binding cells incubated with various monoclonal antibodies were measured by four-color flow cytometry. RESULTS Detectable levels of pentamer(+) CD8(+) T cells were present in 109/139 samples (78.4%) that stained with the A*02NLV-pentamer, while 15/67 samples (22.4%) stained with the A*24QYD-pentamer (P < .01). Among patients with HLA-A2, 22/24 (91.7%) samples showing positive CMV antigenemia revealed detectable pentamer(+) CD8(+) T cells, while 87/115 (75.7%) displaying negative CMV antigenemia had detectable pentamer(+) CD8(+) T cells (P = .04). There was no significant difference in percentages of pentamer(+) CD8(+) T cells between patients who did versus who did not experience episodes of CMV infection. The subpopulation of CMV-specific CD8(+) T cells in transplantation recipients was evaluated using phenotypic markers; memory cells comprised the majority of the CMV-specific CD8(+) T-cell population. CONCLUSION The A*02NLV-pentamer complex was useful to monitor CMV-specific T cells. However, MHC pentamer-based techniques did not provide a clear distinction between patients who are or are not at risk for CMV infection.
Collapse
Affiliation(s)
- S Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Neurons are MHC class I-dependent targets for CD8 T cells upon neurotropic viral infection. PLoS Pathog 2011; 7:e1002393. [PMID: 22114563 PMCID: PMC3219726 DOI: 10.1371/journal.ppat.1002393] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/07/2011] [Indexed: 01/08/2023] Open
Abstract
Following infection of the central nervous system (CNS), the immune system is faced with the challenge of eliminating the pathogen without causing significant damage to neurons, which have limited capacities of renewal. In particular, it was thought that neurons were protected from direct attack by cytotoxic T lymphocytes (CTL) because they do not express major histocompatibility class I (MHC I) molecules, at least at steady state. To date, most of our current knowledge on the specifics of neuron-CTL interaction is based on studies artificially inducing MHC I expression on neurons, loading them with exogenous peptide and applying CTL clones or lines often differentiated in culture. Thus, much remains to be uncovered regarding the modalities of the interaction between infected neurons and antiviral CD8 T cells in the course of a natural disease. Here, we used the model of neuroinflammation caused by neurotropic Borna disease virus (BDV), in which virus-specific CTL have been demonstrated as the main immune effectors triggering disease. We tested the pathogenic properties of brain-isolated CD8 T cells against pure neuronal cultures infected with BDV. We observed that BDV infection of cortical neurons triggered a significant up regulation of MHC I molecules, rendering them susceptible to recognition by antiviral CTL, freshly isolated from the brains of acutely infected rats. Using real-time imaging, we analyzed the spatio-temporal relationships between neurons and CTL. Brain-isolated CTL exhibited a reduced mobility and established stable contacts with BDV-infected neurons, in an antigen- and MHC-dependent manner. This interaction induced rapid morphological changes of the neurons, without immediate killing or impairment of electrical activity. Early signs of neuronal apoptosis were detected only hours after this initial contact. Thus, our results show that infected neurons can be recognized efficiently by brain-isolated antiviral CD8 T cells and uncover the unusual modalities of CTL-induced neuronal damage. When a virus infects the brain, it is important to quickly block viral replication without causing excessive damage to neurons, which are not easily renewed. Cytotoxic T lymphocytes (CTL) are one of the main actors for virus elimination. However, the question of whether CTL are indeed capable of destroying infected neurons remains controversial. For this work, we analyzed the characteristics of interactions between infected neurons and CTL using neurotropic Borna disease virus (BDV). This virus infects neurons and triggers severe inflammation in the brain. We isolated CTL directly from the brains of rats infected with BDV and analyzed their interaction with primary cultures of neurons. Using live-cell fluorescence microscopy, we observed that CTL were arrested upon encounter with infected neurons and that they established stable contacts with them. Thereafter, infected neurons exhibited rapid changes in permeability but remained alive and electrically active for several hours, before ultimately being destroyed. Our study shows that neurons can indeed be recognized by CTL, an important observation for a better understanding of the physiopathology of virus-induced brain inflammation. In addition, it reveals that neurons are relatively resistant to CTL-induced killing, which may open a window of opportunity for new treatments.
Collapse
|
9
|
Hofmann S, Greiner J. Adoptive Immunotherapy after Allogeneic Hematopoietic Progenitor Cell Transplantation: New Perspectives for Transfusion Medicine. ACTA ACUST UNITED AC 2011; 38:173-182. [PMID: 21760761 DOI: 10.1159/000328898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 03/21/2011] [Indexed: 01/07/2023]
Abstract
SUMMARY: Allogeneic hematopoietic progenitor cell transplantation (HPCT) is a crucial therapeutic option in hematological malignancies, and the graft-versus-leukemia (GvL) effect builds the cornerstone of a long-lasting remission. Cyto-toxic T cells are known to be the primary effector cells in GvL. They recognize minor histocompatibility antigens (mHags) and tumor/leukemia-associated antigens. In case of disease relapse after HPCT, donor lymphocyte infusion (DLI) is an important treatment option for re-induction of remission. However, both treatments, HPCT and DLI carry the risk of morbidity and mortality due to graft-versus-host disease (GvHD) and severe infections. Therefore, the development of targeted adoptive immunotherapy with a lower risk of GvHD is needed, and several study groups are working on that topic.
Collapse
Affiliation(s)
- Susanne Hofmann
- Department of Internal Medicine III, University of Ulm, Germany
| | | |
Collapse
|
10
|
Casalegno-Garduño R, Schmitt A, Yao J, Wang X, Xu X, Freund M, Schmitt M. Multimer technologies for detection and adoptive transfer of antigen-specific T cells. Cancer Immunol Immunother 2010; 59:195-202. [PMID: 19847424 PMCID: PMC11030699 DOI: 10.1007/s00262-009-0778-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 09/24/2009] [Indexed: 10/20/2022]
Abstract
Identification and purification of antigen-specific T cells without altering their functional status are of high scientific and clinical interest. Staining with major histocompatibility complex (MHC)-peptide multimers constitutes a very powerful method to study antigen-specific T-cell subpopulations, allowing their direct visualization and quantification. MHC-peptide multimers, such as dimers, tetramers, pentamers, streptamers, dextramers and octamers have been used to evaluate the frequency of CD8(+) T cells, specific for tumor/leukemia-associated antigens as well as for viral antigens, e.g., CMVpp65 and EBV-EBNA. Moreover, MHC-peptide multimers have been used for rapid and efficient ex vivo isolation and expansion of T cells. A recent development in the field of MHC-peptide multimers led to the purification of CD8(+) T cells specific for leukemia antigens. This might help to select leukemia-specific donor lymphocyte infusions (DLIs), thus allowing dissection of the noxious graft-versus-host disease (GvHD) from beneficial anti-viral and even anti-leukemic effects. This review covers different types of MHC-peptide multimers and their applications, as well as the impact that multimers might have on further development of DLIs.
Collapse
Affiliation(s)
- Rosaely Casalegno-Garduño
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
| | - Anita Schmitt
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
| | - Junxia Yao
- Center for Stem Cell Research and Application, Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xinchao Wang
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
- Department of Oncology and Hematology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xun Xu
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
- Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Mathias Freund
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
| | - Michael Schmitt
- Department of Internal Medicine III, Clinical Stem Cell Transplantation and Immunotherapy, University Clinic Rostock, 18055 Rostock, Germany
| |
Collapse
|
11
|
Thakur R, Sarma S, Sharma B. Role of Borna disease virus in neuropsychiatric illnesses: are we inching closer? Indian J Med Microbiol 2009; 27:191-201. [PMID: 19584498 DOI: 10.4103/0255-0857.53200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The biological cause of psychiatric illnesses continues to be under intense scrutiny. Among the various neurotropic viruses, Borna disease virus (BDV) is another virus that preferentially targets the neurons of the limbic system and has been shown to be associated with behavioural abnormalities. Presence of various BDV markers, including viral RNA, in patients with affective and mood disorders have triggered ongoing debate worldwide regarding its aetiopathogenic relationship. This article analyses its current state of knowledge and recent advances in diagnosis in order to prove or refute the association of BDV in causation of human neuropsychiatric disorders. This emerging viral causative association of behavioural disorders, which seems to be inching closer, has implication not only for a paradigm shift in the treatment and management of neuropsychiatric illnesses but also has an important impact on the public health systems.
Collapse
Affiliation(s)
- R Thakur
- Department of Microbiology, IHBAS, Dilshad Garden, Delhi, India.
| | | | | |
Collapse
|
12
|
Alli R, Nguyen P, Geiger TL. Retrogenic modeling of experimental allergic encephalomyelitis associates T cell frequency but not TCR functional affinity with pathogenicity. THE JOURNAL OF IMMUNOLOGY 2008; 181:136-45. [PMID: 18566378 DOI: 10.4049/jimmunol.181.1.136] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The properties of a self-specific T cell's TCR that determine its pathogenicity are not well understood. We developed TCR retroviral transgenic, or retrogenic, models of myelin oligodendroglial glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) to compare the pathologic potential of five H-2 Ab/MOG35-55-specific TCRs. The TCRs were cloned and retrovirally transduced into either TCRalphabeta-deficient hybridoma cells or Rag1-/- bone marrow progenitor cells. Comparison of the hybridomas, identical except for TCR sequence, revealed distinct responsiveness, or functionally determined affinity, for cognate Ag. Retrogenic mice were produced by transfer of transduced progenitor cells into Rag1-/- recipients. T cells were detected within 4 wk. Engraftment levels varied considerably among the different TCRs and showed separate variability among individual mice. T cells were predominantly naive and virtually exclusively CD4+ and CD25-. Relative responses of the retrogenic T cells to Ag paralleled those of the hybridoma cells. Induction of EAE through active immunization led to rapid and severe disease in all mice expressing MOG-specific TCR. The mice additionally developed spontaneous disease, the incidence of which varied with the individual receptors. Interestingly, spontaneous disease frequency and intensity could not be correlated with the functional affinity of the respective TCR. Instead, it was associated with engraftment level, even when measured weeks before the onset of disease symptoms. Our results demonstrate the feasibility of using retrogenic modeling to compare TCRs in the EAE system. They further suggest that affinity is not a primary determinant in spontaneous EAE development in mice expressing monotypic TCRs and that autoreactive T cell frequency is of greater significance.
Collapse
Affiliation(s)
- Rajshekhar Alli
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
13
|
Yao J, Bechter C, Wiesneth M, Härter G, Götz M, Germeroth L, Guillaume P, Hasan F, von Harsdorf S, Mertens T, Michel D, Döhner H, Bunjes D, Schmitt M, Schmitt A. Multimer Staining of Cytomegalovirus Phosphoprotein 65–Specific T Cells for Diagnosis and Therapeutic Purposes: A Comparative Study. Clin Infect Dis 2008; 46:e96-105. [DOI: 10.1086/587749] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|