1
|
Bucheli OTM, Sigvaldadóttir I, Eyer K. Measuring single-cell protein secretion in immunology: Technologies, advances, and applications. Eur J Immunol 2021; 51:1334-1347. [PMID: 33734428 PMCID: PMC8252417 DOI: 10.1002/eji.202048976] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
The dynamics, nature, strength, and ultimately protective capabilities of an active immune response are determined by the extracellular constitution and concentration of various soluble factors. Generated effector cells secrete such mediators, including antibodies, chemo‐ and cytokines to achieve functionality. These secreted factors organize the individual immune cells into functional tissues, initiate, orchestrate, and regulate the immune response. Therefore, a single‐cell resolved analysis of protein secretion is a valuable tool for studying the heterogeneity and functionality of immune cells. This review aims to provide a comparative overview of various methods to characterize immune reactions by measuring single‐cell protein secretion. Spot‐based and cytometry‐based assays, such as ELISpot and flow cytometry, respectively, are well‐established methods applied in basic research and clinical settings. Emerging novel technologies, such as microfluidic platforms, offer new ways to measure and exploit protein secretion in immune reactions. Further technological advances will allow the deciphering of protein secretion in immunological responses with unprecedented detail, linking secretion to functionality. Here, we summarize the development and recent advances of tools that allow the analysis of protein secretion at the single‐cell level, and discuss and contrast their applications within immunology.
Collapse
Affiliation(s)
- Olivia T M Bucheli
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Ingibjörg Sigvaldadóttir
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| | - Klaus Eyer
- ETH Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, D-CHAB, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
2
|
Habtamu M, Abrahamsen G, Aseffa A, Andargie E, Ayalew S, Abebe M, Spurkland A. High-throughput analysis of T cell-monocyte interaction in human tuberculosis. Clin Exp Immunol 2020; 201:187-199. [PMID: 32348546 PMCID: PMC7366737 DOI: 10.1111/cei.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/06/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
The lack of efficient tools for identifying immunological correlates of tuberculosis (TB) protection or risk of disease progression impedes the development of improved control strategies. To more clearly understand the host response in TB, we recently established an imaging flow cytometer‐based in‐vitro assay, which assesses multiple aspects of T cell–monocyte interaction. Here, we extended our previous work and characterized communication between T cells and monocytes using clinical samples from individuals with different TB infection status and healthy controls from a TB endemic setting. To identify T cell–monocyte conjugates, peripheral blood mononuclear cells (PBMC) were stimulated with ds‐Red‐expressing Mycobacterium bovis bacille Calmette–Guérin or 6‐kDa early secreted antigenic target (ESAT 6) peptides for 6 h, and analyzed by imaging flow cytometer (IFC). We then enumerated T cell–monocyte conjugates using polarization of T cell receptor (TCR) and F‐actin as markers for synapse formation, and nuclear factor kappa B (NF‐κB) nuclear translocation in the T cells. We observed a reduced frequency of T cell–monocyte conjugates in cells from patients with active pulmonary tuberculosis (pTB) compared to latent TB‐infected (LTBI) and healthy controls. When we monitored NF‐κB nuclear translocation in T cells interacting with monocytes, the proportion of responding cells was significantly higher in active pTB compared with LTBI and controls. Overall, these data underscore the need to consider multiple immunological parameters against TB, where IFC could be a valuable tool.
Collapse
Affiliation(s)
- M Habtamu
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Olso, Norway.,Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - G Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Olso, Norway
| | - A Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - E Andargie
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - S Ayalew
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - M Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - A Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Olso, Norway
| |
Collapse
|
3
|
Coppola M, Villar-Hernández R, van Meijgaarden KE, Latorre I, Muriel Moreno B, Garcia-Garcia E, Franken KLMC, Prat C, Stojanovic Z, De Souza Galvão ML, Millet JP, Sabriá J, Sánchez-Montalva A, Noguera-Julian A, Geluk A, Domínguez J, Ottenhoff THM. Cell-Mediated Immune Responses to in vivo-Expressed and Stage-Specific Mycobacterium tuberculosis Antigens in Latent and Active Tuberculosis Across Different Age Groups. Front Immunol 2020; 11:103. [PMID: 32117257 PMCID: PMC7026259 DOI: 10.3389/fimmu.2020.00103] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022] Open
Abstract
A quarter of the global human population is estimated to be latently infected by Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB). TB remains the global leading cause of death by a single pathogen and ranks among the top-10 causes of overall global mortality. Current immunodiagnostic tests cannot discriminate between latent, active and past TB, nor predict progression of latent infection to active disease. The only registered TB vaccine, Bacillus Calmette-Guérin (BCG), does not adequately prevent pulmonary TB in adolescents and adults, thus permitting continued TB-transmission. Several Mtb proteins, mostly discovered through IFN-γ centered approaches, have been proposed as targets for new TB-diagnostic tests or -vaccines. Recently, however, we identified novel Mtb antigens capable of eliciting multiple cytokines, including antigens that did not induce IFN-γ but several other cytokines. These antigens had been selected based on high Mtb gene-expression in the lung in vivo, and have been termed in vivo expressed (IVE-TB) antigens. Here, we extend and validate our previous findings in an independent Southern European cohort, consisting of adults and adolescents with either LTBI or TB. Our results confirm that responses to IVE-TB antigens, and also DosR-regulon and Rpf stage-specific Mtb antigens are marked by multiple cytokines, including strong responses, such as for TNF-α, in the absence of detectable IFN-γ production. Except for TNF-α, the magnitude of those responses were significantly higher in LTBI subjects. Additional unbiased analyses of high dimensional flow-cytometry data revealed that TNF-α+ cells responding to Mtb antigens comprised 17 highly heterogeneous cell types. Among these 17 TNF-α+ cells clusters identified, those with CD8+TEMRA or CD8+CD4+ phenotypes, defined by the expression of multiple intracellular markers, were the most prominent in adult LTBI, while CD14+ TNF-α+ myeloid-like clusters were mostly abundant in adolescent LTBI. Our findings, although limited to a small cohort, stress the importance of assessing broader immune responses than IFN-γ alone in Mtb antigen discovery as well as the importance of screening individuals of different age groups. In addition, our results provide proof of concept showing how unbiased multidimensional multiparametric cell subset analysis can identify unanticipated blood cell subsets that could play a role in the immune response against Mtb.
Collapse
Affiliation(s)
- Mariateresa Coppola
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Raquel Villar-Hernández
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Irene Latorre
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Muriel Moreno
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Garcia-Garcia
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Cristina Prat
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zoran Stojanovic
- Servei de Neumología Hospital Universitari Germans Trias i Pujol, Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Joan-Pau Millet
- Serveis Clínics, Unitat Clínica de Tractament Directament Observat de la Tuberculosi, CIBER de Epidemiología y Salud Pública (CIBEREESP), Madrid, Spain
| | - Josefina Sabriá
- Servei de Pneumologia, Hospital Sant Joan Despí Moises Broggi, Sant Joan Despí, Spain
| | - Adrián Sánchez-Montalva
- Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Universitat Autònoma de Barcelona, Barcelona, Spain.,Grupo de Estudio de Micobacterias (GEIM), Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Antoni Noguera-Julian
- Malalties Infeccioses i Resposta Inflamatòria Sistèmica en Pediatria, Unitat d'Infeccions, Servei de Pediatria, Institut de Recerca Pediàtrica Hospital Sant Joan de Déu, CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Jose Domínguez
- Institut d'Investigació Germans Trias i Pujol, CIBER Enfermedades Respiratorias, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
4
|
Habtamu M, Abebe M, Aseffa A, Dyrhol-Riise AM, Spurkland A, Abrahamsen G. In vitro analysis of antigen induced T cell-monocyte conjugates by imaging flow cytometry. J Immunol Methods 2018; 460:93-100. [PMID: 29981305 DOI: 10.1016/j.jim.2018.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
There is a lack of suitable correlates of immune protection against Mycobacterium tuberculosis (Mtb) infection. T cells and monocytes play key roles in host immunity against Mtb. Thus, a method that allows assessing their interaction would contribute to the understanding of immune regulation in tuberculosis (TB). We have established imaging flow cytometer (IFC) based in vitro assay for the analysis of early events in T cell-monocyte interaction, upstream of cytokine production and T cell proliferation. This was achieved through short term stimulation of peripheral blood mononuclear cells (PBMC) from healthy Norwegian blood donors with Mycobacterium bovis Bacille Calmette-Guérin (BCG). In our assay, we examined the kinetics of BCG uptake by monocytes using fluorescently labeled BCG and T cell-monocyte interaction based on synapse formation (CD3/TCR polarization). Our results showed that BCG stimulation induced a gradual increase in the proportion of conjugated T cells displaying NF-κB translocation to the nucleus in a time dependent manner, with the highest frequency observed at 6 h. We subsequently tested PBMC from a small cohort of active TB patients (n = 7) and observed a similar BCG induced NF-κB translocation in T cells conjugated with monocytes. The method allowed for simultaneous evaluation of T cell-monocyte conjugates and T cell activation as measured by NF-κB translocation, following short-term challenge of human PBMC with BCG. Whether this novel approach could serve as a diagnostic or prognostic marker needs to be investigated using a wide array of Mtb specific antigens in a larger cohort of patients with different TB infection status.
Collapse
Affiliation(s)
- Meseret Habtamu
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway; Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Anne Margarita Dyrhol-Riise
- Department of Infectious Disease, Oslo University Hospital, N-0424 Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424 Oslo, Norway; Department of Clinical Science, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Greger Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.
| |
Collapse
|
5
|
Duffy D, Rouilly V, Braudeau C, Corbière V, Djebali R, Ungeheuer MN, Josien R, LaBrie ST, Lantz O, Louis D, Martinez-Caceres E, Mascart F, Ruiz de Morales JG, Ottone C, Redjah L, Guen NSL, Savenay A, Schmolz M, Toubert A, Albert ML. Standardized whole blood stimulation improves immunomonitoring of induced immune responses in multi-center study. Clin Immunol 2017; 183:325-335. [PMID: 28943400 DOI: 10.1016/j.clim.2017.09.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022]
Abstract
Functional immune responses are increasingly important for clinical studies, providing in depth biomarker information to assess immunotherapy or vaccination. Incorporating functional immune assays into routine clinical practice has remained limited due to challenges in standardizing sample preparation. We recently described the use of a whole blood syringe-based system, TruCulture®, which permits point-of-care standardized immune stimulation. Here, we report on a multi-center clinical study in seven FOCIS Centers of Excellence to directly compare TruCulture to conventional PBMC methods. Whole blood and PBMCs from healthy donors were exposed to LPS, anti-CD3 anti-CD28 antibodies, or media alone. 55 protein analytes were analyzed centrally by Luminex multi-analyte profiling in a CLIA-certified laboratory. TruCulture responses showed greater reproducibility and improved the statistical power for monitoring differential immune response activation. The use of TruCulture addresses a major unmet need through a robust and flexible method for immunomonitoring that can be reproducibly applied in multi-center clinical studies. ONE SENTENCE SUMMARY A multi-center study revealed greater reproducibility from whole blood stimulation systems as compared to PBMC stimulation for studying induced immune responses.
Collapse
Affiliation(s)
- Darragh Duffy
- Center for Translational Research, Institut Pasteur, Paris, France; Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France; INSERM U1223, Institut Pasteur, Paris, France.
| | - Vincent Rouilly
- Center for Translational Research, Institut Pasteur, Paris, France
| | - Cecile Braudeau
- CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France; Centre de Recherche en Transplantation et Immunologie UMR 1064, Inserm, Université de Nantes, Nantes, France
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Raouf Djebali
- Center for Translational Research, Institut Pasteur, Paris, France
| | - Marie-Noelle Ungeheuer
- Center for Translational Research, Institut Pasteur, Paris, France; ICAReB Platform, Center for Translational Research, Institut Pasteur, Paris, France
| | - Regis Josien
- CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France; Centre de Recherche en Transplantation et Immunologie UMR 1064, Inserm, Université de Nantes, Nantes, France; LabEx IGO Immunotherapy Graf-Oncology, Nantes, France
| | | | - Olivier Lantz
- Laboratoire d'Immunologie clinique, CIC-4218 et Unité Inserm 932 Institut Curie, Paris, France
| | - Delphine Louis
- Laboratoire d'Immunologie clinique, CIC-4218 et Unité Inserm 932 Institut Curie, Paris, France
| | - Eva Martinez-Caceres
- Germans Trias i Pujol Hospital, Dept Cellular Biology, Physiology, Immunology, UAB, Barcelona, Spain
| | - Francoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium; Immunobiology Clinic, Hôpital Erasme, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | - Catherine Ottone
- Center for Translational Research, Institut Pasteur, Paris, France; ICAReB Platform, Center for Translational Research, Institut Pasteur, Paris, France
| | - Lydia Redjah
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nina Salabert-Le Guen
- CHU Nantes, Laboratoire d'Immunologie, CIMNA, Nantes, France; Centre de Recherche en Transplantation et Immunologie UMR 1064, Inserm, Université de Nantes, Nantes, France; LabEx IGO Immunotherapy Graf-Oncology, Nantes, France
| | - Alain Savenay
- INSERM UMR1160, Université Paris Diderot, AP-HP, Hopital St Louis, Paris, France
| | | | - Antoine Toubert
- INSERM UMR1160, Université Paris Diderot, AP-HP, Hopital St Louis, Paris, France
| | - Matthew L Albert
- Center for Translational Research, Institut Pasteur, Paris, France; Immunobiology of Dendritic Cells, Institut Pasteur, Paris, France; INSERM U1223, Institut Pasteur, Paris, France; Department of Cancer Immunology, Genentech Inc., San Francisco, CA 94080, USA.
| | | |
Collapse
|
6
|
Verronèse E, Delgado A, Valladeau-Guilemond J, Garin G, Guillemaut S, Tredan O, Ray-Coquard I, Bachelot T, N'Kodia A, Bardin-Dit-Courageot C, Rigal C, Pérol D, Caux C, Ménétrier-Caux C. Immune cell dysfunctions in breast cancer patients detected through whole blood multi-parametric flow cytometry assay. Oncoimmunology 2015; 5:e1100791. [PMID: 27141361 PMCID: PMC4839376 DOI: 10.1080/2162402x.2015.1100791] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/18/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023] Open
Abstract
Monitoring functional competence of immune cell populations in clinical routine represents a major challenge. We developed a whole-blood assay to monitor functional competence of peripheral innate immune cells including NK cells, dendritic and monocyte cell subsets through their ability to produce specific cytokines after short-term stimulation, detected through intra-cytoplasmic staining and multi-parametric flow-cytometry. A PMA/ionomycin T cell activation assay complemented this analysis. Comparing cohorts of healthy women and breast cancer (BC) patients at different stages, we identified significant functional alteration of circulating immune cells during BC progression prior to initiation of treatment. Of upmost importance, as early as the localized primary tumor (PT) stage, we observed functional alterations in several innate immune populations and T cells i.e. (i) reduced TNFα production by BDCA-1+ DC and non-classical monocytes in response to Type-I IFN, (ii) a strong drop in IFNγ production by NK cells in response to either Type-I IFN or TLR7/8 ligand, and (iii) a coordinated impairment of cytokine (IL-2, IFNγ, IL-21) production by T cell subpopulations. Overall, these alterations are further accentuated according to the stage of the disease in first-line metastatic patients. Finally, whereas we did not detect functional modification of DC subsets in response to TLR7/8 ligand, we highlighted increased IL-12p40 production by monocytes specifically at first relapse (FR). Our results reinforce the importance of monitoring both innate and adaptive immunity to better evaluate dysfunctions in cancer patients and suggest that our whole-blood assay will be useful to monitor response to treatment, particularly for immunotherapeutic strategies.
Collapse
Affiliation(s)
- E Verronèse
- Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Léon Bérard Cancer Center , Lyon, France
| | - A Delgado
- Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Léon Bérard Cancer Center , Lyon, France
| | - J Valladeau-Guilemond
- Team 11, INSERM U1052/CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France
| | - G Garin
- DRCI department, Léon Bérard Cancer Center , Lyon, France
| | - S Guillemaut
- DRCI department, Léon Bérard Cancer Center , Lyon, France
| | - O Tredan
- Department of Medical Oncology, Léon Bérard Cancer Center , Lyon, France
| | - I Ray-Coquard
- Department of Medical Oncology, Léon Bérard Cancer Center , Lyon, France
| | - T Bachelot
- Team 11, INSERM U1052/CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France; Department of Medical Oncology, Léon Bérard Cancer Center, Lyon, France
| | - A N'Kodia
- Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Léon Bérard Cancer Center , Lyon, France
| | - C Bardin-Dit-Courageot
- Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Léon Bérard Cancer Center , Lyon, France
| | - C Rigal
- Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Léon Bérard Cancer Center , Lyon, France
| | - D Pérol
- DRCI department, Léon Bérard Cancer Center , Lyon, France
| | - C Caux
- Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Léon Bérard Cancer Center, Lyon, France; Team 11, INSERM U1052/CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France
| | - C Ménétrier-Caux
- Innovation in Immuno-monitoring and Immunotherapy Platform (PI3), Léon Bérard Cancer Center, Lyon, France; Team 11, INSERM U1052/CNRS UMR5286, Cancer Research Center of Lyon, Lyon, France; Université de Lyon, Lyon, France; Université Lyon 1, ISPB, Lyon, France
| |
Collapse
|
7
|
Measuring Cellular Immunity to Influenza: Methods of Detection, Applications and Challenges. Vaccines (Basel) 2015; 3:293-319. [PMID: 26343189 PMCID: PMC4494351 DOI: 10.3390/vaccines3020293] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022] Open
Abstract
Influenza A virus is a respiratory pathogen which causes both seasonal epidemics and occasional pandemics; infection continues to be a significant cause of mortality worldwide. Current influenza vaccines principally stimulate humoral immune responses that are largely directed towards the variant surface antigens of influenza. Vaccination can result in an effective, albeit strain-specific antibody response and there is a need for vaccines that can provide superior, long-lasting immunity to influenza. Vaccination approaches targeting conserved viral antigens have the potential to provide broadly cross-reactive, heterosubtypic immunity to diverse influenza viruses. However, the field lacks consensus on the correlates of protection for cellular immunity in reducing severe influenza infection, transmission or disease outcome. Furthermore, unlike serological methods such as the standardized haemagglutination inhibition assay, there remains a large degree of variation in both the types of assays and method of reporting cellular outputs. T-cell directed immunity has long been known to play a role in ameliorating the severity and/or duration of influenza infection, but the precise phenotype, magnitude and longevity of the requisite protective response is unclear. In order to progress the development of universal influenza vaccines, it is critical to standardize assays across sites to facilitate direct comparisons between clinical trials.
Collapse
|
8
|
Nemes E, Kagina BMN, Smit E, Africa H, Steyn M, Hanekom WA, Scriba TJ. Differential leukocyte counting and immunophenotyping in cryopreservedex vivowhole blood. Cytometry A 2014; 87:157-65. [DOI: 10.1002/cyto.a.22610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Elisa Nemes
- South African Tuberculosis Vaccine Initiative (SATVI); Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town; Cape Town Western Cape South Africa
| | - Benjamin M. N. Kagina
- South African Tuberculosis Vaccine Initiative (SATVI); Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town; Cape Town Western Cape South Africa
| | - Erica Smit
- South African Tuberculosis Vaccine Initiative (SATVI); Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town; Cape Town Western Cape South Africa
| | - Hadn Africa
- South African Tuberculosis Vaccine Initiative (SATVI); Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town; Cape Town Western Cape South Africa
| | - Marcia Steyn
- South African Tuberculosis Vaccine Initiative (SATVI); Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town; Cape Town Western Cape South Africa
| | - Willem A. Hanekom
- South African Tuberculosis Vaccine Initiative (SATVI); Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town; Cape Town Western Cape South Africa
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative (SATVI); Institute of Infectious Disease and Molecular Medicine and School of Child and Adolescent Health, University of Cape Town; Cape Town Western Cape South Africa
| |
Collapse
|
9
|
Shey MS, Nemes E, Whatney W, de Kock M, Africa H, Barnard C, van Rooyen M, Stone L, Riou C, Kollmann T, Hawn TR, Scriba TJ, Hanekom WA. Maturation of innate responses to mycobacteria over the first nine months of life. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:4833-43. [PMID: 24733845 PMCID: PMC4048703 DOI: 10.4049/jimmunol.1400062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Newborns and young infants are particularly susceptible to infections, including Mycobacterium tuberculosis. Further, immunogenicity of vaccines against tuberculosis and other infectious diseases appears suboptimal early in life compared with later in life. We hypothesized that developmental changes in innate immunity would underlie these observations. To determine the evolution of innate responses to mycobacteria early in life, whole blood or PBMC from newborns, as well as 10- and 36-wk-old infants, was incubated with viable Mycobacterium bovis bacillus Calmette-Guérin or TLR ligands. Innate cell expression of cytokines and maturation markers was assessed, as well as activation of the proinflammatory NF-κB- and MAPK-signaling pathways. Bacillus Calmette-Guérin-induced production of the proinflammatory cytokines TNF-α, IL-6, and IL-12p40 increased from the newborn period to 9 mo of age in monocytes but not in myeloid dendritic cells. No changes in production of anti-inflammatory IL-10 were observed. CD40 expression increased with age in both cell populations. Older infants displayed substantial activation of all three signal transduction molecules: degradation of NF-κB inhibitor IκBα and phosphorylation of MAPK Erk and p38 upon TLR1/2 triggering, compared with predominant activation of only one of any of these molecules in newborns. Maturation of innate proinflammatory responses during the first 9 mo of life may underlie more effective control of mycobacteria and other pathogens observed later in infancy and age-related differential induction of Th1 responses by vaccination.
Collapse
Affiliation(s)
- Muki S. Shey
- South African TB Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Elisa Nemes
- South African TB Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Wendy Whatney
- South African TB Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Marwou de Kock
- South African TB Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Hadn Africa
- South African TB Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Charlene Barnard
- South African TB Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Michele van Rooyen
- South African TB Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Lynnette Stone
- South African TB Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Catherine Riou
- Division of Medical Virology, IDM, University of Cape Town, Cape Town, South Africa
| | | | - Thomas R. Hawn
- University of Washington School of Medicine, Seattle, USA
| | - Thomas J. Scriba
- South African TB Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Willem A. Hanekom
- South African TB Vaccine Initiative and School of Child and Adolescent Health, Institute of Infectious Disease and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Freer G, Rindi L. Intracellular cytokine detection by fluorescence-activated flow cytometry: basic principles and recent advances. Methods 2013; 61:30-8. [PMID: 23583887 DOI: 10.1016/j.ymeth.2013.03.035] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 03/26/2013] [Accepted: 03/31/2013] [Indexed: 01/24/2023] Open
Abstract
Intracellular cytokine staining is a flow cytometric technique consisting of culturing stimulated cytokine-producing cells in the presence of a protein secretion inhibitor, followed by fixation, permeabilization and staining of intracellular cytokines and cell markers (surface or cytoplasmic) with fluorescent antibodies. Up to 18 different colors can be detected by modern flow cytometers, making it the only immunological technique allowing simultaneous determination of antigen-specific T cell function and phenotype. In addition, cell proliferation and viability can be also measured. For this reason, it is probably the most popular method to measure antigenicity during vaccine trials and in the study of infectious diseases, along with ELISPOT. In this review, we will summarize its features, provide the protocol used by most laboratories and review its most recent applications.
Collapse
Affiliation(s)
- Giulia Freer
- Department of Experimental Pathology, University of Pisa, Via San Zeno, I-56127 Pisa, Italy.
| | | |
Collapse
|
11
|
Ontogeny of Toll-like receptor mediated cytokine responses of South African infants throughout the first year of life. PLoS One 2012; 7:e44763. [PMID: 23028609 PMCID: PMC3441420 DOI: 10.1371/journal.pone.0044763] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 08/06/2012] [Indexed: 11/19/2022] Open
Abstract
The first year of life represents a time of marked susceptibility to infections; this is particularly true for regions in sub-Saharan Africa. As innate immunity directs the adaptive immune response, the observed increased risk for infection as well as a suboptimal response to vaccination in early life may be due to less effective innate immune function. In this study, we followed a longitudinal cohort of infants born and raised in South Africa over the first year of life, employing the most comprehensive analysis of innate immune response to stimulation published to date. Our findings reveal rapid changes in innate immune development over the first year of life. This is the first report depicting dramatic differences in innate immune ontogeny between different populations in the world, with important implications for global vaccination strategies.
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Even in the era of promising molecular diagnostics for tuberculosis, understanding of the immune response remains urgent and fundamental to combating paediatric tuberculosis, given its paucibacillary nature. RECENT FINDINGS Significant advances have been made in unravelling the contributions of previously underappreciated components of the immune response to Mycobacterium tuberculosis. Research into the role of the 'innate' immune system such as neutrophils alongside 'adaptive' cells such as CD4(+), CD8(+), polyfunctional and regulatory T cells has highlighted the complexity of their interactions. Lessons from children with congenital or acquired susceptibility to mycobacterial disease, including HIV, continue to illuminate a broader understanding of the host immune response. The role of vitamin D is becoming apparent and highlights the importance of the environmental and clinical context of patients, especially in high prevalence areas. Several approaches show promise as diagnostic tests and in monitoring treatment response, although distinguishing latent from active disease remains a challenge. SUMMARY Research into novel immunological biomarkers, and greater understanding of the complex network of interactions between the innate and adaptive immune systems, is key to understanding why following exposure some children are unaffected, others latently infected and yet another group succumb to disease.
Collapse
|