1
|
Fang S, Yang H, Liu C, Tian Y, Wu M, Wu Y, Liu Q. Bacterial coloration immunofluorescence strip for ultrasensitive rapid detection of bacterial antibodies and targeted antibody-secreting hybridomas. J Immunol Methods 2022; 501:113208. [PMID: 34933017 DOI: 10.1016/j.jim.2021.113208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/15/2021] [Indexed: 01/06/2023]
Abstract
The indirect enzyme-linked immunosorbent assay (ELISA) is the gold standard method for monoclonal antibody (McAb) detection and plays a unique role in the preparation of bacterial antibodies. To solve the laborious issues associated with indirect ELISA, a novel bacterial coloration immunofluorescence strip (BCIFS) for antibody detection using colored bacteria instead of a labeled antibody as the antigen and tracer simultaneously and goat anti-mouse IgG as the test line was developed. The affinity range survey of BCIFS indicated that hybridoma cell cultures of E. coli O157:H7 (D3, E7) and Vibrio parahemolyticus (H7, C9) were detected, which complied with the results of indirect ELISA. Compared with the traditional indirect ELISA, the BCIFS sensitivity for E7 cell cultures, ascites, and purified antibodies was at least 4-fold more sensitive, and the BCIFS cross-reactivity for E7 cell cultures was almost consistent with that of indirect ELISA. In addition, the BCIFS isotypes for E. coli O157:H7 cell cultures and Vibrio parahemolyticus were IgG2a and IgG1, respectively, which were identical to the indirect ELISA. Furthermore, the BCIFS method was confirmed by McAb preparation, effective antibody use, and targeted antibody-secreted hybridoma preparation and screening, which showed excellent performance and substitution of the indirect ELISA method. Combined with methylcellulose semisolid medium, BCIFS offers a novel, easy to operate, rapid preparation method for antigen-specific hybridomas. This is the first report using BCIFS instead of indirect ELISA for bacterial antibody detection and application in different samples, which demonstrates a rapid and powerful tool for antibody engineering.
Collapse
Affiliation(s)
- Shuiqin Fang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; College of Food and Bioengineering, Bengbu University, Bengbu 233030, China
| | - Hao Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Cheng Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yachen Tian
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Meijiao Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Youxue Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
2
|
Fang S, Liu C, Wan S, Tian Y, Li D, Wu M, Wu Y, Liu Q. A novel antigen immunochromatography fluorometric strip for rapid detection and application of pathogenic bacterial high-quality antibody. J Immunol Methods 2021; 494:113014. [PMID: 33753095 DOI: 10.1016/j.jim.2021.113014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/25/2022]
Abstract
Unlike traditional immunoassay strips, a novel antigen immunechromatography fluorometric strip (AICFS) using inactivated bacterial antigen instead of an antibody as a test line and goat anti-mouse IgG-FITC as a tracer was developed. The applicability survey of AICFS indicated that E. coli O157:H7 (D3) and Acidovorax citrulli (6F) hybridoma cell cultures could be detected, but Vibrio parahemolyticus (H7, C9) hybridoma cell cultures were missed compared with the indirect enzyme-linked immunosorbent assay (ELISA). The four antibody affinity constants (Ka) were measured and compared, and AICFS could be suitable for high-affinity antibody detection. Compared with the traditional indirect ELISA, the AICFS sensitivity for D3 cell cultures, ascites, and purified antibodies was at least 2-fold more sensitive, the AICFS specific for D3 cell cultures by comparative interpretation was compliant except for the strain ATCC 43895, and the indirect ELISA missed it. More importantly, the AICFS method was confirmed by various real samples that it could be used in different scenarios regarding the antibody, including McAb preparation, the effective antibody use, and high-affinity antibody-secreted hybridoma auxiliary preparation and screening. It could be an excellent alternative method with less than 5% corresponding processing time for indirect ELISA method for pathogenic bacterial high-quality antibody detection. This is the first report of using AICFS for bacterial high-quality antibody detection and application in different samples, which demonstrates a rapid auxiliary tool for high-affinity antibody secreted-hybridoma screening and an excellent alternative method for high-quality antibody application.
Collapse
Affiliation(s)
- Shuiqin Fang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Cheng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Shaoye Wan
- Shanghai Prajna Biology Technique Co.Ltd., Shangai 200433, China
| | - Yachen Tian
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Dezhi Li
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Meijiao Wu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Youxue Wu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 20093, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
3
|
Muralidharan-Chari V, Wurz Z, Doyle F, Henry M, Diendorfer A, Tenenbaum SA, Borth N, Eveleth E, Sharfstein ST. PTSelect™: A post-transcriptional technology that enables rapid establishment of stable CHO cell lines and surveillance of clonal variation. J Biotechnol 2020; 325:360-371. [PMID: 33115662 DOI: 10.1016/j.jbiotec.2020.09.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 10/23/2022]
Abstract
Currently, stable Chinese hamster ovary cell lines producing therapeutic, recombinant proteins are established either by antibiotic and/or metabolic selection. Here, we report a novel technology, PTSelect™ that utilizes an siRNA cloned upstream of the gene of interest (GOI) that is processed to produce functional PTSelect™-siRNAs, which enable cell enrichment. Cells with stably integrated GOI are selected and separated from cells without GOI by transfecting CD4/siRNA mRNA regulated by PTSelect™-siRNAs and exploiting the variable expression of CD4 on the cell surface. This study describes the PTSelect™ principle and compares the productivity, doubling time and stability of clones developed by PTSelect™ with conventionally developed clones. PTSelect™ rapidly established a pool population with comparable stability and productivity to pools generated by traditional methods and can further be used to easily monitor productivity changes due to clonal drift, identifying individual cells with reduced productivity.
Collapse
Affiliation(s)
| | - Zachary Wurz
- HocusLocus, LLC, 253 Fuller Road, Albany NY 12203, USA
| | - Francis Doyle
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, New York 12203, USA
| | - Matthew Henry
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Andreas Diendorfer
- Austrian Centre of Industrial Biotechnology, Graz, Austria, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Scott A Tenenbaum
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, New York 12203, USA
| | - Nicole Borth
- Austrian Centre of Industrial Biotechnology, Graz, Austria, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Susan T Sharfstein
- College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY, New York 12203, USA.
| |
Collapse
|
4
|
Shimizu T, Abu Lila AS, Awata M, Kubo Y, Mima Y, Hashimoto Y, Ando H, Okuhira K, Ishima Y, Ishida T. A Cell Assay for Detecting Anti-PEG Immune Response against PEG-Modified Therapeutics. Pharm Res 2018; 35:223. [DOI: 10.1007/s11095-018-2505-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022]
|
5
|
Sączyńska V, Bierczyńska-Krzysik A, Cecuda-Adamczewska V, Baran P, Porębska A, Florys K, Zieliński M, Płucienniczak G. Production of highly and broad-range specific monoclonal antibodies against hemagglutinin of H5-subtype avian influenza viruses and their differentiation by mass spectrometry. Virol J 2018; 15:13. [PMID: 29334981 PMCID: PMC5769215 DOI: 10.1186/s12985-017-0886-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023] Open
Abstract
Background The highly pathogenic avian influenza viruses of the H5 subtype, such as the H5N1 viral strains or the novel H5N8 and H5N2 reassortants, are of both veterinary and public health concern worldwide. To combat these viruses, monoclonal antibodies (mAbs) against H5 hemagglutinin (HA) play a significant role. These mAbs are effective diagnostic and therapeutic agents and powerful tools in vaccine development and basic scientific research. The aim of this study was to obtain diagnostically valuable mAbs with broad strain specificity against H5-subtype AIVs. Results We applied the hybridoma method to produce anti-HA mAbs. The cloning and screening procedures resulted in the selection of 7 mouse hybridoma cell lines and their respective antibody clones. Preliminary immunoreactivity studies showed that these newly established mAbs, all of the IgG1 isotype, had high specificity and broad-range activities against the H5 HAs. However, these studies did not allow for a clear distinction among the selected antibodies and mAb-secreting hybridoma clones. To differentiate the analyzed mAbs and determine the exact number of hybridoma clones, peptide mapping of the Fc and Fab fragments was performed using a Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF/TOF) mass spectrometer. Detailed analyses of the acquired MS and MS/MS spectra confirmed that the Fc fragments constituted highly conserved species- and isotype-immunoglobulin components, whereas the Fab fragments exhibited considerable variation in the sequences that determine antibody specificity. This approach enabled unambiguous characterization of the selected mAbs according to their peptide composition. As a result, 6 different clones were distinguished. Conclusions Our work provided a unique panel of anti-H5 HA mAbs, which meets the demand for novel, high-specificity analytical tools for use in serologic surveillance. Applications of these mAbs in areas other than diagnostics are also possible. Moreover, we demonstrated for the first time that peptide mapping of antibody fragments with mass spectrometry is an efficient method for the differentiation of antibody clones and relevant antibody-producing cell lines. The method may be successfully used to characterize mAbs at the protein level. Electronic supplementary material The online version of this article (10.1186/s12985-017-0886-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Violetta Sączyńska
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland.
| | | | | | - Piotr Baran
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland
| | - Anna Porębska
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland
| | - Katarzyna Florys
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland
| | - Marcin Zieliński
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland
| | - Grażyna Płucienniczak
- Institute of Biotechnology and Antibiotics, Starościńska 5 Street, 02-516, Warsaw, Poland
| |
Collapse
|
6
|
Identification and phenotyping of circulating autoreactive proteinase 3-specific B cells in patients with PR3-ANCA associated vasculitis and healthy controls. J Autoimmun 2017; 84:122-131. [DOI: 10.1016/j.jaut.2017.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 11/23/2022]
|
7
|
Droz X, Harraghy N, Lançon E, Le Fourn V, Calabrese D, Colombet T, Liechti P, Rida A, Girod PA, Mermod N. Automated microfluidic sorting of mammalian cells labeled with magnetic microparticles for those that efficiently express and secrete a protein of interest. Biotechnol Bioeng 2017; 114:1791-1802. [DOI: 10.1002/bit.26270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/05/2017] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Xuan Droz
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | - Niamh Harraghy
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | - Etienne Lançon
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | | | | | | | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| |
Collapse
|
8
|
Dippong M, Carl P, Lenz C, Schenk JA, Hoffmann K, Schwaar T, Schneider RJ, Kuhne M. Hapten-Specific Single-Cell Selection of Hybridoma Clones by Fluorescence-Activated Cell Sorting for the Generation of Monoclonal Antibodies. Anal Chem 2017; 89:4007-4012. [DOI: 10.1021/acs.analchem.6b04569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Martin Dippong
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str.
11, 12489 Berlin, Germany
- University of Potsdam, Institute for Biochemistry and
Biology, Karl-Liebknecht-Str.
24-25, 14476 Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm, Am Mühlenberg 13, 14476 Potsdam, Germany
| | - Peter Carl
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str.
11, 12489 Berlin, Germany
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Christine Lenz
- UP Transfer GmbH, Am Neuen
Palais 10, 14469 Potsdam, Germany
- Hybrotec GmbH, Am Mühlenberg
11, 14476 Potsdam-Golm, Germany
| | - Jörg A. Schenk
- UP Transfer GmbH, Am Neuen
Palais 10, 14469 Potsdam, Germany
- Hybrotec GmbH, Am Mühlenberg
11, 14476 Potsdam-Golm, Germany
| | - Katrin Hoffmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Timm Schwaar
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str.
11, 12489 Berlin, Germany
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Rudolf J. Schneider
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| | - Maren Kuhne
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Str.
11, 12489 Berlin, Germany
| |
Collapse
|
9
|
Characterization of monoclonal antibodies against porcine pulmonary alveolar macrophages of gnotobiotic miniature swine. Biochem Biophys Res Commun 2015; 461:427-34. [DOI: 10.1016/j.bbrc.2015.04.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
|
10
|
Park JS, Ji IJ, An HJ, Kang MJ, Kang SW, Kim DH, Yoon SY. Disease-Associated Mutations of TREM2 Alter the Processing of N-Linked Oligosaccharides in the Golgi Apparatus. Traffic 2015; 16:510-8. [PMID: 25615530 DOI: 10.1111/tra.12264] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/04/2023]
Abstract
The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune-modulatory receptor involved in phagocytosis and inflammation. Mutations of Q33X, Y38C and T66M cause Nasu-Hakola disease (NHD) which is characterized by early onset of dementia and bone cysts. A recent, genome-wide association study also revealed that single nucleotide polymorphism of TREM2, such as R47H, increased the risk of Alzheimer's disease (AD) similar to ApoE4. However, how these mutations affect the trafficking of TREM2, which may affect the normal functions of TREM2, was not known. In this study, we show that TREM2 with NHD mutations are impaired in the glycosylation with complex oligosaccharides in the Golgi apparatus, in the trafficking to plasma membrane and further processing by γ-secretase. Although R47H mutation in AD affected the glycosylation and normal trafficking of TREM2 less, the detailed pattern of glycosylated TREM2 differs from that of the wild type, thus suggesting that precise regulation of TREM2 glycosylation is impaired when arginine at 47 is mutated to histidine. Our results suggest that the impaired glycosylation and trafficking of TREM2 from endoplasmic reticulum/Golgi to plasma membrane by mutations may inhibit its normal functions in the plasma membrane, which may contribute to the disease.
Collapse
Affiliation(s)
- Ji-Seon Park
- Alzheimer's Disease Experts Lab (ADEL), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Brain Science, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology (BMIT), University of Ulsan College of Medicine, Seoul, Republic of Korea; Cell Dysfunction Research Center (CDRC), University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|