1
|
Cheng Y, Cai B, Li H, Zhang X, D'Souza G, Shrestha S, Edmonds A, Meyers J, Fischl M, Kassaye S, Anastos K, Cohen M, Aouizerat BE, Xu K, Zhao H. HBI: a hierarchical Bayesian interaction model to estimate cell-type-specific methylation quantitative trait loci incorporating priors from cell-sorted bisulfite sequencing data. Genome Biol 2024; 25:273. [PMID: 39407252 PMCID: PMC11476968 DOI: 10.1186/s13059-024-03411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Methylation quantitative trait loci (meQTLs) quantify the effects of genetic variants on DNA methylation levels. However, most published studies utilize bulk methylation datasets composed of different cell types and limit our understanding of cell-type-specific methylation regulation. We propose a hierarchical Bayesian interaction (HBI) model to infer cell-type-specific meQTLs, which integrates a large-scale bulk methylation data and a small-scale cell-type-specific methylation data. Through simulations, we show that HBI enhances the estimation of cell-type-specific meQTLs. In real data analyses, we demonstrate that HBI can further improve the functional annotation of genetic variants and identify biologically relevant cell types for complex traits.
Collapse
Affiliation(s)
- Youshu Cheng
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Biao Cai
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Hongyu Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Xinyu Zhang
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA
| | - Gypsyamber D'Souza
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sadeep Shrestha
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Andrew Edmonds
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacquelyn Meyers
- Department of Psychiatry, SUNY Downstate Health Sciences University School of Medicine, Brooklyn, NY, USA
| | - Margaret Fischl
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Mardge Cohen
- Hektoen Institute for Medical Research, Chicago, IL, USA
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, New York, NY, USA
- Department of Oral and Maxillofacial Surgery, College of Dentistry, New York University, New York, NY, USA
| | - Ke Xu
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06511, USA.
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06511, USA.
- VA Connecticut Healthcare System, West Haven, CT, 06516, USA.
| |
Collapse
|
2
|
Ivison S, Boucher G, Zheng G, Garcia RV, Kohen R, Bitton A, Rioux JD, Levings MK, iGenoMed Consortium. Improving Reliability of Immunological Assays by Defining Minimal Criteria for Cell Fitness. Immunohorizons 2024; 8:622-634. [PMID: 39248805 PMCID: PMC11447670 DOI: 10.4049/immunohorizons.2300095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Human PBMC-based assays are often used as biomarkers for the diagnosis and prognosis of disease, as well as for the prediction and tracking of response to biological therapeutics. However, the development and use of PBMC-based biomarker assays is often limited by poor reproducibility. Complex immunological assays can be further complicated by variation in cell handling before analysis, especially when using cryopreserved cells. Variation in postthaw viability is further increased if PBMC isolation and cryopreservation are done more than a few hours after collection. There is currently a lack of evidence-based standards for the minimal PBMC viability or "fitness" required to ensure the integrity and reproducibility of immune cell-based assays. In this study, we use an "induced fail" approach to examine the effect of thawed human PBMC fitness on four flow cytometry-based assays. We found that cell permeability-based viability stains at the time of thawing did not accurately quantify cell fitness, whereas a combined measurement of metabolic activity and early apoptosis markers did. Investigation of the impact of different types and levels of damage on PBMC-based assays revealed that only when cells were >60-70% live and apoptosis negative did biomarker values cease to be determined by cell fitness rather than the inherent biology of the cells. These data show that, to reproducibly measure immunological biomarkers using cryopreserved PBMCs, minimal acceptable standards for cell fitness should be incorporated into the assay protocol.
Collapse
Affiliation(s)
- Sabine Ivison
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | | | - Grace Zheng
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Rosa V. Garcia
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Rita Kohen
- McGill University Health Centre, Montreal, Quebec, Canada
| | - Alain Bitton
- McGill University Health Centre, Montreal, Quebec, Canada
| | - John D. Rioux
- Montreal Heart Institute, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Megan K. Levings
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
3
|
Higdon LE, Scheiding S, Kus AM, Lim N, Long SA, Anderson MS, Wiedeman AE. Impact on in-depth immunophenotyping of delay to peripheral blood processing. Clin Exp Immunol 2024; 217:119-132. [PMID: 38693758 PMCID: PMC11239563 DOI: 10.1093/cei/uxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Peripheral blood mononuclear cell (PBMC) immunophenotyping is crucial in tracking activation, disease state, and response to therapy in human subjects. Many studies require the shipping of blood from clinical sites to a laboratory for processing to PBMC, which can lead to delays that impact sample quality. We used an extensive cytometry by time-of-flight (CyTOF) immunophenotyping panel to analyze the impacts of delays to processing and distinct storage conditions on cell composition and quality of PBMC from seven adults across a range of ages, including two with rheumatoid arthritis. Two or more days of delay to processing resulted in extensive red blood cell contamination and increased variability of cell counts. While total memory and naïve B- and T-cell populations were maintained, 4-day delays reduced the frequencies of monocytes. Variation across all immune subsets increased with delays of up to 7 days in processing. Unbiased clustering analysis to define more granular subsets confirmed changes in PBMC composition, including decreases of classical and non-classical monocytes, basophils, plasmacytoid dendritic cells, and follicular helper T cells, with each subset impacted at a distinct time of delay. Expression of activation markers and chemokine receptors changed by Day 2, with differential impacts across subsets and markers. Our data support existing recommendations to process PBMC within 36 h of collection but provide guidance on appropriate immunophenotyping experiments with longer delays.
Collapse
Affiliation(s)
- Lauren E Higdon
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Anna M Kus
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Noha Lim
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Mark S Anderson
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
4
|
Challenges and Opportunities in Clinical Diagnostic Routine of Envenomation Using Blood Plasma Proteomics. Toxins (Basel) 2023; 15:toxins15030180. [PMID: 36977071 PMCID: PMC10056359 DOI: 10.3390/toxins15030180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/02/2023] Open
Abstract
Specific and sensitive tools for the diagnosis and monitoring of accidents by venomous animals are urgently needed. Several diagnostic and monitoring assays have been developed; however, they have not yet reached the clinic. This has resulted in late diagnoses, which represents one of the main causes of progression from mild to severe disease. Human blood is a protein-rich biological fluid that is routinely collected in hospital settings for diagnostic purposes, which can translate research progress from the laboratory to the clinic. Although it is a limited view, blood plasma proteins provide information about the clinical picture of envenomation. Proteome disturbances in response to envenomation by venomous animals have been identified, allowing mass spectrometry (MS)-based plasma proteomics to emerge as a tool in a range of clinical diagnostics and disease management that can be applied to cases of venomous animal envenomation. Here, we provide a review of the state of the art on routine laboratory diagnoses of envenomation by snakes, scorpions, bees, and spiders, as well as a review of the diagnostic methods and the challenges encountered. We present the state of the art on clinical proteomics as the standardization of procedures to be performed within and between research laboratories, favoring a more excellent peptide coverage of candidate proteins for biomarkers. Therefore, the selection of a sample type and method of preparation should be very specific and based on the discovery of biomarkers in specific approaches. However, the sample collection protocol (e.g., collection tube type) and the processing procedure of the sample (e.g., clotting temperature, time allowed for clotting, and anticoagulant used) are equally important to eliminate any bias.
Collapse
|
5
|
Godoy-Tena G, Barmada A, Morante-Palacios O, de la Calle-Fabregat C, Martins-Ferreira R, Ferreté-Bonastre AG, Ciudad L, Ruiz-Sanmartín A, Martínez-Gallo M, Ferrer R, Ruiz-Rodriguez JC, Rodríguez-Ubreva J, Vento-Tormo R, Ballestar E. Epigenetic and transcriptomic reprogramming in monocytes of severe COVID-19 patients reflects alterations in myeloid differentiation and the influence of inflammatory cytokines. Genome Med 2022; 14:134. [PMID: 36443794 PMCID: PMC9706884 DOI: 10.1186/s13073-022-01137-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND COVID-19 manifests with a wide spectrum of clinical phenotypes, ranging from asymptomatic and mild to severe and critical. Severe and critical COVID-19 patients are characterized by marked changes in the myeloid compartment, especially monocytes. However, little is known about the epigenetic alterations that occur in these cells during hyperinflammatory responses in severe COVID-19 patients. METHODS In this study, we obtained the DNA methylome and transcriptome of peripheral blood monocytes from severe COVID-19 patients. DNA samples extracted from CD14 + CD15- monocytes of 48 severe COVID-19 patients and 11 healthy controls were hybridized on MethylationEPIC BeadChip arrays. In parallel, single-cell transcriptomics of 10 severe COVID-19 patients were generated. CellPhoneDB was used to infer changes in the crosstalk between monocytes and other immune cell types. RESULTS We observed DNA methylation changes in CpG sites associated with interferon-related genes and genes associated with antigen presentation, concordant with gene expression changes. These changes significantly overlapped with those occurring in bacterial sepsis, although specific DNA methylation alterations in genes specific to viral infection were also identified. We also found these alterations to comprise some of the DNA methylation changes occurring during myeloid differentiation and under the influence of inflammatory cytokines. A progression of DNA methylation alterations in relation to the Sequential Organ Failure Assessment (SOFA) score was found to be related to interferon-related genes and T-helper 1 cell cytokine production. CellPhoneDB analysis of the single-cell transcriptomes of other immune cell types suggested the existence of altered crosstalk between monocytes and other cell types like NK cells and regulatory T cells. CONCLUSION Our findings show the occurrence of an epigenetic and transcriptional reprogramming of peripheral blood monocytes, which could be associated with the release of aberrant immature monocytes, increased systemic levels of pro-inflammatory cytokines, and changes in immune cell crosstalk in these patients.
Collapse
Affiliation(s)
- Gerard Godoy-Tena
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Anis Barmada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1RQ, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Octavio Morante-Palacios
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Carlos de la Calle-Fabregat
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Anna G Ferreté-Bonastre
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Adolfo Ruiz-Sanmartín
- Intensive Care Department, Vall d'Hebron University Hospital, Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Vall d'Hebron University Hospital and Diagnostic Immunology Research Group, Vall d'Hebron Research Institute (VHIR), 08035, Barcelona, Spain
| | - Ricard Ferrer
- Intensive Care Department, Vall d'Hebron University Hospital, Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Juan Carlos Ruiz-Rodriguez
- Intensive Care Department, Vall d'Hebron University Hospital, Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, 08035, Barcelona, Spain
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1RQ, UK
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), 08916, Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, 200241, China.
| |
Collapse
|
6
|
Jahanbani F, Maynard RD, Sing JC, Jahanbani S, Perrino JJ, Spacek DV, Davis RW, Snyder MP. Phenotypic characteristics of peripheral immune cells of Myalgic encephalomyelitis/chronic fatigue syndrome via transmission electron microscopy: A pilot study. PLoS One 2022; 17:e0272703. [PMID: 35943990 PMCID: PMC9362953 DOI: 10.1371/journal.pone.0272703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic multi-systemic disease characterized by extreme fatigue that is not improved by rest, and worsens after exertion, whether physical or mental. Previous studies have shown ME/CFS-associated alterations in the immune system and mitochondria. We used transmission electron microscopy (TEM) to investigate the morphology and ultrastructure of unstimulated and stimulated ME/CFS immune cells and their intracellular organelles, including mitochondria. PBMCs from four participants were studied: a pair of identical twins discordant for moderate ME/CFS, as well as two age- and gender- matched unrelated subjects-one with an extremely severe form of ME/CFS and the other healthy. TEM analysis of CD3/CD28-stimulated T cells suggested a significant increase in the levels of apoptotic and necrotic cell death in T cells from ME/CFS patients (over 2-fold). Stimulated Tcells of ME/CFS patients also had higher numbers of swollen mitochondria. We also found a large increase in intracellular giant lipid droplet-like organelles in the stimulated PBMCs from the extremely severe ME/CFS patient potentially indicative of a lipid storage disorder. Lastly, we observed a slight increase in platelet aggregation in stimulated cells, suggestive of a possible role of platelet activity in ME/CFS pathophysiology and disease severity. These results indicate extensive morphological alterations in the cellular and mitochondrial phenotypes of ME/CFS patients' immune cells and suggest new insights into ME/CFS biology.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rajan D. Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John J. Perrino
- Stanford Cell Sciences Imaging Facility (CSIF), Stanford University School of Medicine Stanford, Stanford, California, United States of America
| | - Damek V. Spacek
- Karius Incorporated, Redwood City, California, United States of America
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
7
|
Hope CM, Huynh D, Wong YY, Oakey H, Perkins GB, Nguyen T, Binkowski S, Bui M, Choo AYL, Gibson E, Huang D, Kim KW, Ngui K, Rawlinson WD, Sadlon T, Couper JJ, Penno MAS, Barry SC, on behalf of the ENDIA Study Group. Optimization of Blood Handling and Peripheral Blood Mononuclear Cell Cryopreservation of Low Cell Number Samples. Int J Mol Sci 2021; 22:ijms22179129. [PMID: 34502038 PMCID: PMC8431655 DOI: 10.3390/ijms22179129] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Rural/remote blood collection can cause delays in processing, reducing PBMC number, viability, cell composition and function. To mitigate these impacts, blood was stored at 4 °C prior to processing. Viable cell number, viability, immune phenotype, and Interferon-γ (IFN-γ) release were measured. Furthermore, the lowest protective volume of cryopreservation media and cell concentration was investigated. Methods: Blood from 10 individuals was stored for up to 10 days. Flow cytometry and IFN-γ ELISPOT were used to measure immune phenotype and function on thawed PBMC. Additionally, PBMC were cryopreserved in volumes ranging from 500 µL to 25 µL and concentration from 10 × 106 cells/mL to 1.67 × 106 cells/mL. Results: PBMC viability and viable cell number significantly reduced over time compared with samples processed immediately, except when stored for 24 h at RT. Monocytes and NK cells significantly reduced over time regardless of storage temperature. Samples with >24 h of RT storage had an increased proportion in Low-Density Neutrophils and T cells compared with samples stored at 4 °C. IFN-γ release was reduced after 24 h of storage, however not in samples stored at 4 °C for >24 h. The lowest protective volume identified was 150 µL with the lowest density of 6.67 × 106 cells/mL. Conclusion: A sample delay of 24 h at RT does not impact the viability and total viable cell numbers. When long-term delays exist (>4 d) total viable cell number and cell viability losses are reduced in samples stored at 4 °C. Immune phenotype and function are slightly altered after 24 h of storage, further impacts of storage are reduced in samples stored at 4 °C.
Collapse
Affiliation(s)
- Christopher M. Hope
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
- Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
| | - Dao Huynh
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Ying Ying Wong
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Helena Oakey
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Griffith Boord Perkins
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Trung Nguyen
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Sabrina Binkowski
- Children’s Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (S.B.); (A.Y.L.C.)
| | - Minh Bui
- Child Health Research Unit, Barwon Health, Geelong, VIC 3220, Australia;
| | - Ace Y. L. Choo
- Children’s Diabetes Centre, Telethon Kids Institute, The University of Western Australia, Perth, WA 6009, Australia; (S.B.); (A.Y.L.C.)
| | - Emily Gibson
- School of Women’s and Children’s Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (E.G.); (K.W.K.); (W.D.R.)
| | - Dexing Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (D.H.); (K.N.)
| | - Ki Wook Kim
- School of Women’s and Children’s Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (E.G.); (K.W.K.); (W.D.R.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Katrina Ngui
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; (D.H.); (K.N.)
| | - William D. Rawlinson
- School of Women’s and Children’s Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; (E.G.); (K.W.K.); (W.D.R.)
- Virology Research Laboratory, Serology and Virology Division, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Timothy Sadlon
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Jennifer J. Couper
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
- Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
| | - Megan A. S. Penno
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
| | - Simon C. Barry
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (C.M.H.); (D.H.); (Y.Y.W.); (H.O.); (G.B.P.); (T.N.); (T.S.); (J.J.C.); (M.A.S.P.)
- Women’s and Children’s Hospital, Adelaide, SA 5006, Australia
- Correspondence:
| | | |
Collapse
|
8
|
Bonilauri B, Santos MDM, Camillo-Andrade AC, Bispo S, Nogueira FCS, Carvalho PC, Zanchin NIT, Fischer JDSDG. The impact of blood-processing time on the proteome of human peripheral blood mononuclear cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140581. [PMID: 33301959 DOI: 10.1016/j.bbapap.2020.140581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Human peripheral blood mononuclear cells (PBMC) are key to several diagnostics assays and basic science research. Blood pre-analytical variations that occur before obtaining the PBMC fraction can significantly impact the assays results, including viability, composition, integrity, and gene expression changes of immune cells. With this as motivation, we performed a quantitative shotgun proteomics analysis using Isobaric Tag for Relative and Absolute Quantitation (iTRAQ 8plex) labeling to compare PBMC obtained from 24 h-stored blood at room temperature versus freshly isolated. We identified a total of 3195 proteins, of which 245 were differentially abundant (101 upregulated and 144 downregulated). Our results revealed enriched pathways of downregulated proteins related to exocytosis, localization, vesicle-mediated transport, cell activation, and secretion. In contrast, pathways related to exocytosis, neutrophil degranulation and activation, granulocyte activation, leukocyte degranulation, and myeloid leukocyte activation involved in immune response were enriched in upregulated proteins, which may indicate probable granulocyte contamination and activation due to blood storage time and temperature. Examples of upregulated proteins in the 24 h-PBMC samples are CAMP, S100A8, LTA4H, RASAL3, and S100A6, which are involved in an adaptive immune system and antimicrobial activity, proinflammatory mediation, aminopeptidase activities, and naïve T cells survival. Moreover, examples of downregulated proteins are NDUFA5, TAGLN2, H3C1, TUBA8, and CCT2 that are related to the cytoskeleton, cell junction, mitochondrial respiratory chain. In conclusion, the delay in blood-processing time directly impacts the proteomic profile of human PBMC, possibly through granulocyte contamination and activation.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-PR, Brazil
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz-PR, Brazil
| | | | - Saloê Bispo
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz-PR, Brazil
| | - Fabio C S Nogueira
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz-PR, Brazil
| | - Nilson I T Zanchin
- Laboratory for Structural Biology and Protein Engineering, Carlos Chagas Institute, Fiocruz-PR, Brazil.
| | - Juliana de S da G Fischer
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz-PR, Brazil.
| |
Collapse
|
9
|
Ocaranza MP, Moya J, Jalil JE, Lavandero S, Kalergis AM, Molina C, Gabrielli L, Godoy I, Córdova S, Castro P, Mac Nab P, Rossel V, García L, González J, Mancilla C, Fierro C, Farías L. Rho-kinase pathway activation and apoptosis in circulating leucocytes in patients with heart failure with reduced ejection fraction. J Cell Mol Med 2019; 24:1413-1427. [PMID: 31778027 PMCID: PMC6991691 DOI: 10.1111/jcmm.14819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/11/2019] [Accepted: 09/01/2019] [Indexed: 01/01/2023] Open
Abstract
Background Increased Rho‐kinase activity in circulating leucocytes is observed in heart failure with reduced ejection fraction (HFrEF). However, there is little information in HFrEF regarding other Rho‐kinase pathway components an on the relationship between Rho‐kinase and apoptosis. Here, Rho‐kinase activation levels and phosphorylation of major downstream molecules and apoptosis levels were measured for the first time both in HFrEF patients and healthy individuals. Methods Cross‐sectional study comparing HFrEF patients (n = 20) and healthy controls (n = 19). Rho‐kinase activity in circulating leucocytes (peripheral blood mononuclear cells, PBMCs) was determined by myosin light chain phosphatase 1 (MYPT1) and ezrin‐radixin‐moesin (ERM) phosphorylation. Rho‐kinase cascade proteins phosphorylation p38‐MAPK, myosin light chain‐2, JAK and JNK were also analysed along with apoptosis. Results MYPT1 and ERM phosphorylation were significantly elevated in HFrEF patients, (3.9‐ and 4.8‐fold higher than in controls, respectively). JAK phosphorylation was significantly increased by 300% over controls. Phosphorylation of downstream molecules p38‐MAPK and myosin light chain‐2 was significantly higher by 360% and 490%, respectively, while JNK phosphorylation was reduced by 60%. Catecholamine and angiotensin II levels were significantly higher in HFrEF patients, while angiotensin‐(1‐9) levels were lower. Apoptosis in circulating leucocytes was significantly increased in HFrEF patients by 2.8‐fold compared with controls and significantly correlated with Rho‐kinase activation. Conclusion Rho‐kinase pathway is activated in PMBCs from HFrEF patients despite optimal treatment, and it is closely associated with neurohormonal activation and with apoptosis. ROCK cascade inhibition might induce clinical benefits in HFrEF patients, and its assessment in PMBCs could be useful to evaluate reverse remodelling and disease regression.
Collapse
Affiliation(s)
- Maria Paz Ocaranza
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jackeline Moya
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge E Jalil
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile.,Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alexis M Kalergis
- Departament of Molecular Genetics and Microbiology, Faculty of Biological Sciences, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián Molina
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Iván Godoy
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Samuel Córdova
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Castro
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paul Mac Nab
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Victor Rossel
- Department of Medicine, Hospital del Salvador, Medical School, Universidad de Chile, Santiago, Chile
| | - Lorena García
- Faculty of Chemical and Pharmaceutical Sciences, Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Santiago, Chile
| | - Javier González
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristián Mancilla
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Fierro
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis Farías
- Department of Cardiovascular Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|