1
|
Bahal S, Zinicola M, Moula SE, Whittaker TE, Schejtman A, Naseem A, Blanco E, Vetharoy W, Hu YT, Rai R, Gomez-Castaneda E, Cunha-Santos C, Burns SO, Morris EC, Booth C, Turchiano G, Cavazza A, Thrasher AJ, Santilli G. Hematopoietic stem cell gene editing rescues B-cell development in X-linked agammaglobulinemia. J Allergy Clin Immunol 2024; 154:195-208.e8. [PMID: 38479630 PMCID: PMC11752842 DOI: 10.1016/j.jaci.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND X-linked agammaglobulinemia (XLA) is an inborn error of immunity that renders boys susceptible to life-threatening infections due to loss of mature B cells and circulating immunoglobulins. It is caused by defects in the gene encoding the Bruton tyrosine kinase (BTK) that mediates the maturation of B cells in the bone marrow and their activation in the periphery. This paper reports on a gene editing protocol to achieve "knock-in" of a therapeutic BTK cassette in hematopoietic stem and progenitor cells (HSPCs) as a treatment for XLA. METHODS To rescue BTK expression, this study employed a clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 system that creates a DNA double-strand break in an early exon of the BTK locus and an adeno-associated virus 6 virus that carries the donor template for homology-directed repair. The investigators evaluated the efficacy of the gene editing approach in HSPCs from patients with XLA that were cultured in vitro under B-cell differentiation conditions or that were transplanted in immunodeficient mice to study B-cell output in vivo. RESULTS A (feeder-free) B-cell differentiation protocol was successfully applied to blood-mobilized HSPCs to reproduce in vitro the defects in B-cell maturation observed in patients with XLA. Using this system, the investigators could show the rescue of B-cell maturation by gene editing. Transplantation of edited XLA HSPCs into immunodeficient mice led to restoration of the human B-cell lineage compartment in the bone marrow and immunoglobulin production in the periphery. CONCLUSIONS Gene editing efficiencies above 30% could be consistently achieved in human HSPCs. Given the potential selective advantage of corrected cells, as suggested by skewed X-linked inactivation in carrier females and by competitive repopulating experiments in mouse models, this work demonstrates the potential of this strategy as a future definitive therapy for XLA.
Collapse
Affiliation(s)
- Sameer Bahal
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Marta Zinicola
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Shefta E Moula
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Thomas E Whittaker
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrea Schejtman
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elena Blanco
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Winston Vetharoy
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Yi-Ting Hu
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Rajeev Rai
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Eduardo Gomez-Castaneda
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Catarina Cunha-Santos
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Emma C Morris
- University College London Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Claire Booth
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital, National Health Service Foundation Trust, London, United Kingdom
| | - Giandomenico Turchiano
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Alessia Cavazza
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital, National Health Service Foundation Trust, London, United Kingdom
| | - Giorgia Santilli
- Infection, Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.
| |
Collapse
|
2
|
Iwasa M, Fujii S, Fujishiro A, Maekawa T, Andoh A, Takaori-Kondo A, Ichinohe T, Miura Y. Impact of 2 Gy γ-irradiation on the hallmark characteristics of human bone marrow-derived MSCs. Int J Hematol 2021; 113:703-711. [PMID: 33386593 DOI: 10.1007/s12185-020-03072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 11/24/2022]
Abstract
Two gray γ-irradiation is a widely employed basic module for total body irradiation (TBI) in allogeneic hematopoietic cell transplantation (HCT). The effects of γ-irradiation on hematopoietic and immune cells have been well investigated, but its effects on the bone marrow microenvironment (BMM) are unknown. Given the crucial contribution of mesenchymal/stromal stem cells (MSCs) in the BMM to hematopoiesis and osteogenesis, we investigated whether γ-irradiation affects the hallmark characteristics of human bone marrow-derived MSCs (BM-MSCs). Expansion of 2 Gy γ-irradiated BM-MSCs was delayed but eventually recovered. Colony formation and osteogenic, adipogenic, and chondrogenic differentiation capabilities of these cells were extensively suppressed. Irradiation of BM-MSCs did not affect the expansion of CD34 + hematopoietic stem and progenitor cells or production of CD11b + mature myeloid cells in co-cultures. However, it reduced production of CD19 + B-cells, as well as expression of CXCL12 and interleukin-7, which are essential for B-cell lymphopoiesis, in 2 Gy γ-irradiated BM-MSCs. Collectively, colony formation, osteogenic differentiation, and B-cell lymphopoiesis-supportive capabilities of γ-irradiated BM-MSCs were reduced. These effects may predispose survivors receiving HCT with TBI to defective bone formation and a perturbed humoral immune response.
Collapse
Affiliation(s)
- Masaki Iwasa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga, 520-2192, Japan.
| | - Sumie Fujii
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Hematology/Oncology, Kyoto University Graduate School for Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Aya Fujishiro
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga, 520-2192, Japan
| | - Taira Maekawa
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Andoh
- Division of Gastroenterology and Hematology, Department of Medicine, Shiga University of Medical Science, Setatsukinowacho, Otsu, Shiga, 520-2192, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology/Oncology, Kyoto University Graduate School for Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Hematology/Oncology, Kyoto University Graduate School for Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| |
Collapse
|
3
|
Ratliff ML, Shankar M, Guthridge JM, James JA, Webb CF. TLR engagement induces ARID3a in human blood hematopoietic progenitors and modulates IFNα production. Cell Immunol 2020; 357:104201. [PMID: 32979763 PMCID: PMC7737244 DOI: 10.1016/j.cellimm.2020.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022]
Abstract
The DNA binding protein AT-rich interacting domain 3a (ARID3a)2 is expressed in healthy human hematopoietic cord blood progenitors where its modulation influences myeloid versus B lineage development. ARID3a is also variably expressed in subsets of adult peripheral blood hematopoietic progenitors where the consequences of ARID3a expression are unknown. In B lymphocytes, Toll-like receptor (TLR)3 signaling induces ARID3a expression in association with Type I interferon inflammatory cytokines. We hypothesized that TLR ligand stimulation of peripheral blood hematopoietic progenitors would induce ARID3a expression resulting in interferon production, and potentially influencing lineage decisions. Our data revealed that the TLR9 agonist CpG induces ARID3a expression with interferon alpha synthesis in human hematopoietic progenitors. However, ARID3a expression was not associated with increased B lineage development. These results demonstrate the need for further experiments to better define how pathogen-associated responses influence hematopoiesis.
Collapse
Affiliation(s)
- Michelle L Ratliff
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Malini Shankar
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Resource Foundation, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Judith A James
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Arthritis and Clinical Immunology Program, Oklahoma Medical Resource Foundation, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Carol F Webb
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
4
|
Kim J, Ryu B, Kim U, Kim CH, Hur GH, Kim CY, Park JH. Improved human hematopoietic reconstitution in HepaRG co-transplanted humanized NSG mice. BMB Rep 2020. [PMID: 32336318 PMCID: PMC7526976 DOI: 10.5483/bmbrep.2020.53.9.304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| | - Chang-Hwan Kim
- The 4th R&D Institute-6, Agency for Defense Development, Daejeon 34186, Korea
| | - Gyeung-Haeng Hur
- The 4th R&D Institute-6, Agency for Defense Development, Daejeon 34186, Korea
| | - C-Yoon Kim
- Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05030, Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
5
|
ARID3a expression in human hematopoietic stem cells is associated with distinct gene patterns in aged individuals. IMMUNITY & AGEING 2020; 17:24. [PMID: 32905435 PMCID: PMC7469297 DOI: 10.1186/s12979-020-00198-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023]
Abstract
Background Immunologic aging leads to immune dysfunction, significantly reducing the quality of life of the elderly. Aged-related defects in early hematopoiesis result in reduced lymphoid cell development, functionally defective mature immune cells, and poor protective responses to vaccines and pathogens. Despite considerable progress understanding the underlying causes of decreased immunity in the elderly, the mechanisms by which these occur are still poorly understood. The DNA-binding protein ARID3a is expressed in a subset of human hematopoietic progenitors. Inhibition of ARID3a in bulk human cord blood CD34+ hematopoietic progenitors led to developmental skewing toward myeloid lineage at the expense of lymphoid lineage cells in vitro. Effects of ARID3a expression in adult-derived hematopoietic stem cells (HSCs) have not been analyzed, nor has ARID3a expression been assessed in relationship to age. We hypothesized that decreases in ARID3a could explain some of the defects observed in aging. Results Our data reveal decreased frequencies of ARID3a-expressing peripheral blood HSCs from aged healthy individuals compared with young donor HSCs. Inhibition of ARID3a in young donor-derived HSCs limits B lineage potential, suggesting a role for ARID3a in B lymphopoiesis in bone marrow-derived HSCs. Increasing ARID3a levels of HSCs from aged donors in vitro alters B lineage development and maturation. Finally, single cell analyses of ARID3a-expressing HSCs from young versus aged donors identify a number of differentially expressed genes in aged ARID3A-expressing cells versus young ARID3A-expressing HSCs, as well as between ARID3A-expressing and non-expressing cells in both young and aged donor HSCs. Conclusions These data suggest that ARID3a-expressing HSCs from aged individuals differ at both molecular and functional levels compared to ARID3a-expressing HSCs from young individuals.
Collapse
|
6
|
Schwab UE, Tallmadge RL, Matychak MB, Felippe MJB. Effects of autologous stromal cells and cytokines on differentiation of equine bone marrow-derived progenitor cells. Am J Vet Res 2017; 78:1215-1228. [PMID: 28945121 DOI: 10.2460/ajvr.78.10.1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To develop an in vitro system for differentiation of equine B cells from bone marrow hematopoietic progenitor cells on the basis of protocols for other species. SAMPLE Bone marrow aspirates aseptically obtained from 12 research horses. PROCEDURES Equine bone marrow CD34+ cells were sorted by use of magnetic beads and cultured in medium supplemented with cytokines (recombinant human interleukin-7, equine interleukin-7, stem cell factor, and Fms-like tyrosine kinase-3), murine OP9 stromal cell preconditioned medium, and equine fetal bone marrow mesenchymal stromal cell preconditioned medium. Cells in culture were characterized by use of flow cytometry, immunocytofluorescence microscopy, and quantitative reverse-transcriptase PCR assay. RESULTS For these culture conditions, bone marrow-derived equine CD34+ cells differentiated into CD19+IgM+ B cells that expressed the signature transcription factors early B-cell factor and transcription factor 3. These conditions also supported the concomitant development of autologous stromal cells, and their presence was supportive of B-cell development. CONCLUSIONS AND CLINICAL RELEVANCE Equine B cells were generated from bone marrow aspirates by use of supportive culture conditions. In vitro generation of equine autologous B cells should be of use in studies on regulation of cell differentiation and therapeutic transplantation.
Collapse
|
7
|
Borbély É, Helyes Z. Role of hemokinin-1 in health and disease. Neuropeptides 2017; 64:9-17. [PMID: 27993375 DOI: 10.1016/j.npep.2016.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 01/16/2023]
Abstract
Hemokinin-1 (HK-1), the newest tachykinin encoded by the Tac4 gene was discovered in 2000. Its name differs from that of the other members of this peptide family due to its first demonstration in B lymphocytes. Since tachykinins are classically found in the nervous system, the significant expression of HK-1 in blood cells is a unique feature of this peptide. Due to its widespread distribution in the whole body, HK-1 is involved in different physiological and pathophysiological functions involving pain inflammation modulation, immune regulation, respiratory and endocrine functions, as well as tumor genesis. Furthermore, despite the great structural and immunological similarities to substance P (SP), the functions of HK-1 are often different or the opposite. They both have the highest affinity to the tachykinin NK1 receptor, but HK-1 is likely to have a distinct binding site and signalling pathways. Moreover, several actions of HK-1 different from SP have been suggested to be mediated via a presently not identified own receptor/target molecule. Therefore, it is very important to explore its effects at different levels and compare its characteristics with SP to get a deeper insight in the different cellular mechanisms. Since HK-1 has recently been in the focus of intensive research, in the present review we summarize the few clinical data and experimental results regarding HK-1 expression and function in different model systems obtained throughout the 16years of its history. Synthesizing these findings help to understand the complexity of HK-1 actions and determine its biomarker values and/or drug development potentials.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Hungary; Molecular Pharmacology Research Group, János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, Hungary; MTA-PTE NAP B Chronic Pain Research Group, Hungary
| |
Collapse
|
8
|
Balandrán JC, Purizaca J, Enciso J, Dozal D, Sandoval A, Jiménez-Hernández E, Alemán-Lazarini L, Perez-Koldenkova V, Quintela-Núñez Del Prado H, Rios de Los Ríos J, Mayani H, Ortiz-Navarrete V, Guzman ML, Pelayo R. Pro-inflammatory-Related Loss of CXCL12 Niche Promotes Acute Lymphoblastic Leukemic Progression at the Expense of Normal Lymphopoiesis. Front Immunol 2017; 7:666. [PMID: 28111575 PMCID: PMC5216624 DOI: 10.3389/fimmu.2016.00666] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/19/2016] [Indexed: 01/04/2023] Open
Abstract
Pediatric oncology, notably childhood acute lymphoblastic leukemia (ALL), is currently one of the health-leading concerns worldwide and a biomedical priority. Decreasing overall leukemia mortality in children requires a comprehensive understanding of its pathobiology. It is becoming clear that malignant cell-to-niche intercommunication and microenvironmental signals that control early cell fate decisions are critical for tumor progression. We show here that the mesenchymal stromal cell component of ALL bone marrow (BM) differ from its normal counterpart in a number of functional properties and may have a key role during leukemic development. A decreased proliferation potential, contrasting with the strong ability of producing pro-inflammatory cytokines and an aberrantly loss of CXCL12 and SCF, suggest that leukemic lymphoid niches in ALL BM are unique and may exclude normal hematopoiesis. Cell competence ex vivo assays within tridimensional coculture structures indicated a growth advantage of leukemic precursor cells and their niche remodeling ability by CXCL12 reduction, resulting in leukemic cell progression at the expense of normal niche-associated lymphopoiesis.
Collapse
Affiliation(s)
- Juan Carlos Balandrán
- Oncology Research Unit, Mexican Institute for Social Security, Mexico City, Mexico; Molecular Biomedicine Program, CINVESTAV, IPN, Mexico City, Mexico
| | - Jessica Purizaca
- Oncology Research Unit, Mexican Institute for Social Security , Mexico City , Mexico
| | - Jennifer Enciso
- Oncology Research Unit, Mexican Institute for Social Security, Mexico City, Mexico; Biochemistry Sciences Program, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - David Dozal
- Hospital para el Niño, Instituto Materno Infantil del Estado de México , Toluca , México
| | - Antonio Sandoval
- Hospital para el Niño, Instituto Materno Infantil del Estado de México , Toluca , México
| | | | | | - Vadim Perez-Koldenkova
- Laboratorio de Microscopía, Centro de Instrumentos, Coordinación de Investigación en Salud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social , Mexico City , México
| | | | - Jussara Rios de Los Ríos
- Oncology Research Unit, Mexican Institute for Social Security, Mexico City, Mexico; Biochemistry Sciences Program, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Héctor Mayani
- Oncology Research Unit, Mexican Institute for Social Security , Mexico City , Mexico
| | | | - Monica L Guzman
- Division of Hematology and Medical Oncology, Weill Cornell Medicine , New York, NY , USA
| | - Rosana Pelayo
- Oncology Research Unit, Mexican Institute for Social Security , Mexico City , Mexico
| |
Collapse
|
9
|
Li J, Phadnis-Moghe AS, Crawford RB, Kaminski NE. Aryl hydrocarbon receptor activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin impairs human B lymphopoiesis. Toxicology 2016; 378:17-24. [PMID: 28049042 DOI: 10.1016/j.tox.2016.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/13/2022]
Abstract
The homeostasis of peripheral B cell compartment requires lifelong B lymphopoiesis from hematopoietic stem cells (HSC). As a result, the B cell repertoire is susceptible to disruptions of hematopoiesis. Increasing evidence, primarily from rodent models, shows that the aryl hydrocarbon receptor (AHR) regulates hematopoiesis. To study the effects of persistent AHR activation on human B cell development, a potent AHR agonist and known environmental contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was utilized. An in vitro B cell development model system was established by co-culturing human cord blood-derived HSCs with irradiated human primary bone marrow stromal cells. Using this in vitro model, we found that TCDD significantly suppressed the total number of hematopoietic stem and progenitor cells (HSPC) in a concentration-dependent manner. Cell death analysis demonstrated that the decrease in cell number was not due to cytotoxicity by TCDD. In addition, TCDD markedly decreased CD34 expression on HSPCs. Structure-activity relationship studies using dioxin congeners demonstrated a correlation between the relative AHR binding affinity and the magnitude of decrease in the number of HSPCs and CD34 expression, suggesting that AHR mediates the observed TCDD-elicited changes in HSPCs. Moreover, a significant reduction in lineage committed B cell-derived from HSCs was observed in the presence of TCDD, indicating impairment of human B cell development. Similar effects of TCDD were observed regardless of the use of stromal cells in cultures indicating a direct effect of TCDD on HSCs. Collectively, we demonstrate that AHR activation by TCDD on human HSCs impairs early stages of human B lymphopoiesis.
Collapse
Affiliation(s)
- Jinpeng Li
- Genetics Program, Michigan State University, East Lansing, MI, 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Ashwini S Phadnis-Moghe
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Robert B Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, 48824, United States; Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, 48824, United States.
| |
Collapse
|
10
|
Ratliff ML, Mishra M, Frank MB, Guthridge JM, Webb CF. The Transcription Factor ARID3a Is Important for In Vitro Differentiation of Human Hematopoietic Progenitors. THE JOURNAL OF IMMUNOLOGY 2015; 196:614-23. [PMID: 26685208 DOI: 10.4049/jimmunol.1500355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
Abstract
We recently reported that the transcription factor ARID3a is expressed in a subset of human hematopoietic progenitor stem cells in both healthy individuals and in patients with systemic lupus erythematosus. Numbers of ARID3a(+) lupus hematopoietic stem progenitor cells were associated with increased production of autoreactive Abs when those cells were introduced into humanized mouse models. Although ARID3a/Bright knockout mice died in utero, they exhibited decreased numbers of hematopoietic stem cells and erythrocytes, indicating that ARID3a is functionally important for hematopoiesis in mice. To explore the requirement for ARID3a for normal human hematopoiesis, hematopoietic stem cell progenitors from human cord blood were subjected to both inhibition and overexpression of ARID3a in vitro. Inhibition of ARID3a resulted in decreased B lineage cell production accompanied by increases in cells with myeloid lineage markers. Overexpression of ARID3a inhibited both myeloid and erythroid differentiation. Additionally, inhibition of ARID3a in hematopoietic stem cells resulted in altered expression of transcription factors associated with hematopoietic lineage decisions. These results suggest that appropriate regulation of ARID3a is critical for normal development of both myeloid and B lineage pathways.
Collapse
Affiliation(s)
| | - Meenu Mishra
- Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Mark B Frank
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | - Carol F Webb
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
11
|
BTK gene targeting by homologous recombination using a helper-dependent adenovirus/adeno-associated virus hybrid vector. Gene Ther 2015; 23:205-13. [PMID: 26280081 DOI: 10.1038/gt.2015.91] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 07/23/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022]
Abstract
X-linked agammaglobulinemia (XLA) is one of the most common humoral immunodeficiencies, which is caused by mutations in Bruton's tyrosine kinase (BTK) gene. To examine the possibility of using gene therapy for XLA, we constructed a helper-dependent adenovirus/adeno-associated virus BTK targeting vector (HD-Ad.AAV BTK vector) composed of a genomic sequence containing BTK exons 6-19 and a green fluorescence protein-hygromycin cassette driven by a cytomegalovirus promoter. We first used NALM-6, a human male pre-B acute lymphoblastic leukemia cell line, as a recipient to measure the efficiency of gene targeting by homologous recombination. We identified 10 clones with the homologous recombination of the BTK gene among 107 hygromycin-resistant stable clones isolated from two independent experiments. We next used cord blood CD34⁺ cells as the recipient cells for the gene targeting. We isolated colonies grown in medium containing cytokines and hygromycin. We found that the targeting of the BTK gene occurred in four of the 755 hygromycin-resistant colonies. Importantly, the gene targeting was also observed in CD19⁺ lymphoid progenitor cells that were differentiated from the homologous recombinant CD34⁺ cells during growth in selection media. Our study shows the potential for the BTK gene therapy using the HD-Ad.AAV BTK vector via homologous recombination in hematopoietic stem cells.
Collapse
|
12
|
Ratliff ML, Ward JM, Merrill JT, James JA, Webb CF. Differential expression of the transcription factor ARID3a in lupus patient hematopoietic progenitor cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:940-9. [PMID: 25535283 PMCID: PMC4297684 DOI: 10.4049/jimmunol.1401941] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although hematopoietic stem/progenitor cells (HSPCs) are used for transplantation, characterization of the multiple subsets within this population in humans has lagged behind similar studies in mice. We found that expression of the DNA-binding protein, ARID3a, in mouse stem cells was important for normal development of hematopoietic lineages; however, progenitors expressing ARID3a in humans have not been defined. We previously showed increased numbers of ARID3a(+) B cells in nearly half of systemic lupus erythematosus (SLE) patients, and total numbers of ARID3a(+) B cells were associated with increased disease severity. Because expression of ARID3a in those SLE patients occurred throughout all B cell subsets, we hypothesized that ARID3a expression in patient HSPCs might also be increased relative to expression in healthy controls. Our data now show that ARID3a expression is not limited to any defined subset of HSPCs in either healthy controls or SLE patients. Numbers of ARID3a(+) HSPCs in SLE patients were increased over numbers of ARID3a(+) cells in healthy controls. Although all SLE-derived HSPCs exhibited poor colony formation in vitro compared with controls, SLE HSPCs with high numbers of ARID3a(+) cells yielded increased numbers of cells expressing the early progenitor marker, CD34. SLE HSPCs with high numbers of ARID3a(+) cells also more readily generated autoantibody-producing cells than HSPCs with lower levels of ARID3a in a humanized mouse model. These data reveal new functions for ARID3a in early hematopoiesis and suggest that knowledge regarding ARID3a levels in HSPCs could be informative for applications requiring transplantation of those cells.
Collapse
Affiliation(s)
- Michelle L Ratliff
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Julie M Ward
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Microbiology and Immunology Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Joan T Merrill
- Clinical Pharmacology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Judith A James
- Microbiology and Immunology Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; and
| | - Carol F Webb
- Immunobiology and Cancer Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104; Microbiology and Immunology Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
13
|
Ichii M, Oritani K, Kanakura Y. Early B lymphocyte development: Similarities and differences in human and mouse. World J Stem Cells 2014; 6:421-431. [PMID: 25258663 PMCID: PMC4172670 DOI: 10.4252/wjsc.v6.i4.421] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/29/2014] [Accepted: 09/10/2014] [Indexed: 02/07/2023] Open
Abstract
B lymphocytes differentiate from hematopoietic stem cells through a series of distinct stages. Early B cell development proceeds in bone marrow until immature B cells migrate out to secondary lymphoid tissues, such as a spleen and lymph nodes, after completion of immunoglobulin heavy and light chain rearrangement. Although the information about the regulation by numerous factors, including signaling molecules, transcription factors, epigenetic changes and the microenvironment, could provide the clinical application, our knowledge on human B lymphopoiesis is limited. However, with great methodological advances, significant progress for understanding B lymphopoiesis both in human and mouse has been made. In this review, we summarize the experimental models for studies about human adult B lymphopoiesis, and the role of microenvironment and signaling molecules, such as cytokines, transforming growth factor-β superfamily, Wnt family and Notch family, with point-by-point comparison between human and mouse.
Collapse
|
14
|
Kraus H, Kaiser S, Aumann K, Bönelt P, Salzer U, Vestweber D, Erlacher M, Kunze M, Burger M, Pieper K, Sic H, Rolink A, Eibel H, Rizzi M. A feeder-free differentiation system identifies autonomously proliferating B cell precursors in human bone marrow. THE JOURNAL OF IMMUNOLOGY 2013; 192:1044-54. [PMID: 24379121 DOI: 10.4049/jimmunol.1301815] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peripheral B cell compartment is maintained by homeostatic proliferation and through replenishment by bone marrow precursors. Because hematopoietic stem cells cycle at a slow rate, replenishment must involve replication of precursor B cells. To study proliferation of early human B cell progenitors, we established a feeder cell-free in vitro system allowing the development of B cells from CD34(+) hematopoietic stem cells up to the stage of immature IgM(+) B cells. We found that pro-B and pre-B cells generated in vitro can proliferate autonomously and persist up to 7 wk in culture in the absence of signals induced by exogenously added cytokines. Nevertheless, addition of IL-7 enhanced pre-B cell expansion and inhibited maturation into IgM(+) B cells. The B cell precursor subsets replicating in vitro were highly similar to the bone marrow B cell precursors cycling in vivo. The autonomous proliferation of B cell precursor subsets in vitro and their long-term persistence implies that proliferation during pro-B and pre-B cell stages plays an important role in the homeostasis of the peripheral B cell compartment. Our in vitro culture can be used to study defects in B cell development or in reconstitution of the B cell pool after depletion and chemotherapy.
Collapse
Affiliation(s)
- Helene Kraus
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nakamori Y, Liu B, Ohishi K, Suzuki K, Ino K, Matsumoto T, Masuya M, Nishikawa H, Shiku H, Hamada H, Katayama N. Human bone marrow stromal cells simultaneously support B and T/NK lineage development from human haematopoietic progenitors: a principal role for flt3 ligand in lymphopoiesis. Br J Haematol 2012; 157:674-86. [PMID: 22463758 DOI: 10.1111/j.1365-2141.2012.09109.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/25/2012] [Indexed: 12/11/2022]
Abstract
The regulation of human early lymphopoiesis remains unclear. B- and T-lineage cells cannot develop simultaneously with conventional stromal cultures. Here we show that telomerized human bone marrow stromal cells supported simultaneous generation of CD19(+) CD34(lo/-) CD10(+) cyCD79a(+) CD20(+/-) VpreB(-) pro-B cells and CD7(+) CD34(+) CD45RA(+) CD56(-) cyCD3(-) early T/Natural Killer (NK) cell precursors from human haematopoietic progenitors, and the generation of both lymphoid precursors was promoted by flt3 ligand (flt3L). On the other hand, stem cell factor or thrombopoietin had little or no effect when used alone. However, both acted synergistically with flt3L to augment the generation of both lymphoid precursors. Characteristics of these lymphoid precursors were evaluated by gene expression profiles, rearrangements of IgH genes, or replating assays. Similar findings were observed with primary human bone marrow stromal cells. Notably, these two lymphoid-lineage precursors were generated without direct contact with stromal cells, indicating that early B and T/NK development can occur, at least in part, by stromal cell-derived humoral factors. In serum-free cultures, flt3L elicited similar effects and appeared particularly important for B cell development. The findings of this study identified the potential of human bone marrow stromal cells to support human early B and T lymphopoiesis and a principal role for flt3L during early lymphopoiesis.
Collapse
Affiliation(s)
- Yoshiki Nakamori
- Haematology and Oncology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Considerable information has accumulated about components of BM that regulate the survival, self-renewal, and differentiation of hematopoietic cells. In the present study, we investigated Wnt signaling and assessed its influence on human and murine hematopoiesis. Hematopoietic stem/progenitor cells (HSPCs) were placed on Wnt3a-transduced OP9 stromal cells. The proliferation and production of B cells, natural killer cells, and plasmacytoid dendritic cells were blocked. In addition, some HSPC characteristics were maintained or re-acquired along with different lineage generation potentials. These responses did not result from direct effects of Wnt3a on HSPCs, but also required alterations in the OP9 cells. Microarray, PCR, and flow cytometric experiments revealed that OP9 cells acquired osteoblastic characteristics while down-regulating some features associated with mesenchymal stem cells, including the expression of angiopoietin 1, the c-Kit ligand, and VCAM-1. In contrast, the production of decorin, tenascins, and fibromodulin markedly increased. We found that at least 1 of these extracellular matrix components, decorin, is a regulator of hematopoiesis: upon addition of this proteoglycan to OP9 cocultures, decorin caused changes similar to those caused by Wnt3a. Furthermore, hematopoietic stem cell numbers in the BM and spleen were elevated in decorin-knockout mice. These findings define one mechanism through which canonical Wnt signaling could shape niches supportive of hematopoiesis.
Collapse
|
17
|
The density of CD10 corresponds to commitment and progression in the human B lymphoid lineage. PLoS One 2010; 5:e12954. [PMID: 20886092 PMCID: PMC2944886 DOI: 10.1371/journal.pone.0012954] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/16/2010] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Requirements for human B lymphopoiesis are still poorly understood, and that has hampered investigation of differentiation events. For example, there are few cell surface antigens that can be used as milestones of lineage progression. The CD10 ectoenzyme is one such marker and has been used to define CLP, but we found substantial tissue specific variations in CD10 levels, and there was no information about how that corresponded to differentiation options. METHODOLOGY/PRINCIPAL FINDINGS The aim of the present study was to use recently developed culture methods to assess the nature and differentiation potential of progenitors sorted according to CD10 density from umbilical cord blood (CB), adult bone marrow (BM) or G-CSF mobilized peripheral blood (PB). Many CD34(+) cells in BM express high levels of CD10, while low or low/negative CD10 densities were found on CD34(+) cells in CB or G-CSF mobilized PB, respectively. The relative abundance of CD10(Lo) versus CD10(Hi) cells only accounts for some CB versus BM differences. Almost all of the CD34(+) CD10(Hi) cells expressed CD19 and lymphocyte transcription factors and corresponded to loss of myeloid potential. A high degree of immunoglobulin D(H)-J(H) gene rearrangements was characteristic only of the CD10(Hi) subset. In contrast, the CD34(+) CD10(Lo) progenitors efficiently produced plasmacytoid and conventional dendritic cells as well as myeloid cells. These findings suggest a positive correlation between CD10 density and degree of differentiation. Although freshly isolated CD34(+) CD10(Hi) cells were in cycle, those from CB or BM expanded poorly in culture, suggesting regulators of populations remain to be discovered. CONCLUSIONS/SIGNIFICANCE Steps in human B lymphopoiesis have not been sufficiently studied, and we now show that increased CD10 expression corresponds to differentiation potential and stage. CD34(+) CD10(Hi) progenitors are obviously in the B lineage but may have progressed beyond the point where they can be expanded in culture.
Collapse
|