1
|
Ciliary Proteins Repurposed by the Synaptic Ribbon: Trafficking Myristoylated Proteins at Rod Photoreceptor Synapses. Int J Mol Sci 2022; 23:ijms23137135. [PMID: 35806143 PMCID: PMC9266639 DOI: 10.3390/ijms23137135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/25/2022] Open
Abstract
The Unc119 protein mediates transport of myristoylated proteins to the photoreceptor outer segment, a specialized primary cilium. This transport activity is regulated by the GTPase Arl3 as well as by Arl13b and Rp2 that control Arl3 activation/inactivation. Interestingly, Unc119 is also enriched in photoreceptor synapses and can bind to RIBEYE, the main component of synaptic ribbons. In the present study, we analyzed whether the known regulatory proteins, that control the Unc119-dependent myristoylated protein transport at the primary cilium, are also present at the photoreceptor synaptic ribbon complex by using high-resolution immunofluorescence and immunogold electron microscopy. We found Arl3 and Arl13b to be enriched at the synaptic ribbon whereas Rp2 was predominantly found on vesicles distributed within the entire terminal. These findings indicate that the synaptic ribbon could be involved in the discharge of Unc119-bound lipid-modified proteins. In agreement with this hypothesis, we found Nphp3 (Nephrocystin-3), a myristoylated, Unc119-dependent cargo protein enriched at the basal portion of the ribbon in close vicinity to the active zone. Mutations in Nphp3 are known to be associated with Senior–Løken Syndrome 3 (SLS3). Visual impairment and blindness in SLS3 might thus not only result from ciliary dysfunctions but also from malfunctions of the photoreceptor synapse.
Collapse
|
2
|
Hegermann J, Wrede C, Fassbender S, Schliep R, Ochs M, Knudsen L, Mühlfeld C. Volume-CLEM: a method for correlative light and electron microscopy in three dimensions. Am J Physiol Lung Cell Mol Physiol 2019; 317:L778-L784. [DOI: 10.1152/ajplung.00333.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Generation of three-dimensional (3D) data sets from serial sections of tissues imaged by light microscopy (LM) allows identification of rare structures by morphology or fluorescent labeling. Here, we demonstrate a workflow for correlative LM and electron microscopy (EM) from 3D LM to 3D EM, using the same sectioned material for both methods consecutively. The new approach is easy to reproduce in routine EM laboratories and applicable to a wide range of organs and research questions.
Collapse
Affiliation(s)
- Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Hanover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Hanover, Germany
| | - Susanne Fassbender
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Ronja Schliep
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
| | - Matthias Ochs
- Institute of Vegetative Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, The German Center for Lung Research (DZL), Berlin, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of The German Center for Lung Research (DZL), Hannover, Germany
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hanover, Germany
- Research Core Unit Electron Microscopy, Hannover Medical School, Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Research (BREATH), Member of The German Center for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
3
|
Dembla M, Kesharwani A, Natarajan S, Fecher-Trost C, Fairless R, Williams SK, Flockerzi V, Diem R, Schwarz K, Schmitz F. Early auto-immune targeting of photoreceptor ribbon synapses in mouse models of multiple sclerosis. EMBO Mol Med 2019; 10:emmm.201808926. [PMID: 30266776 PMCID: PMC6220320 DOI: 10.15252/emmm.201808926] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Optic neuritis is one of the first manifestations of multiple sclerosis. Its pathogenesis is incompletely understood, but considered to be initiated by an auto‐immune response directed against myelin sheaths of the optic nerve. Here, we demonstrate in two frequently used and well‐validated mouse models of optic neuritis that ribbon synapses in the myelin‐free retina are targeted by an auto‐reactive immune system even before alterations in the optic nerve have developed. The auto‐immune response is directed against two adhesion proteins (CASPR1/CNTN1) that are present both in the paranodal region of myelinated nerves as well as at retinal ribbon synapses. This occurs in parallel with altered synaptic vesicle cycling in retinal ribbon synapses and altered visual behavior before the onset of optic nerve demyelination. These findings indicate that early synaptic dysfunctions in the retina contribute to the pathology of optic neuritis in multiple sclerosis.
Collapse
Affiliation(s)
- Mayur Dembla
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Ajay Kesharwani
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Sivaraman Natarajan
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Claudia Fecher-Trost
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical School, Saarland University, Homburg, Germany
| | - Richard Fairless
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany
| | - Sarah K Williams
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany
| | - Veit Flockerzi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical School, Saarland University, Homburg, Germany
| | - Ricarda Diem
- Department of Neurology, University Clinic Heidelberg, Heidelberg, Germany
| | - Karin Schwarz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| | - Frank Schmitz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Medical School, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
|