1
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
2
|
Fu J, Khosravi-Maharlooei M, Sykes M. High Throughput Human T Cell Receptor Sequencing: A New Window Into Repertoire Establishment and Alloreactivity. Front Immunol 2021; 12:777756. [PMID: 34804070 PMCID: PMC8604183 DOI: 10.3389/fimmu.2021.777756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Recent advances in high throughput sequencing (HTS) of T cell receptors (TCRs) and in transcriptomic analysis, particularly at the single cell level, have opened the door to a new level of understanding of human immunology and immune-related diseases. In this article, we discuss the use of HTS of TCRs to discern the factors controlling human T cell repertoire development and how this approach can be used in combination with human immune system (HIS) mouse models to understand human repertoire selection in an unprecedented manner. An exceptionally high proportion of human T cells has alloreactive potential, which can best be understood as a consequence of the processes governing thymic selection. High throughput TCR sequencing has allowed assessment of the development, magnitude and nature of the human alloresponse at a new level and has provided a tool for tracking the fate of pre-transplant-defined donor- and host-reactive TCRs following transplantation. New insights into human allograft rejection and tolerance obtained with this method in combination with single cell transcriptional analyses are reviewed here.
Collapse
Affiliation(s)
- Jianing Fu
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
| | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States
- Department of Surgery, Columbia University, New York, NY, United States
- Department of Microbiology & Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
3
|
Aschauer C, Jelencsics K, Hu K, Heinzel A, Vetter J, Fraunhofer T, Schaller S, Winkler S, Pimenov L, Gualdoni GA, Eder M, Kainz A, Regele H, Reindl-Schwaighofer R, Oberbauer R. Next generation sequencing based assessment of the alloreactive T cell receptor repertoire in kidney transplant patients during rejection: a prospective cohort study. BMC Nephrol 2019; 20:346. [PMID: 31477052 PMCID: PMC6719356 DOI: 10.1186/s12882-019-1541-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/27/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Kidney transplantation is the optimal treatment in end stage renal disease but the allograft survival is still hampered by immune reactions against the allograft. This process is driven by the recognition of allogenic antigens presented to T-cells and their unique T-cell receptor (TCR) via the major histocompatibility complex (MHC), which triggers a complex immune response potentially leading to graft injury. Although the immune system and kidney transplantation have been studied extensively, the subtlety of alloreactive immune responses has impeded sensitive detection at an early stage. Next generation sequencing of the TCR enables us to monitor alloreactive T-cell populations and might thus allow the detection of early rejection events. METHODS/DESIGN This is a prospective cohort study designed to sequentially evaluate the alloreactive T cell repertoire after kidney transplantation. The TCR repertoire of patients who developed biopsy confirmed acute T cell mediated rejection (TCMR) will be compared to patients without rejection. To track the alloreactive subsets we will perform a mixed lymphocyte reaction between kidney donor and recipient before transplantation and define the alloreactive TCR repertoire by next generation sequencing of the complementary determining region 3 (CDR3) of the T cell receptor beta chain. After initial clonotype assembly from sequencing reads, TCR repertoire diversity and clonal expansion of T cells of kidney transplant recipients in periphery and kidney biopsy will be analyzed for changes after transplantation, during, prior or after a rejection. The goal of this study is to describe changes of overall T cell repertoire diversity, clonality in kidney transplant recipients, define and track alloreactive T cells in the posttransplant course and decipher patterns of expanded alloreactive T cells in acute cellular rejection to find an alternative monitoring to invasive and delayed diagnostic procedures. DISCUSSION Changes of the T cell repertoire and tracking of alloreactive T cell clones after combined bone marrow and kidney transplant has proven to be of potential use to monitor the donor directed alloresponse. The dynamics of the donor specific T cells in regular kidney transplant recipients in rejection still rests elusive and can give further insights in human alloresponse. TRIAL REGISTRATION Clinicaltrials.gov: NCT03422224 , registered February 5th 2018.
Collapse
Affiliation(s)
- Constantin Aschauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kira Jelencsics
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Karin Hu
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Andreas Heinzel
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Julia Vetter
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 13, 4232, Hagenberg im Muehlkreis, Austria
| | - Thomas Fraunhofer
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 13, 4232, Hagenberg im Muehlkreis, Austria
| | - Susanne Schaller
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 13, 4232, Hagenberg im Muehlkreis, Austria
| | - Stephan Winkler
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 13, 4232, Hagenberg im Muehlkreis, Austria
| | - Lisabeth Pimenov
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Guido A Gualdoni
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Michael Eder
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexander Kainz
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Heinz Regele
- Department of Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Rainer Oberbauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
4
|
Kametani Y, Shiina T, Suzuki R, Sasaki E, Habu S. Comparative immunity of antigen recognition, differentiation, and other functional molecules: similarities and differences among common marmosets, humans, and mice. Exp Anim 2018; 67:301-312. [PMID: 29415910 PMCID: PMC6083031 DOI: 10.1538/expanim.17-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The common marmoset (CM; Callithrix jacchus) is a small New World monkey
with a high rate of pregnancy and is maintained in closed colonies as an experimental
animal species. Although CMs are used for immunological research, such as studies of
autoimmune disease and infectious disease, their immunological characteristics are less
defined than those of other nonhuman primates. We and others have analyzed antigen
recognition-related molecules, the development of hematopoietic stem cells (HSCs), and the
molecules involved in the immune response. CMs systemically express Caja-G, a major
histocompatibility complex class I molecule, and the ortholog of HLA-G, a suppressive
nonclassical HLA class I molecule. HSCs express CD117, while CD34 is not essential for
multipotency. CD117+ cells developed into all hematopoietic cell lineages, but compared
with human HSCs, B cells did not extensively develop when HSCs were transplanted into an
immunodeficient mouse. Although autoimmune models have been successfully established,
sensitization of CMs with some bacteria induced a low protective immunity. In CMs, B cells
were observed in the periphery, but IgG levels were very low compared with those in humans
and mice. This evidence suggests that CM immunity is partially suppressed systemically.
Such immune regulation might benefit pregnancy in CMs, which normally deliver dizygotic
twins, the placentae of which are fused and the immune cells of which are mixed. In this
review, we describe the CM immune system and discuss the possibility of using CMs as a
model of human immunity.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Takashi Shiina
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara-shi, Kanagawa 259-1193, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, 18-1 Sakuradai, Minami-ku, Sagamihara-shi, Kanagawa 252-0392, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals,3-25-12 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0821, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
5
|
Hou X, Lu C, Chen S, Xie Q, Cui G, Chen J, Chen Z, Wu Z, Ding Y, Ye P, Dai Y, Diao H. High Throughput Sequencing of T Cell Antigen Receptors Reveals a Conserved TCR Repertoire. Medicine (Baltimore) 2016; 95:e2839. [PMID: 26962778 PMCID: PMC4998859 DOI: 10.1097/md.0000000000002839] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The T-cell receptor (TCR) repertoire is a mirror of the human immune system that reflects processes caused by infections, cancer, autoimmunity, and aging. Next-generation sequencing has become a powerful tool for deep TCR profiling. Herein, we used this technology to study the repertoire features of TCR beta chain in the blood of healthy individuals.Peripheral blood samples were collected from 10 healthy donors. T cells were isolated with anti-human CD3 magnetic beads according to the manufacturer's protocol. We then combined multiplex-PCR, Illumina sequencing, and IMGT/High V-QUEST to analyze the characteristics and polymorphisms of the TCR.Most of the individual T cell clones were present at very low frequencies, suggesting that they had not undergone clonal expansion. The usage frequencies of the TCR beta variable, beta joining, and beta diversity gene segments were similar among T cells from different individuals. Notably, the usage frequency of individual nucleotides and amino acids within complementarity-determining region (CDR3) intervals was remarkably consistent between individuals. Moreover, our data show that terminal deoxynucleotidyl transferase activity was biased toward the insertion of G (31.92%) and C (27.14%) over A (21.82%) and T (19.12%) nucleotides.Some conserved features could be observed in the composition of CDR3, which may inform future studies of human TCR gene recombination.
Collapse
Affiliation(s)
- Xianliang Hou
- From the State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou (XH, CL, QX, GC, JC, ZC, ZW, YD, PY, HD); Beijing Genomics Institute (SC); and Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital) (YD), Shenzhen, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Shimada S, Nunomura S, Mori S, Suemizu H, Itoh T, Takabayashi S, Okada Y, Yahata T, Shiina T, Katoh H, Suzuki R, Tani K, Ando K, Yagita H, Habu S, Sasaki E, Kametani Y. Common marmoset CD117+ hematopoietic cells possess multipotency. Int Immunol 2015; 27:567-77. [PMID: 25977306 DOI: 10.1093/intimm/dxv031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 05/10/2015] [Indexed: 12/20/2022] Open
Abstract
Analysis of the hematopoiesis of non-human primates is important to clarify the evolution of primate-specific hematopoiesis and immune regulation. However, the engraftment and development of the primate hematopoietic system are well-documented only in humans and are not clear in non-human primates. Callithrix jacchus (common marmoset, CM) is a New World monkey with a high rate of pregnancy and small size that lives in closed colonies. As stem cell factor (SCF) is an essential molecule for hematopoietic stem cell development in mice and humans, we focused on CD117, the SCF receptor, and examined whether CD117-expressing cells possess the hematopoietic stem/progenitor cell characteristics of newborn marmoset-derived hematopoietic cells that can develop into T cells and B cells. When CD117(+) cell fractions of the bone marrow were transplanted into immunodeficient NOD (non-obese diabetic)/Shi-scid, common γc-null (NOG) mice, these cells engrafted efficiently in the bone marrow and spleens of the NOG mice. The CD117(+) cells developed into myeloid lineage cells, CD20(+) B cells and CD3(+) T cells, which could express CM cytokines in vivo. The development of B cells did not precede that of T cells. The development of CD8(+) T cells was dominant in NOG mice. The engraftment was comparable for both CD117(+)CD34(+) cells and CD117(+)CD34(-) cells. These results suggest that the CD117(+) cell fraction can differentiate into all three cell lineages, and the development of marmoset immunity in the xenogeneic environment follows diverse developmental pathways compared with human immunity.
Collapse
Affiliation(s)
- Shin Shimada
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Satoshi Nunomura
- Division of Molecular Cell Immunology, Advanced Medical Research Center, Nihon University Graduate School of Medical Science, Tokyo, Japan
| | - Shuya Mori
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan Department of Hematology, Tokai University School of Medicine, Isehara, Japan
| | | | - Toshio Itoh
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Shuji Takabayashi
- Experimental Animals Institute, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yoshinori Okada
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Yahata
- Department of Hematology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Hideki Katoh
- Experimental Animals Institute, Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ryuji Suzuki
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Allergy and Rheumatology, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Japan
| | - Kenzaburo Tani
- Division of Molecular and Clinical Genetics, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kiyoshi Ando
- Support Center for Medical Research and Education, Tokai University School of Medicine, Isehara, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sonoko Habu
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Erika Sasaki
- Central Institute for Experimental Animals, Kawasaki, Japan
| | - Yoshie Kametani
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|