1
|
Abbaszadeh M, Naseri B, Masoumi J, Baghbani E, Baradaran B, Sadeghi MR. Thalidomide augments maturation and T helper 1-inducing capacity of monocyte-derived dendritic cells in vitro. BIOIMPACTS : BI 2024; 15:30588. [PMID: 40256218 PMCID: PMC12008494 DOI: 10.34172/bi.30588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 04/22/2025]
Abstract
Introduction Dendritic cells (DCs) possess specialized abilities to present antigens and stimulate T cells, making them essential in triggering adaptive immune responses. Thalidomide and its derivatives are classified as a group of medications that possess immunomodulatory properties. Numerous studies have demonstrated the contentious impact of these drugs on DCs. Therefore, the objective of the present study was to assess the influence of Thalidomide therapy on the maturation and stimulation of monocyte-derived DCs, and subsequently examine the consequences of these treated DCs on the immune responses of autologous T cells. Methods The immature DCs derived from monocytes were subjected to exposure to Thalidomide and Lipopolysaccharides (LPS) on the fifth day of differentiation, followed by a 24-hour incubation period. On the sixth day, the phenotypic features of the DCs in both the control and treatment groups were assessed using flow cytometry. Subsequently, the gene expression in both the DCs and autologous T cells co-cultured with the DCs was evaluated using the real-time PCR method. Results Thalidomide-treated DCs exhibited a significant augmentation in the expression of maturation and stimulatory surface markers CD11c, HLA-DR, and CD86 (P ≤ 0.01), as well as gene expression of TNF-α and IL-12 (P ≤ 0.01) when compared to the control group. Furthermore, co-culture of Thalidomide-treated DCs with T cells increased T-bet and IFN-γ (P ≤ 0.01) expression, while diminished FOXP3 and TGF-β (P ≤ 0.01) expression compared to T cells co-cultured with untreated DCs. Conclusion Our findings indicate that in vitro Thalidomide treatment shifts DCs towards an immunogenic state and elevates their T helper 1 inducing capacity, which may be efficient in immunotherapy of various cancers.
Collapse
Affiliation(s)
- Mohsen Abbaszadeh
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Molecular Medicine Department, Faculty of Modern Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Schutter JD, Eberhardt K, Elert AM, Radnik J, Geißler D, Ozcan O. Synthesis and characterization of lipopolysaccharide (LPS) anchored polystyrene microparticles as a synthetic model system for attachment studies. Colloids Surf B Biointerfaces 2023; 226:113301. [PMID: 37075524 DOI: 10.1016/j.colsurfb.2023.113301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 03/04/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023]
Abstract
Outer membrane lipopolysaccharides (LPS) play a crucial role in determining attachment behavior and pathogenicity of bacteria. The aim of this study was to develop a simple procedure for anchoring bacterial lipopolysaccharides to polystyrene (PS) microparticles as a model system for in situ attachment studies. By using a swell-capture methodology, commercially available LPS of Pseudomonas aeruginosa (strain ATCC 27316 serotype 10.22) was anchored onto PS microparticles in a proof-of-concept study. A detailed chemical and morphological characterization has proven the success of LPS incorporation. It was shown that the coverage and structure of the LPS film was concentration dependent. The procedure can easily be adapted to LPS of other bacterial strains to generate a synthetic model toolkit for attachment studies.
Collapse
Affiliation(s)
- Jan David Schutter
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Karl Eberhardt
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Anna Maria Elert
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Jörg Radnik
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Daniel Geißler
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; PolyAn GmbH, Schkopauer Ring 6, 12681 Berlin, Germany
| | - Ozlem Ozcan
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| |
Collapse
|
3
|
Wirsching S, Fichter M, Cacicedo ML, Landfester K, Gehring S. Modification of Regulatory T Cell Epitopes Promotes Effector T Cell Responses to Aspartyl/Asparaginyl β-Hydroxylase. Int J Mol Sci 2022; 23:ijms232012444. [PMID: 36293298 PMCID: PMC9604227 DOI: 10.3390/ijms232012444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer is a leading cause of death worldwide. The search for innovative therapeutic approaches is a principal focus of medical research. Vaccine strategies targeting a number of tumor-associated antigens are currently being evaluated. To date, none have garnered significant success. Purportedly, an immunosuppressive tumor microenvironment and the accumulation of regulatory T cells contribute to a lack of tumor vaccine efficacy. Aspartyl/asparaginyl β-hydroxylase (ASPH), a promising therapeutic target, is overexpressed in a variety of malignant tumors but is expressed negligibly in normal tissues. Computer analysis predicted that ASPH expresses four peptide sequences (epitopes) capable of stimulating regulatory T cell activity. The abolition of these putative regulatory T cell epitopes increased the CD4+ and CD8+ effector T cell responses to monocyte-derived dendritic cells pulsed with a modified, epitope-depleted version of ASPH in an ex vivo human lymphoid tissue-equivalent coculture system while simultaneously decreasing the overall number of FoxP3+ regulatory T cells. These findings suggest that the efficacy of all new vaccine candidates would profit from screening and eliminating potential tolerogenic regulatory T cell epitopes.
Collapse
Affiliation(s)
- Sebastian Wirsching
- Children’s Hospital, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maximiliano L. Cacicedo
- Children’s Hospital, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Stephan Gehring
- Children’s Hospital, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-3560
| |
Collapse
|
4
|
Fichter M, Piradashvili K, Pietrzak-Nguyen A, Pretsch L, Kuhn G, Strand S, Knuf M, Zepp F, Wurm FR, Mailänder V, Landfester K, Gehring S. Polymeric hepatitis C virus non-structural protein 5A nanocapsules induce intrahepatic antigen-specific immune responses. Biomaterials 2016; 108:1-12. [PMID: 27614817 DOI: 10.1016/j.biomaterials.2016.08.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 02/07/2023]
Abstract
Targeting antigen combined with adjuvants to hepatic antigen-presenting cells (APCs) is essential for the induction of intrahepatic T cellular immunity controlling and resolving viral infections of the liver. Intravenous injection of antigen-loaded nanoparticles is a promising approach for the delivery of antigens to liver APCs. Accordingly, polymeric nanocapsules (NCs) synthesized exclusively of hepatitis C virus non-structural protein 5A (NS5A) and the adjuvant monophosphoryl lipid A (MPLA) adsorbed to the nanocapsule surface were developed. Aim of the present study was the evaluation of the in vitro and in vivo behavior of MPLA-functionalized NS5A-NCs regarding the interaction with liver dendritic cells (DCs) and the potential to induce intrahepatic immune responses in a mouse model. Maturation of DCs was significantly increased by application of NS5A+MPLA-NCs compared to non-functionalized NS5A-NCs promoting a vigorous expression of CD40, CD80, CD86 and a strong secretion of the Th1-related cytokine IL-12. NS5A-NCs were preferentially deposited in DCs and Kupffer cells residing in the liver after intravenous administration. Immunization with NS5A-NCs induced intrahepatic antigen-specific CD4(+) T cellular immune responses determined by the secretion of IFNγ and IL-2. Furthermore, supplementation with MPLA induced significant levels of NS5A-specific antibodies. The application of polymeric nanocapsules synthesized exclusively out of antigen avoids the risk of unintended side effects caused by additional carrier substances. Functionalization with adjuvants like MPLA and the efficient targeting to liver-resident APCs inherits the potential for application of antigen nanocapsules in further vaccination approaches against pathogens affecting the liver.
Collapse
Affiliation(s)
- Michael Fichter
- Children's Hospital, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Keti Piradashvili
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Anette Pietrzak-Nguyen
- Children's Hospital, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Leah Pretsch
- Children's Hospital, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Gabor Kuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany; Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Susanne Strand
- III. Department of Internal Medicine, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Markus Knuf
- Children's Hospital, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany; Children's Hospital, Dr. Horst-Schmidt-Kliniken, Ludwig-Erhard-Str. 100, 65199, Wiesbaden, Germany
| | - Fred Zepp
- Children's Hospital, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Volker Mailänder
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany; Department of Dermatology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.
| |
Collapse
|
5
|
Gamvrellis A, Walsh K, Tatarczuch L, Smooker P, Plebanski M, Scheerlinck JPY. Phenotypic analysis of ovine antigen presenting cells loaded with nanoparticles migrating from the site of vaccination. Methods 2013; 60:257-63. [DOI: 10.1016/j.ymeth.2013.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/03/2013] [Accepted: 02/06/2013] [Indexed: 01/09/2023] Open
|
6
|
Shimoda M, Tomimaru Y, Charpentier KP, Safran H, Carlson RI, Wands J. Tumor progression-related transmembrane protein aspartate-β-hydroxylase is a target for immunotherapy of hepatocellular carcinoma. J Hepatol 2012; 56:1129-1135. [PMID: 22245894 PMCID: PMC3328647 DOI: 10.1016/j.jhep.2011.12.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) has a poor survival rate due to recurrent intrahepatic metastases and lack of effective adjuvant therapy. Aspartate-β-hydroxylase (ASPH) is an attractive cellular target since it is a highly conserved transmembrane protein overexpressed in both murine and human HCC tumors, and promotes a malignant phenotype as characterized by enhanced tumor cell migration and invasion. METHODS Dendritic cells (DCs), expanded and isolated from the spleen, were incubated with a cytokine cocktail to optimize IL-12 secretion and co-stimulatory molecule expression, then subsequently loaded with ASPH protein for immunization. Mice were injected with syngeneic BNL HCC tumor cells followed by subcutaneous inoculation with 5-10×10(5) ASPH loaded DCs using a prophylactic and therapeutic experimental approach. Tumor infiltrating lymphocytes (TILs) were characterized, and their role in producing anti-tumor effects determined. The immunogenicity of ASPH protein with respect to activating antigen specific CD4+ T cells derived from human peripheral blood mononuclear cells (PBMCs) was also explored. RESULTS We found that immunotherapy with ASPH-loaded DCs suppressed and delayed established HCC and tumor growth when administered prophylactically. Ex-vivo re-stimulation experiments and in vivo depletion studies demonstrated that both CD4+ and CD8+ cells contributed to anti-tumor effects. Using PBMCs derived from healthy volunteers and HCC patients, we showed that ASPH stimulation led to significant development of antigen-specific CD4+ T-cells. CONCLUSIONS Immunization with ASPH-loaded DCs has substantial anti-tumor effects which could reduce the risk of HCC recurrence.
Collapse
Affiliation(s)
- Masafumi Shimoda
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Yoshito Tomimaru
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin P Charpentier
- The Department of Surgery, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Howard Safran
- The Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rolf I Carlson
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Jack Wands
- Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA; The Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
de Geus ED, Jansen CA, Vervelde L. Uptake of Particulate Antigens in a Nonmammalian Lung: Phenotypic and Functional Characterization of Avian Respiratory Phagocytes Using Bacterial or Viral Antigens. THE JOURNAL OF IMMUNOLOGY 2012; 188:4516-26. [DOI: 10.4049/jimmunol.1200092] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Noda T, Shimoda M, Ortiz V, Sirica AE, Wands JR. Immunization with aspartate-β-hydroxylase-loaded dendritic cells produces antitumor effects in a rat model of intrahepatic cholangiocarcinoma. Hepatology 2012; 55:86-97. [PMID: 21898484 PMCID: PMC3242918 DOI: 10.1002/hep.24629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
UNLABELLED Dendritic cells (DCs) capture and process proteins and present peptides on the cell surface in the context of major histocompatibility complex I and II molecules to induce antigen-specific T cell immune responses. The aims of this study were to (1) employ an expanded and purified DC population and load them with aspartate-β-hydroxylase (ASPH), a highly expressed tumor-associated cell surface protein, and (2) to determine if immunization induced antitumor effects in an orthotopic rat model of intrahepatic cholangiocarcinoma. Splenocytes were incubated with ASPH-coated beads and passed through a magnetic field to yield an 80% pure DC OX62+ population. This DC subset was stimulated with granulocyte-macrophage colony-stimulating factor, interleukin-4, CD40L, and interferon-γ, resulting in a 40-fold increase in interleukin-12A messenger RNA expression to subsequently generate a T helper 1-type immune response. After incubation with the cytokine cocktail, DCs were found to have matured, as demonstrated by increased expression of CD40, CD80, and CD86 costimulatory molecules. Immunization with ASPH-loaded DCs induced antigen-specific immunity. A clone of the parental tumorigenic rat BDEneu cholangiocyte cell line, designated BDEneu-CL24, was found to have the highest number of cells expressing this surface protein (97%); it maintained the same phenotypic characteristics of the parental cell line and was used to produce intrahepatic tumors in immunocompetent syngeneic Fisher-344 rats. Immunization with ASPH-loaded DCs generated cytotoxicity against cholangiocarcinoma cells in vitro and significantly suppressed intrahepatic tumor growth and metastasis, and was associated with increased CD3+ lymphocyte infiltration into the tumors. CONCLUSION These findings suggest that immunization with ASPH-loaded DCs may constitute a novel therapeutic approach for intrahepatic cholangiocarcinoma, because this protein also appears to be highly conserved and expressed on human hepatobiliary tumors.
Collapse
Affiliation(s)
- Takehiro Noda
- The Liver Research Center, Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| | - Masafumi Shimoda
- The Liver Research Center, Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| | - Vivian Ortiz
- The Liver Research Center, Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| | - Alphonse E. Sirica
- Department of Pathology, Division of Cellular and Molecular Pathogenesis, Virginia Commonwealth University School of Medicine, Richmond, VA
| | - Jack R. Wands
- The Liver Research Center, Department of Medicine, Rhode Island Hospital and Brown Medical School, Providence, Rhode Island, USA
| |
Collapse
|
9
|
Abstract
BACKGROUND/AIMS We have compared dendritic cell (DC) function derived from the alcoholic liver disease (ALD) sensitive Long-Evans (LE) and resistant Fischer rat strains to determine if the influence of ethanol on DCs was dependent on ALD. METHODS The LE and Fischer rats were fed an ethanol-containing or isocaloric control liquid diet for 8 weeks and comparisons were made to LE rats injected with thioacetamide as a liver disease control. DCs were isolated from the spleen after expansion with human Fms-like tyrosine kinase receptor 3 ligand plasmid. Maturation markers CD86, CD80, CD40 and MHC-II were analysed by flow cytometry with or without lipopolysaccharide and poly I:C stimulation. Production of tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-12p40 and IL-10 cytokines and the antigen presentation ability of DCs was determined. RESULTS Only LE rats developed ALD characterized by liver injury, elevated alanine aminotransferase levels and steatosis; CD86 and CD40 expression was decreased in LE but not Fischer rats. Reduced TNF-α, IFN-γ, IL-12, proinflammatory and enhanced IL-10 cytokine production was found in DCs isolated from ethanol-fed LE but not Fischer rats. Allostimulatory activity was reduced in LE compared with the Fischer strain. In contrast, DCs isolated from thioacetamide-induced liver damage displayed a reduction only in IL-12p40; TNF-α, IL-10 and IFN-α production as well as antigen presenting ability remained intact compared with controls. CONCLUSIONS ALD sensitive LE rats exhibited characteristics of a suppressed DC phenotype that was not observed following thioacetamide-induced liver disease, which suggests an important role for ALD in altering the host cellular and humoral immune responses.
Collapse
Affiliation(s)
- Dechun Feng
- The Department of Medicine, Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | | | | | | |
Collapse
|
10
|
Wintermeyer P, Gehring S, Eken A, Wands JR. Generation of cellular immune responses to HCV NS5 protein through in vivo activation of dendritic cells. J Viral Hepat 2010; 17:705-13. [PMID: 20002303 PMCID: PMC3967848 DOI: 10.1111/j.1365-2893.2009.01228.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Chronic hepatitis C (HCV) infection is a substantial medical problem that leads to progressive liver disease, cirrhosis, and hepatocellular carcinoma (HCC). The aim of this study was to achieve sustained cellular immune responses in vivo to a HCV nonstructural protein using dendritic cell (DC)-based immunization approach. We targeted the HCV NS5 protein to DCs in vivo by injecting microparticles loaded with this antigen. The DC population was expanded in BALB/C mice (H-2(d) ) by hydrodynamic injection of a plasmid pUMVC3-hFLex expressing the secreted portion of the human Fms-like tyrosine kinase receptor-3 ligand (hFlt3). Mice were subsequently injected with microparticles coated with HCV NS5 protein via the tail vein. Cellular immune responses were determined with respect to secretion of INFγ and IL2 by CD4(+) cells and cytotoxic T-lymphocyte (CTL) assays in vitro; inhibition of tumour cell growth was employed for the assessment of CD8(+) generated activity in vivo. We found that Flt3L treatment expanded the DC population in the spleen to 43%, and such cells displayed a striking upregulation of CD86 as well as CD80 and CD40 co-stimulating molecules. Viral antigen-specific T(H) 1 cytokine secretion by splenocytes was generated, and CTL activity against syngeneic NS5 expressing myeloma target cells was observed. In addition, these cells inhibited tumour growth indicating that NS5-specific robust CTL activity was operative in vivo. Thus, the capability of activating DCs in vivo using the methods described is valuable as a therapeutic vaccine strategy for chronic HCV infection.
Collapse
Affiliation(s)
- P. Wintermeyer
- Liver Research Center, Brown Alpert Medical School and Rhode Island Hospital, Providence, RI, USA,HELIOS Klinikum Wuppertal, Children's Hospital, Witten-Herdecke University, Wuppertal, Germany
| | - S. Gehring
- Liver Research Center, Brown Alpert Medical School and Rhode Island Hospital, Providence, RI, USA,Children's Hospital, University of Mainz, Mainz, Germany
| | - A. Eken
- Liver Research Center, Brown Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| | - J. R. Wands
- Liver Research Center, Brown Alpert Medical School and Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
11
|
Immune response of cytotoxic T lymphocytes and possibility of vaccine development for hepatitis C virus infection. J Biomed Biotechnol 2010; 2010:263810. [PMID: 20508848 PMCID: PMC2874944 DOI: 10.1155/2010/263810] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 01/25/2010] [Accepted: 03/15/2010] [Indexed: 01/12/2023] Open
Abstract
Immune responses of cytotoxic T lymphocytes (CTLs) are implicated in viral eradication and the pathogenesis of hepatitis C. Weak CTL response against hepatitis C virus (HCV) may lead to a persistent infection. HCV infection impairs the function of HCV-specific CTLs; HCV proteins are thought to actively suppress host immune responses, including CTLs. Induction of a strong HCV-specific CTL response in HCV-infected patients can facilitate complete HCV clearance. Thus, the development of a vaccine that can induce potent CTL response against HCV is strongly expected. We investigated HCV-specific CTL responses by enzyme-linked immuno-spot assay and/or synthetic peptides and identified over 40 novel CTL epitopes in the HCV protein. Our findings may contribute to the development of the HCV vaccine. In this paper, we describe the CTL responses in HCV infection and the attempts at vaccine development based on recent scientific articles.
Collapse
|
12
|
Wu Y, Wu W, Wong WM, Ward E, Thrasher AJ, Goldblatt D, Osman M, Digard P, Canaday DH, Gustafsson K. Human gamma delta T cells: a lymphoid lineage cell capable of professional phagocytosis. THE JOURNAL OF IMMUNOLOGY 2009; 183:5622-9. [PMID: 19843947 DOI: 10.4049/jimmunol.0901772] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Professional phagocytosis in mammals is considered to be performed exclusively by myeloid cell types. In this study, we demonstrate, for the first time, that a mammalian lymphocyte subset can operate as a professional phagocyte. By using confocal microscopy, transmission electron microscopy, and functional Ag presentation assays, we find that freshly isolated human peripheral blood gammadelta T cells can phagocytose Escherichia coli and 1 microm synthetic beads via Ab opsonization and CD16 (FcgammaRIII), leading to Ag processing and presentation on MHC class II. In contrast, other CD16(+) lymphocytes, i.e., CD16(+)/CD56(+) NK cells, were not capable of such functions. These findings of distinct myeloid characteristics in gammadelta T cells strongly support the suggestion that gammadelta T cells are evolutionarily ancient lymphocytes and have implications for our understanding of their role in transitional immunity and the control of infectious diseases and cancer.
Collapse
Affiliation(s)
- Yin Wu
- Molecular Immunology Unit, University College London Institute of Child Health, London, U.K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
This review will focus on the prevalence of hepatitis c virus (HCV) infection in alcoholics with and without liver disease. Evidence will be presented to demonstrate that ethanol and chronic HCV infection synergistically accelerate liver injury. Some of the major postulated mechanisms responsible for disease progression include high rates of apoptosis, lipid peroxidation, and generation of free radicals and reactive oxygen species with reduced antioxidant capacity of the liver. Acquisition and persistence of HCV infection may be due to the adverse effects of ethanol on humoral and cellular immune responses to HCV. Dendritic cells (DC) appear to be one of the major targets for ethanol's action and DC dysfunction impairs the ability of the host to generate viral specific cluster of differentiation 4 (CD4+) and cluster of differentiation 8 (CD8+) immune responses. There is a relationship between increased alcohol intake and decreased response to interferon (IFN) therapy, which may be reversed by abstinence. Clinical studies are needed to optimize treatment responses in alcoholic patients with chronic HCV infection.
Collapse
MESH Headings
- Alcohol Drinking/adverse effects
- Animals
- Antiviral Agents/therapeutic use
- Disease Progression
- Ethanol/toxicity
- Hepatitis C, Chronic/complications
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/epidemiology
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/pathology
- Humans
- Liver Diseases, Alcoholic/epidemiology
- Liver Diseases, Alcoholic/etiology
- Liver Diseases, Alcoholic/immunology
- Liver Diseases, Alcoholic/pathology
- Liver Diseases, Alcoholic/therapy
- Liver Diseases, Alcoholic/virology
- Risk Factors
- Treatment Outcome
Collapse
Affiliation(s)
- Larry Siu
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Foont
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Jack R. Wands
- Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
14
|
Generation of immune responses against hepatitis C virus by dendritic cells containing NS5 protein-coated microparticles. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 16:163-71. [PMID: 19091993 DOI: 10.1128/cvi.00287-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DCs) internalize and process antigens as well as activate cellular immune responses. The aim of this study was to determine the capacity of DCs that contain antigen-coated magnetic beads to induce immunity against the nonstructural hepatitis C virus (HCV) antigen 5 (NS5). Splenocytes derived from Fms-like tyrosine kinase receptor 3 (Flt3) ligand-pretreated BALB/c mice were incubated with magnetic beads coated with HCV NS5, lipopolysaccharide (LPS), and/or anti-CD40; purified; and used for immunization. Cellular immunity was measured using cytotoxic T-lymphocyte (CTL) and T-cell proliferation assays, intracellular cytokine staining, and a syngeneic tumor challenge using NS5-expressing SP2/0 myeloma cells in vivo. Splenocytes isolated from animals vaccinated with DCs containing beads coated with NS5, LPS, and anti-CD40 secreted elevated levels of interleukin-2 (IL-2) and gamma interferon in the presence of NS5. The numbers of CD4(+), IL-2-producing cells were increased >5-fold in the group immunized with DCs containing beads coated with NS5, LPS, and anti-CD40, paralleled by an enhanced splenocyte proliferative response. Immunization promoted antigen-specific CTL activity threefold compared to the level for control mice and significantly reduced the growth of NS5-expressing tumor cells in vivo. Thus, strategies that employ NS5-coated beads induce cellular immune responses in mice, which correlate well with the natural immune responses that occur in individuals who resolve HCV.
Collapse
|