1
|
Tapia-Rojas S, García-Paitán M, Rosario-Chavarri JD, Santiani A, Alvarez-Vega S, Amiel-Pérez J, Mayanga-Herrera A. Medicinal plant extracts interfere in gastric cancer stem cells fluorescence-based assays. Saudi J Biol Sci 2024; 31:104000. [PMID: 38706720 PMCID: PMC11066463 DOI: 10.1016/j.sjbs.2024.104000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
Fluorescence is used in various biological assays due to its high sensitivity, versatility, and precision. In recent years, studies using medicinal plant extracts have increased. However, fluorescence-based assays could be biased by plant metabolites autofluorescence. To address this issue, this study investigated the interference caused by methanolic extracts and chloroform fractions of three medicinal plants in three fluorescence-based assays on gastric cancer stem cells(CSC): resazurin reduction, confocal microscopy, and flow cytometry. CSC were isolated based on CD44 surface marker, incubated with methanolic extracts and chloroform fractions of Buddleja incana, Dracontium spruceanum, Piper aduncum. Resazurin assay evidenced that CSC exposed to extracts and fractions from the three plants showed significant differences in relative fluorescence units (RFU) levels (p < 0.001) compared to the unexposed groups after a 3-hour incubation. In addition, DMSO-treated CSC exposed to extracts and fractions had significantly lower fluorescence levels than living ones, but higher than extracts and fractions without cells. In confocal microscopy, cancer stem cells exposed to extracts and fractions of B. incana and P. aduncum were observed in the same emission spectra of the CSC markers. In flow cytometry, CSC exposed to extracts and fractions without any fluorescent dyes were detected in the double positive quadrants for CSC markers (CD44+/CD133 + ). Among the three plants, D. spruceanum exhibited the least interference. These results show that methanolic extracts and chloroform fractions contain autofluorescent metabolites that interfere with fluorescence-based assays. These results highlight the importance of a prior evaluation for possible fluorescence interference to avoid interpretation biases in fluorescence assays.
Collapse
Affiliation(s)
- Salyoc Tapia-Rojas
- Cell Culture and Immunology Lab, Universidad Científica del Sur, Antigua Panamericana Sur km 19, Lima, 15067, Perú
| | | | - Jorge Del Rosario-Chavarri
- Plant Biology System Lab, Pontificia Universidad Católica de Chile, Libertador Bernardo O’higgins AV. 340, Santiago, 8331150, Chile
| | - Alexei Santiani
- Animal Reproduction Lab, Universidad Nacional Mayor de San Marcos, Circunvalación Av 28, San Borja, Lima, 15021, Perú
| | - Santiago Alvarez-Vega
- Cell Culture and Immunology Lab, Universidad Científica del Sur, Antigua Panamericana Sur km 19, Lima, 15067, Perú
| | - José Amiel-Pérez
- Cell Culture and Immunology Lab, Universidad Científica del Sur, Antigua Panamericana Sur km 19, Lima, 15067, Perú
| | - Ana Mayanga-Herrera
- Cell Culture and Immunology Lab, Universidad Científica del Sur, Antigua Panamericana Sur km 19, Lima, 15067, Perú
| |
Collapse
|
2
|
Minns LA, Sausman KT, Brown AP, York RA, McCall JR. Karenia brevis Extract Induces Cellular Entry through Distinct Mechanisms in Phagocytic RAW 264.7 Macrophages versus Non-Phagocytic Vero Cells. Mar Drugs 2023; 22:4. [PMID: 38276642 PMCID: PMC10820030 DOI: 10.3390/md22010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Marine algae extracts are an important area of potential drug discovery; however, nearly all studies to date have used non-fluorescent-based methods to determine changes in target cell activity. Many of the most robust immunological and cellular analyses rely on fluorescent probes and readouts, which can be problematic when the algae extract is fluorescent itself. In this study, we identified the fluorescent spectrum of an isolated extract from the marine dinoflagellate Karenia brevis, which included two fluorescing components: chlorophyll α and pheophytin α. When excited at 405 nm and 664 nm, the extract emitted fluorescence at 676 nm and 696 nm, respectively. The extract and its fluorescing components, chlorophyll α and pheophytin α, entered phagocytic RAW 264.7 macrophages and non-phagocytic Vero kidney cells through distinct mechanisms. When incubated with the extract and its main components, both the RAW 264.7 macrophages and the Vero cells accumulated fluorescence as early as 30 min and continued through 48 h. Vero kidney cells accumulated the K. brevis fluorescent extract through a dynamin-independent and acidified endosomal-dependent mechanism. RAW 264.7 macrophages accumulated fluorescent extract through a dynamin-independent, acidified endosomal-independent mechanism, which supports accumulation through phagocytosis. Furthermore, RAW 264.7 macrophages downregulated cell-surface expression of CD206 in response to extract stimulation indicating activation of phagocytic responses and potential immunosuppression of these immune cells. This study represents the first characterization of the cellular update of K. brevis extracts in phagocytic versus non-phagocytic cells. The data suggest the importance of understanding cellular uptake of fluorescing algae extracts and their mechanism of action for future drug discovery efforts.
Collapse
Affiliation(s)
- Laurie A. Minns
- School of Nursing, College of Health and Human Services, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; (L.A.M.)
- Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA
| | - Kathryn T. Sausman
- School of Nursing, College of Health and Human Services, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; (L.A.M.)
- Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA
| | - Ariel P. Brown
- School of Nursing, College of Health and Human Services, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; (L.A.M.)
- Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA
| | - Robert A. York
- Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA
- Algal Resources Collection, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA
| | - Jennifer R. McCall
- School of Nursing, College of Health and Human Services, University of North Carolina Wilmington, 601 S. College Road, Wilmington, NC 28403, USA; (L.A.M.)
- Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin K Moss Lane, Wilmington, NC 28409, USA
| |
Collapse
|