1
|
Kronenberg K, Dormann F, Brosig A, Pamler I, Geissler EK, Burkhardt R, Offner R, Hutchinson JA, Haehnel V. Platelet apheresis with additive solution and plasma rinseback affects the cellular composition of LRS chamber products. Sci Rep 2025; 15:19923. [PMID: 40481081 PMCID: PMC12144167 DOI: 10.1038/s41598-025-04350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 05/26/2025] [Indexed: 06/11/2025] Open
Abstract
Human leukocyte concentrates recovered from leukocyte reduction system (LRS) chambers of the Trima Accel automated blood collection device are a by-product of platelet apheresis that is often used in research. The Trima Accel software was obligatorily updated in 2023 from version 6 to 7. Here, we investigated software-dependent differences in the cellular composition of LRS concentrates when performing apheresis with either plasma or platelet additive solution. When using plasma as suspension medium, the software update to Trima 7 led to higher fraction of B cells as revealed by flow cytometry. Compared to platelets-in-plasma collection, the total recovered volume and leukocyte density was significantly reduced when running Trima 7 software with platelet additive solution including a plasma rinseback. Moreover, the proportion of lymphocytes and monocytes in these products was lower, whereas the proportion of neutrophils and eosinophils was higher. Researchers working with leukocytes isolated from LRS chambers should be aware that performing apheresis with platelet additive solution alters the composition of their starting material, which could affect the interpretation of some experiments.
Collapse
Affiliation(s)
- Katharina Kronenberg
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Frauke Dormann
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Andreas Brosig
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Irene Pamler
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Edward K Geissler
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Robert Offner
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - James A Hutchinson
- Department of Surgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Viola Haehnel
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Burgenson D, Linton J, Ge X, Kostov Y, Tolosa L, Szeto GL, Rao G. A Cell-Free Protein Expression System Derived from Human Primary Peripheral Blood Mononuclear Cells. ACS Synth Biol 2020; 9:2188-2196. [PMID: 32698572 DOI: 10.1021/acssynbio.0c00256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Historically, some of the first cell-free protein expression systems studied in vitro translation in various human blood cells. However, because of limited knowledge of eukaryotic translation and the advancement of cell line development, interest in these systems decreased. Eukaryotic translation is a complex system of factors that contribute to the overall translation of mRNA to produce proteins. The intracellular translateome of a cell can be modified by various factors and disease states, but it is impossible to individually measure all factors involved when there is no comprehensive understanding of eukaryotic translation. The present work outlines the use of a coupled transcription and translation cell-free protein expression system to produce recombinant proteins derived from human donor peripheral blood mononuclear cells (PBMCs) activated with phytohemagglutinin-M (PHA-M). The methods outlined here could result in tools to aid immunology, gene therapy, cell therapy, and synthetic biology research and provide a convenient and holistic method to study and assess the intracellular translation environment of primary immune cells.
Collapse
Affiliation(s)
- David Burgenson
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Jonathan Linton
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Xudong Ge
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Yordan Kostov
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Leah Tolosa
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Gregory L. Szeto
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland 21201, United States
| | - Govind Rao
- Center for Advanced Sensor Technology, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
3
|
Sasani N, Roghanian R, Emtiazi G, Aghaie A. A Novel Approach on Leukodepletion Filters: Investigation of Synergistic Anticancer Effect of Purified α-Defensins and Nisin. Adv Pharm Bull 2020; 11:378-384. [PMID: 33880361 PMCID: PMC8046393 DOI: 10.34172/apb.2021.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/09/2019] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose: There are number of reports available regarding defensins activity against mammalian cells besides their antimicrobial and immune regulatory activities. This study aims to investigate anticancer and apoptosis activity of the purified defensins from leukodepletion filters alone or in synergism with bacterial peptide, nisin, on prostate and colorectal cancer. Methods: Leucoflex LCR-5 filters were backflushed by an optimized elution system. Isolated granulocytes were sonicated and the supernatant treated before further purification by high performance liquid chromatography (HPLC). SDS-PAGE and western blot testing verified the fraction. Cell culture on PC-3 (human prostate adenocarcinoma), and HCT-116 (human colorectal carcinoma) were conducted following by MTT assays in addition to annexin flow cytometry for sole and synergistic effects with peptide nisin. Results: Viable and active neutrophils could recover, and α-defensins were extracted and purified. Combinations of an optimal dose of α-defensins and nisin showed a remarkable synergistic effect on cancer cell lines (over 90% and 70% for PC-3 and HCT-116, respectively). Conclusion: It also observed that less than 40% of both cells could survive after co-treatment with optimal dose. Also, apoptosis was increased after treatment by these peptides together. Annexin Vpositive populations significantly increased in percentage in comparison with control.
Collapse
Affiliation(s)
- Niloofar Sasani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P. O Box 81746-79441, Isfahan, Iran
| | - Rasoul Roghanian
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P. O Box 81746-79441, Isfahan, Iran
| | - Giti Emtiazi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, P. O Box 81746-79441, Isfahan, Iran
| | - Afsaneh Aghaie
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
4
|
Cunningham S, Buchele V, Brox R, Strasser E, Hackstein H. Thrombocyte apheresis cassettes as a novel source of viable peripheral blood mononuclear cells. Transfusion 2020; 60:1500-1507. [DOI: 10.1111/trf.15756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology University Hospital Erlangen Erlangen Germany
| | - Vera Buchele
- Department of Transfusion Medicine and Hemostaseology University Hospital Erlangen Erlangen Germany
| | - Regine Brox
- Department of Transfusion Medicine and Hemostaseology University Hospital Erlangen Erlangen Germany
| | - Erwin Strasser
- Department of Transfusion Medicine and Hemostaseology University Hospital Erlangen Erlangen Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology University Hospital Erlangen Erlangen Germany
| |
Collapse
|
5
|
Ferdowsi S, Pourfathollah AA, Amiri F, Rafiee MH, Aghaei A. Evaluation of anticancer activity of α-defensins purified from neutrophils trapped in leukoreduction filters. Life Sci 2019; 224:249-254. [PMID: 30935951 DOI: 10.1016/j.lfs.2019.03.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/17/2022]
Abstract
AIMS The α-defensins or human neutrophil peptides (HNP 1-3) that exist in azurophilic granules are found to have anticancer activity. The pattern of disulfide bonds in α-defensins is crucial for the functional properties. Therefore, synthesis using the chemical and recombinant approaches is a challenging. A safe source for the production of α-defensins can be the use of leukoreduction filters in blood banks that contain large quantities of neutrophils and are discarded after use. The aim of this study was to purify α-defensins from neutrophils trapped in leukofilters and to investigate its anticancer activity. MATERIALS AND METHODS Immunoprecipitation was performed to purify α-defensins and the presence of protein was confirmed by Western Blot. The Jurkat T-cell line was incubated with different concentrations (5, 10 and 15 μg/ml) of purified HNP1-3 for 16 h. Cell viability was measured using a WST-1 assay and apoptosis was analyzed for Annexin V/PI markers. Caspase-3/7 activity was determined using fluorescence assay. The effects of purified α-defensins were compared to commercial HNP 1-3. KEY FINDINGS Purified HNP 1-3 decreased the viability at 10 and 15 μg/ml and commercial HNP 1-3 at 15 μg/ml concentrations. Following to the purified HNP1-3 treatment, the percentage of Annexin V positive population and caspase-3 activity were significantly increased compared to control (p = 0.000 and p = 0.001, respectively) and commercial HNP1-3 (p = 0.034 and p = 0.018, respectively). SIGNIFICANCE Results indicated the anticancer activity of HNP1-3 which can be used as future chemotherapeutic drugs. Furthermore, leukofilters can be considered as economic source for purifying these peptides.
Collapse
Affiliation(s)
- Shirin Ferdowsi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Akbar Pourfathollah
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Tarbiat Modares University, Faculty of Medical Sciences, Department of Immunology, Tehran, Iran.
| | - Fatemeh Amiri
- Department of Medical Laboratory Sciences, School of Para Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Hessam Rafiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Afsaneh Aghaei
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
6
|
Vacaflores A, Freedman SN, Chapman NM, Houtman JCD. Pretreatment of activated human CD8 T cells with IL-12 leads to enhanced TCR-induced signaling and cytokine production. Mol Immunol 2016; 81:1-15. [PMID: 27883938 DOI: 10.1016/j.molimm.2016.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/21/2016] [Accepted: 11/14/2016] [Indexed: 10/24/2022]
Abstract
During the immune response to pathogens and autoantigens, CD8T cells are exposed to numerous inflammatory agents including the cytokine IL-12. Previous studies have focused on how IL-12 regulates T cell functions when present during or after the activation of the T cell receptor (TCR). However, recent studies suggest that prior exposure to IL-12 also alters the TCR responsiveness of murine T cells. Whether similar phenomena occur in human activated CD8T cells and the mechanisms mediating these effects remain unexplored. In this study, we observed that pretreatment of human activated CD8T cells with IL-12 results in increased cytokine mRNA and protein production following subsequent TCR challenge. The potentiation of TCR-mediated cytokine release was transient and required low doses of IL-12 for at least 24h. Mechanistically, prior exposure to IL-12 increased the TCR induced activation of select MAPKs and AKT without altering the activation of more proximal TCR signaling molecules, suggesting that the IL-12 mediated changes in TCR signaling are responsible for the increased production of cytokines. Our data suggest that prior treatment with IL-12 potentiates human CD8T cell responses at sites of infection and inflammation, expanding our understanding of the function of this clinically important cytokine.
Collapse
Affiliation(s)
- Aldo Vacaflores
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Samantha N Freedman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Nicole M Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States
| | - Jon C D Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, United States; Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States; Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
7
|
Vacaflores A, Chapman NM, Harty JT, Richer MJ, Houtman JCD. Exposure of Human CD4 T Cells to IL-12 Results in Enhanced TCR-Induced Cytokine Production, Altered TCR Signaling, and Increased Oxidative Metabolism. PLoS One 2016; 11:e0157175. [PMID: 27280403 PMCID: PMC4900534 DOI: 10.1371/journal.pone.0157175] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/25/2016] [Indexed: 12/24/2022] Open
Abstract
Human CD4 T cells are constantly exposed to IL-12 during infections and certain autoimmune disorders. The current paradigm is that IL-12 promotes the differentiation of naïve CD4 T cells into Th1 cells, but recent studies suggest IL-12 may play a more complex role in T cell biology. We examined if exposure to IL-12 alters human CD4 T cell responses to subsequent TCR stimulation. We found that IL-12 pretreatment increased TCR-induced IFN-γ, TNF-α, IL-13, IL-4 and IL-10 production. This suggests that prior exposure to IL-12 potentiates the TCR-induced release of a range of cytokines. We observed that IL-12 mediated its effects through both transcriptional and post-transcriptional mechanisms. IL-12 pretreatment increased the phosphorylation of AKT, p38 and LCK following TCR stimulation without altering other TCR signaling molecules, potentially mediating the increase in transcription of cytokines. In addition, the IL-12-mediated enhancement of cytokines that are not transcriptionally regulated was partially driven by increased oxidative metabolism. Our data uncover a novel function of IL-12 in human CD4 T cells; specifically, it enhances the release of a range of cytokines potentially by altering TCR signaling pathways and by enhancing oxidative metabolism.
Collapse
Affiliation(s)
- Aldo Vacaflores
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Nicole M. Chapman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - John T. Harty
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Martin J. Richer
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jon C. D. Houtman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Department of Internal Medicine, Division of Immunology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
8
|
Optimization of methods for the genetic modification of human T cells. Immunol Cell Biol 2015; 93:896-908. [PMID: 26027856 PMCID: PMC4659746 DOI: 10.1038/icb.2015.59] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are critical in the fight against parasitic, bacterial, and viral infections, but are also involved in many autoimmune and pathological disorders. Studies of protein function in human T cells are confined to techniques such as RNAi due to ethical reasons and relative simplicity of these methods. However, introduction of RNAi or genes into primary human T cells is often hampered by toxic effects from transfection or transduction methods that yield cell numbers inadequate for downstream assays. Additionally, the efficiency of recombinant DNA expression is frequently low due to multiple factors including efficacy of the method and strength of the targeting RNAs. Here, we describe detailed protocols that will aid in the study of primary human CD4+ T cells. First, we describe a method for development of effective microRNA/shRNAs using available online algorithms. Second, we illustrate an optimized protocol for high efficacy retroviral or lentiviral transduction of human T cell lines. Importantly, we demonstrate that activated primary human CD4+ T cells can be transduced efficiently with lentiviruses, with a highly activated population of T cells receiving the largest number of copies of integrated DNA. We also illustrate a method for efficient lentiviral transduction of hard-to-transduce un-activated primary human CD4+ T cells. These protocols will significantly assist in understanding the activation and function of human T cells and will ultimately aid in the development or improvement of current drugs that target human CD4+ T cells.
Collapse
|