1
|
Charnsatabut C, Suwanchaikasem P, Rattanapisit K, Iksen I, Pongrakhananon V, Bulaon CJI, Phoolcharoen W. Optimized expression of human interleukin-15 in Nicotiana benthamiana and in vitro assessment of its activity on human keratinocytes. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 46:e00889. [PMID: 40235517 PMCID: PMC11997404 DOI: 10.1016/j.btre.2025.e00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/16/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025]
Abstract
Human interleukin-15 (hIL-15) is a cytokine essential for immune modulation with therapeutic applications in cancer and chronic wound healing. Although hIL-15 is commercially available, large-scale production studies remain limited. With promising clinical trial results, demand for hIL-15 is expected to rise. Plant expression systems offer a sustainable, low-cost alternative for rapid biopharmaceutical production. In this study, we optimized hIL-15 expression in Nicotiana benthamiana and assessed its physicochemical properties and biological activity. We fused hIL-15 to the Fc domain of human IgG1 for efficient purification. Through optimization of the pre- and post-infiltration conditions, we achieved transient expression and recovery at 4 dpi, yielding 33.8 µg/g fresh weight. Peptide mapping confirmed 97 % overall sequence coverage of the primary structure. Treatment with plant-produced hIL-15-Fc effectively promoted human keratinocyte HaCaT cell proliferation and migration in vitro. These findings demonstrated the potential of plant-based platforms for producing therapeutic recombinant hIL-15 that support wound healing.
Collapse
Affiliation(s)
- Chalatorn Charnsatabut
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | - Iksen Iksen
- Department of Research and development, Provenedge Co. Ltd., Bangkok 10330, Thailand
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Preclinical Toxicity and Efficacy Assessment of Medicines and Chemicals, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Scapin G, Cagdas E, Grav LM, Lewis NE, Goletz S, Hafkenscheid L. Implications of glycosylation for the development of selected cytokines and their derivatives for medical use. Biotechnol Adv 2024; 77:108467. [PMID: 39447666 DOI: 10.1016/j.biotechadv.2024.108467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Cytokines are important regulators of immune responses, making them attractive targets for autoimmune diseases and cancer therapeutics. Yet, the significance of cytokine glycosylation remains underestimated. Many cytokines carry N- and O-glycans and some even undergo C-mannosylation. Recombinant cytokines produced in heterologous host cells may lack glycans or exhibit a different glycosylation pattern such as varying levels of galactosylation, sialylation, fucosylation or xylose addition compared to their human counterparts, potentially impacting critical immune interactions. We focused on cytokines that are currently utilized or designed in advanced therapeutic formats, including immunocytokines, fusokines, engager cytokines, and genetically engineered 'supercytokines.' Despite the innovative designs of these cytokine derivatives, their glycosylation patterns have not been extensively studied. By examining the glycosylation of the human native cytokines, G-CSF and GM-CSF, interferons β and γ, TNF-α and interleukins-2, -3 -4, -6, -7, -9, -12, -13, -15, -17A, -21, and - 22, we aim to assess its potential impact on their therapeutic derivatives. Understanding the glycosylation of the native cytokines could provide critical insights into the safety, efficacy, and functionality of these next-generation cytokine therapies, affecting factors such as stability, bioactivity, antigenicity, and half-life. This knowledge can guide the choice of optimal expression hosts for production and advance the development of effective cytokine-based therapeutics and synthetic immunology drugs.
Collapse
Affiliation(s)
- Giulia Scapin
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Ece Cagdas
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Mammalian Cell Line Engineering, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| | - Lise Hafkenscheid
- Department of Biotechnology and Biomedicine, Biotherapeutic Glycoengineering and Immunology, Technical University of Denmark, Søltofts Plads, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
3
|
Wang Y, Chen H, Zhao M, Feng L, Liu Z, Zeng Q, Shi W, Zhu W, Song L, Zhu J, Lu H. Oxidation and reduction analysis of therapeutic recombinant human interleukin-15 by HPLC and LC-MS. Appl Microbiol Biotechnol 2023; 107:3217-3227. [PMID: 37058229 DOI: 10.1007/s00253-023-12508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023]
Abstract
Being an important immune stimulant of T lymphocytes and NK cells, the recombinant human interleukin-15 (rhIL-15) has been extensively researched in tumor immunotherapy or as a vaccine adjuvant. However, the rhIL-15 manufacturing level lags far behind its growing clinical demand due to the lack of efficient and exact analysis methodologies to characterize the trace by-products, typically redox and deamidation. In order to improve the production and quality control of rhIL-15, here we developed an expanded resolution reverse-phase high-performance liquid chromatography (ExRP-HPLC) approach to quickly and accurately analyze the oxidation and reduction by-products of rhIL-15, which may appear during the purification processes. Firstly, we developed RP-HPLC methods which can separate rhIL-15 fractions with different levels of oxidization or reduction, respectively, and the redox status of each peak was then determined by measuring the intact mass with a high-resolution mass spectrometer (UPLC-MS). To further clarify the complex pattern of oxidization of specific residues, the peaks with various oxidation levels were digested into pieces for peptide mapping to pinpoint the exact changes of oxygen and hydrogen atoms in the rhIL-15 by-products. In addition, we performed the ExRP-HPLC and UPLC-MS analysis of partially deamidated rhIL-15 to characterize their oxidation and reduction. Our work is the first in-depth characterization of the redox by-products of rhIL-15, even for deamidated impurities. The ExRP-HPLC method we reported can facilitate the rapid and accurate quality analysis of rhIL-15, which is substantially helpful for streamlining the industrial manufacturing of rhIL-15 to better meet the demands of clinical applications. KEYPOINTS: • The oxidization and reduction rhIL-15 by-products were characterized for the first time. • The changes of oxygen and hydrogen atoms in rhIL-15 redox by-products were accurately determined by UPLC-MS. • Oxidation and reduction by-products of deamidated rhIL-15 were further analyzed.
Collapse
Affiliation(s)
- Yang Wang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huanhuan Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Meiqi Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zexin Liu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Qiongya Zeng
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqiang Shi
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wen Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Luyao Song
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Huili Lu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
4
|
A homodimeric IL-15 superagonist F4RLI with easy preparation, improved half-life, and potent antitumor activities. Appl Microbiol Biotechnol 2022; 106:7039-7050. [PMID: 36184689 DOI: 10.1007/s00253-022-12209-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/28/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022]
Abstract
Interleukin-15 (IL-15) is a promising candidate for cancer immunotherapy due to its potent immune-activating effects. There are several IL-15 molecules currently in clinical trials but facing shortages of poor half-life, circulation instability, or complicated production and quality control processes. The aim of this study is to design a novel IL-15 superagonist to set out the above difficulties, and we constructed F4RLI consisting of the GS-linker spaced IgG4 Fc fragment, soluble IL-15 Rα (sIL-15Rα), and IL-15(N72D). Using a single plasmid transient transfection in HEK293E cells, the matured F4RLI was secreted in the form of homodimer and got purified by an easy step of protein A affinity chromatography. The F4RLI product can significantly stimulate the proliferation of human CD3+CD8+ T cells and NK cells in vitro. Meanwhile, F4RLI greatly extended the half-life and prolonged the exposure of IL-15 in mice nearly by 28- and 200-fold, respectively, in comparison with that of the IL-15 monomer. In vivo, F4RLI vastly expanded mouse splenic CD8+ T lymphocytes, illustrating its potential in tumor immunotherapy. Further studies showed that the combination of F4RLI with the immune checkpoint blocker atezolizumab played a synergistic effect in treating MC38 mouse tumor by increasing the percentage of CD8+ T cells in tumor tissue. Moreover, the combination therapy of F4RLI with the angiogenesis inhibitor bevacizumab resulted in significant tumor growth suppression in a xenograft human HT-29 mouse model. Overall, our results demonstrate a homodimeric IL-15 superagonist F4RLI with advances in manufacturing processes and biopharmaceutical applications for cancer immunotherapy. KEY POINTS: • The homodimeric structure of F4RLI facilitates its easy production processes and quality control. • The fusion with Fc and sIL-15Rα extends the plasma half-life of IL-15 by about 28-fold. • F4RLI can play synergistic antitumor activity with the PD-1/PD-L1 checkpoint inhibitor or angiogenesis inhibitor.
Collapse
|
5
|
Das PK, Sahoo A, Dasu VV. Current status, and the developments of hosts and expression systems for the production of recombinant human cytokines. Biotechnol Adv 2022; 59:107969. [PMID: 35525478 DOI: 10.1016/j.biotechadv.2022.107969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023]
Abstract
Cytokines consist of peptides, proteins and glycoproteins, which are biological signaling molecules, and boost cell-cell communication in immune reactions to stimulate cellular movements in the place of trauma, inflammation and infection. Recombinant cytokines are designed in such a way that they have generalized immunostimulation action or stimulate specific immune cells when the body encounters immunosuppressive signals from exogenous pathogens or other tumor microenvironments. Recombinant cytokines have improved the treatment processes for numerous diseases. They are also beneficial against novel toxicities that arise due to pharmacologic immunostimulators that lead to an imbalance in the regulation of cytokine. So, the production and use of recombinant human cytokines as therapeutic proteins are significant for medical treatment purposes. For the improved production of recombinant human cytokines, the development of host cells such as bacteria, yeast, fungi, insect, mammal and transgenic plants, and the specific expression systems for individual hosts is necessary. The recent advancements in the field of genetic engineering are beneficial for easy and efficient genetic manipulations for hosts as well as expression cassettes. The use of metabolic engineering and systems biology approaches have tremendous applications in recombinant protein production by generating mathematical models, and analyzing complex biological networks and metabolic pathways via simulations to understand the interconnections between metabolites and genetic behaviors. Further, the bioprocess developments and the optimization of cell culture conditions would enhance recombinant cytokines productivity on large scales.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Veeranki Venkata Dasu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
6
|
Cheng B, Wu D, Wu K, Huang XP, Lv JM, Ji SR, Zhu L. Purification of Recombinant Mouse C-Reactive Protein from Pichia Pastoris GS115 by Nickel Chelating Sepharose Fast-Flow Affinity Chromatography and P-Aminophenyl Phosphoryl Choline Agarose Resin Affinity Chromatography in Tandem. J Chromatogr Sci 2021; 60:750-759. [PMID: 34625786 DOI: 10.1093/chromsci/bmab121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Indexed: 11/13/2022]
Abstract
C-reactive protein (CRP) is a circulating marker of inflammation yet with ill-defined biological functions. This is partly due to the uncharacterized activities of endogenous CRP in mice, the major animal model used to define protein function. The hurdles for purification and characterization of mouse CRP are its low circulating levels and the lack of specific antibodies. To clear these hurdles, here we developed an efficient expression system by constructing recombinant Pichia pastoris cells for secretion of native conformation mouse CRP. The recombinant expression of mouse CRP in Escherichia coli failed to yield sufficient amount of native protein, reflecting the importance of post-translational modification of glycosylation in aiding proper folding. By contrast, sufficient amount of native mouse CRP was successfully purified from P. pastoris. Preliminary purification was performed by Nickel Chelating Sepharose Fast-Flow affinity chromatography with 6 × His tags attached to the protein. Subsequently, p-Aminophenyl Phosphoryl Choline Agarose resin affinity chromatography was used for tandem purification. The purified mouse CRP showed native pentamer and capabilities of PC binding. Moreover, the 6 × His tag provides a convenient tool for detecting the interactions of mouse CRP with ligands.
Collapse
Affiliation(s)
- Bin Cheng
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Di Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Ke Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Xiao-Ping Huang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Jian-Min Lv
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shang-Rong Ji
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| | - Li Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, PR China
| |
Collapse
|
7
|
Ahmed N, Afroze B, Abbas R, Khan MA, Akram M, Tahir S, Bakht S, Munir A, Shahid AA. Method for efficient soluble expression and purification of recombinant human interleukin-15. Protein Expr Purif 2020; 177:105746. [PMID: 32916300 DOI: 10.1016/j.pep.2020.105746] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 11/29/2022]
Abstract
Periplasmic expression of recombinant proteins ensures the production of biologically active proteins in a correctly folded state with several key advantages. This research focused on the in-frame cloning of rhIL-15 in pET-20 (+) vector with pelB-leader sequence to direct the protein to the bacterial periplasm. The target construct periplasmic expression was evaluated in four strains, BL21 (DE3), BL21 (DE3) pLysS, Rosetta 2 (DE3) and Rosetta-gami 2 (DE3). Soluble periplasmic expression of IL-15 was highest in Rosetta-gami 2 (DE3) followed by Rossetta 2 (DE3) whereas negligible expression was observed with rest of two expression host. Best expression clone was selected for purification by dye ligand affinity chromatography. Purified rhIL-15 was characterized by SDS-PAGE, Western blotting and SEC-HPLC. This is the first report of functional recombinant human interleukin-15 being expressed and purified with yield of 120 mg/L in the periplasmic space of E. coli.
Collapse
Affiliation(s)
- Nadeem Ahmed
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan.
| | - Bakht Afroze
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Rabia Abbas
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Mohsin Ahmed Khan
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Muhammad Akram
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Saad Tahir
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Shehman Bakht
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Ayesha Munir
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| | - Ahmad Ali Shahid
- National Centre of Excellence in Molecular Biology, 87-West Canal, Bank Road, University of the Punjab, Lahore, 53700, Pakistan
| |
Collapse
|
8
|
Karbalaei M, Rezaee SA, Farsiani H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins. J Cell Physiol 2020; 235:5867-5881. [PMID: 32057111 PMCID: PMC7228273 DOI: 10.1002/jcp.29583] [Citation(s) in RCA: 344] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 01/09/2020] [Indexed: 01/09/2023]
Abstract
One of the most important branches of genetic engineering is the expression of recombinant proteins using biological expression systems. Nowadays, different expression systems are used for the production of recombinant proteins including bacteria, yeasts, molds, mammals, plants, and insects. Yeast expression systems such as Saccharomyces cerevisiae (S. cerevisiae) and Pichia pastoris (P. pastoris) are more popular. P. pastoris expression system is one of the most popular and standard tools for the production of recombinant protein in molecular biology. Overall, the benefits of protein production by P. pastoris system include appropriate folding (in the endoplasmic reticulum) and secretion (by Kex2 as signal peptidase) of recombinant proteins to the external environment of the cell. Moreover, in the P. pastoris expression system due to its limited production of endogenous secretory proteins, the purification of recombinant protein is easy. It is also considered a unique host for the expression of subunit vaccines which could significantly affect the growing market of medical biotechnology. Although P. pastoris expression systems are impressive and easy to use with well‐defined process protocols, some degree of process optimization is required to achieve maximum production of the target proteins. Methanol and sorbitol concentration, Mut forms, temperature and incubation time have to be adjusted to obtain optimal conditions, which might vary among different strains and externally expressed protein. Eventually, optimal conditions for the production of a recombinant protein in P. pastoris expression system differ according to the target protein.
Collapse
Affiliation(s)
- Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Seyed A Rezaee
- School of Medicine, Mashhad University of Medical Sciences, Inflammation and Inflammatory Diseases Research Centre, Mashhad, Iran
| | - Hadi Farsiani
- Mashhad University of Medical Sciences, Antimicrobial Resistance Research Center, Mashhad, Iran
| |
Collapse
|
9
|
Rodrigues D, Pillaca-Pullo O, Torres-Obreque K, Flores-Santos J, Sánchez-Moguel I, Pimenta MV, Basi T, Converti A, Lopes AM, Monteiro G, Fonseca LP, Pessoa AJ. Fed-Batch Production of Saccharomyces cerevisiae L-Asparaginase II by Recombinant Pichia pastoris MUT s Strain. Front Bioeng Biotechnol 2019; 7:16. [PMID: 30800657 PMCID: PMC6375902 DOI: 10.3389/fbioe.2019.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/22/2019] [Indexed: 01/31/2023] Open
Abstract
L-Asparaginase (ASNase) is used in the treatment of acute lymphoblastic leukemia, being produced and commercialized only from bacterial sources. Alternative Saccharomyces cerevisiae ASNase II coded by the ASP3 gene was biosynthesized by recombinant Pichia pastoris MUT s under the control of the AOX1 promoter, using different cultivation strategies. In particular, we applied multistage fed-batch cultivation divided in four distinct phases to produce ASNase II and determine the fermentation parameters, namely specific growth rate, biomass yield, and enzyme activity. Cultivation of recombinant P. pastoris under favorable conditions in a modified defined medium ensured a dry biomass concentration of 31 gdcw.L-1 during glycerol batch phase, corresponding to a biomass yield of 0.77 gdcw.gglycerol - 1 and a specific growth rate of 0.21 h-1. After 12 h of glycerol feeding under limiting conditions, cell concentration achieved 65 gdcw.L-1 while ethanol concentration was very low. During the phase of methanol induction, biomass concentration achieved 91 gdcw.L-1, periplasmic specific enzyme activity 37.1 U.gdcw - 1 , volumetric enzyme activity 3,315 U.L-1, overall enzyme volumetric productivity 31 U.L-1.h-1, while the specific growth rate fell to 0.039 h-1. Our results showed that the best strategy employed for the ASNase II production was using glycerol fed-batch phase with pseudo exponential feeding plus induction with continuous methanol feeding.
Collapse
Affiliation(s)
- David Rodrigues
- Bioengineering Department of Instituto Superior Técnico, Institute of Bioengineering and Biosciences, Universidade de Lisboa, Lisbon, Portugal
| | - Omar Pillaca-Pullo
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karin Torres-Obreque
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juan Flores-Santos
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ignacio Sánchez-Moguel
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcela V. Pimenta
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tajindar Basi
- Department of Pharmacy, King's College London, London, United Kingdom
| | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, Genova, Italy
| | - André M. Lopes
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil
| | - Gisele Monteiro
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luís P. Fonseca
- Bioengineering Department of Instituto Superior Técnico, Institute of Bioengineering and Biosciences, Universidade de Lisboa, Lisbon, Portugal
| | - Adalberto Jr. Pessoa
- Department of Pharmaceutical-Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Chen H, Li N, Xie Y, Jiang H, Yang X, Cagliero C, Shi S, Zhu C, Luo H, Chen J, Zhang L, Zhao M, Feng L, Lu H, Zhu J. Purification of inclusion bodies using PEG precipitation under denaturing conditions to produce recombinant therapeutic proteins from Escherichia coli. Appl Microbiol Biotechnol 2017; 101:5267-5278. [PMID: 28391504 DOI: 10.1007/s00253-017-8265-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023]
Abstract
It has been documented that the purification of inclusion bodies from Escherichia coli by size exclusion chromatography (SEC) may benefit subsequent refolding and recovery of recombinant proteins. However, loading volume and the high cost of the column limits its application in large-scale manufacturing of biopharmaceutical proteins. We report a novel process using polyethylene glycol (PEG) precipitation under denaturing conditions to replace SEC for rapid purification of inclusion bodies containing recombinant therapeutic proteins. Using recombinant human interleukin 15 (rhIL-15) as an example, inclusion bodies of rhIL-15 were solubilized in 7 M guanidine hydrochloride, and rhIL-15 was precipitated by the addition of PEG 6000. A final concentration of 5% (w/v) PEG 6000 was found to be optimal to precipitate target proteins and enhance recovery and purity. Compared to the previously reported S-200 size exclusion purification method, PEG precipitation was easier to scale up and achieved the same protein yields and quality of the product. PEG precipitation also reduced manufacturing time by about 50 and 95% of material costs. After refolding and further purification, the rhIL-15 product was highly pure and demonstrated a comparable bioactivity with a rhIL-15 reference standard. Our studies demonstrated that PEG precipitation of inclusion bodies under denaturing conditions holds significant potential as a manufacturing process for biopharmaceuticals from E. coli protein expression systems.
Collapse
Affiliation(s)
- Huanhuan Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ninghuan Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueqing Xie
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA
| | - Hua Jiang
- Jecho Laboratories, Inc., Frederick, MD, 21704, USA
| | - Xiaoyi Yang
- Biopharmaceutical Development Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | | | - Siwei Shi
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chencen Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Han Luo
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junsheng Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Menglin Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Feng
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Jecho Laboratories, Inc., Frederick, MD, 21704, USA.
| |
Collapse
|
11
|
Liver fatty acid-binding protein (L-FABP) promotes cellular angiogenesis and migration in hepatocellular carcinoma. Oncotarget 2017; 7:18229-46. [PMID: 26919097 PMCID: PMC4951284 DOI: 10.18632/oncotarget.7571] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/29/2016] [Indexed: 01/18/2023] Open
Abstract
Liver fatty acid-binding protein (L-FABP) is abundant in hepatocytes and known to be involved in lipid metabolism. Overexpression of L-FABP has been reported in various cancers; however, its role in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigated L-FABP and its association with vascular endothelial growth factors (VEGFs) in 90 HCC patients. We found that L-FABP was highly expressed in their HCC tissues, and that this expression was positively correlated with that of VEGF-A. Additionally, L-FABP significantly promoted tumor growth and metastasis in a xenograft mouse model. We also assessed the mechanisms of L-FABP activity in tumorigenesis; L-FABP was found to associate with VEGFR2 on membrane rafts and subsequently activate the Akt/mTOR/P70S6K/4EBP1 and Src/FAK/cdc42 pathways, which resulted in up-regulation of VEGF-A accompanied by an increase in both angiogenic potential and migration activity. Our results thus suggest that L-FABP could be a potential target for HCC chemotherapy.
Collapse
|
12
|
Shi S, Chen H, Jiang H, Xie Y, Zhang L, Li N, Zhu C, Chen J, Luo H, Wang J, Feng L, Lu H, Zhu J. A novel self-cleavable tag Zbasic–∆I-CM and its application in the soluble expression of recombinant human interleukin-15 in Escherichia coli. Appl Microbiol Biotechnol 2016; 101:1133-1142. [DOI: 10.1007/s00253-016-7848-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/25/2016] [Accepted: 09/08/2016] [Indexed: 01/11/2023]
|