1
|
Malach P, Kay C, Tinworth C, Patel F, Joosse B, Wade J, Rosa do Carmo M, Donovan B, Brugman M, Montiel-Equihua C, Francis N. Identification of a small molecule for enhancing lentiviral transduction of T cells. Mol Ther Methods Clin Dev 2023; 31:101113. [PMID: 37790244 PMCID: PMC10544093 DOI: 10.1016/j.omtm.2023.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023]
Abstract
Genetic modification of cells using viral vectors has shown huge therapeutic benefit in multiple diseases. However, inefficient transduction contributes to the high cost of these therapies. Several transduction-enhancing small molecules have previously been identified; however, some may be toxic to the cells or patient, otherwise alter cellular characteristics, or further increase manufacturing complexity. In this study, we aimed to identify molecules capable of enhancing lentiviral transduction of T cells from available small-molecule libraries. We conducted a high-throughput flow-cytometry-based screen of 27,892 compounds, which subsequently was narrowed down to six transduction-enhancing small molecules for further testing with two therapeutic lentiviral vectors used to manufacture GSK's clinical T cell therapy products. We demonstrate enhanced transduction without a negative impact on other product attributes. Furthermore, we present results of transcriptomic analysis, suggesting alteration of ribosome biogenesis, resulting in reduced interferon response, as a potential mechanism of action for the transduction-enhancing activity of the lead compound. Finally, we demonstrate the ability of the lead transduction enhancer to produce a comparable T cell product using a 3-fold reduction in vector volume in our clinical manufacturing process, resulting in a predicted 15% reduction in the overall cost of goods.
Collapse
Affiliation(s)
- Paulina Malach
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Charlotte Kay
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Chris Tinworth
- Medicinal Chemistry, Medicine Design, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Florence Patel
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Bryan Joosse
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Jennifer Wade
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Marlene Rosa do Carmo
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Brian Donovan
- Screening, Profiling and Molecular Biology, Medicine Design, GSK Upper Providence, Collegeville, PA 19426, USA
| | - Martijn Brugman
- Analytical Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Claudia Montiel-Equihua
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| | - Natalie Francis
- Product Development, Cell and Gene Therapy, GSK Medicine Research Centre, Stevenage, Hertfordshire SG1 2NY, UK
| |
Collapse
|
2
|
Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol Cancer 2023; 22:141. [PMID: 37649123 PMCID: PMC10466891 DOI: 10.1186/s12943-023-01844-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development of tumor immunotherapies, including adoptive cell therapies (ACTs), cancer vaccines and antibody-based therapies, particularly for solid tumors. With the development of next-generation sequencing and bioinformatics technology, the rapid identification and prediction of tumor-specific antigens (TSAs) has become possible. Compared with tumor-associated antigens (TAAs), highly immunogenic TSAs provide new targets for personalized tumor immunotherapy and can be used as prospective indicators for predicting tumor patient survival, prognosis, and immune checkpoint blockade response. Here, the identification and characterization of neoantigens and the clinical application of neoantigen-based TCR-T immunotherapy strategies are summarized, and the current status, inherent challenges, and clinical translational potential of these strategies are discussed.
Collapse
Affiliation(s)
- Jiangping Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Zhiwen Xiao
- Department of Otolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, People's Republic of China
| | - Donghui Wang
- Department of Radiation Oncology, The Third Affiliated Hospital Sun Yat-Sen University, Guangzhou, 510630, People's Republic of China
| | - Lei Jia
- International Health Medicine Innovation Center, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Shihong Nie
- Department of Radiation Oncology, West China Hospital, Sichuan University, Cancer Center, Chengdu, 610041, People's Republic of China
| | - Xingda Zeng
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Wei Hu
- Division of Vascular Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| |
Collapse
|
3
|
Wu C, Hong SG, Bonifacino A, Dunbar CE. Lentiviral Transduction of Nonhuman Primate Hematopoietic Stem and Progenitor Cells. Methods Mol Biol 2023; 2567:63-84. [PMID: 36255695 DOI: 10.1007/978-1-0716-2679-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The nonhuman primate (NHP) animal model is an important predictive preclinical model for developing gene and cell therapies. It is also an experimental animal model used to study hematopoietic stem and progenitor cell (HSPC) biology, with the capability of serving as a step for the translation of the basic research concepts from small animals to humans. Lentiviral vectors are currently the standard gene delivery vehicles for transduction of HSPCs in the clinical setting. They have proven to be less genotoxic and more efficient than the previously used murine γ-retroviruses. Transplantation of lentiviral vector-transduced HSPCs into autologous macaques has been well developed over the past two decades. In this chapter, we provide detailed methodologies for lentiviral vector transduction of rhesus macaque HSPCs, including production and titration of lentiviral vector, purification of CD34+ HSPCs, and lentiviral vector transduction and assessment.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - So Gun Hong
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aylin Bonifacino
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Liu Z, Liu X, Shen H, Xu X, Zhao X, Fu R. Adenosinergic axis and immune checkpoint combination therapy in tumor: A new perspective for immunotherapy strategy. Front Immunol 2022; 13:978377. [PMID: 36159861 PMCID: PMC9493240 DOI: 10.3389/fimmu.2022.978377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
There are two figures and one table in this review, the review consists of 5823 words, without the description of figures and table, but including references. Tumor cells escape anti-tumor immune responses in various ways, including functionally shaping the microenvironment through the secretion of various chemokines and, cytokines. Adenosine is a powerful immunosuppressive metabolite, that is frequently elevated in the extracellular tumor microenvironment (TME). Thus, it has recently been proposed as a novel antitumor immunoassay for targeting adenosine- generating enzymes, such as CD39, CD73, and adenosine receptors. In recent years, the discovery of the immune checkpoints, such as programmed cell death 1(PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), has also greatly changed treatment methods and ideas for malignant tumors. Malignant tumor immunotherapy has been developed from point-to-point therapy targeting immune checkpoints, combining different points of different pathways to create a therapy based on the macroscopic immune regulatory system network. This article reviews the theoretical basis of the adenosine energy axis and immune checkpoint combined therapy for malignant tumors and the latest advances in malignant tumors.
Collapse
|
5
|
Mukherjee AG, Wanjari UR, Namachivayam A, Murali R, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Ramanathan G, Doss C. GP, Gopalakrishnan AV. Role of Immune Cells and Receptors in Cancer Treatment: An Immunotherapeutic Approach. Vaccines (Basel) 2022; 10:1493. [PMID: 36146572 PMCID: PMC9502517 DOI: 10.3390/vaccines10091493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/07/2022] Open
Abstract
Cancer immunotherapy moderates the immune system's ability to fight cancer. Due to its extreme complexity, scientists are working to put together all the puzzle pieces to get a clearer picture of the immune system. Shreds of available evidence show the connection between cancer and the immune system. Immune responses to tumors and lymphoid malignancies are influenced by B cells, γδT cells, NK cells, and dendritic cells (DCs). Cancer immunotherapy, which encompasses adoptive cancer therapy, monoclonal antibodies (mAbs), immune checkpoint therapy, and CART cells, has revolutionized contemporary cancer treatment. This article reviews recent developments in immune cell regulation and cancer immunotherapy. Various options are available to treat many diseases, particularly cancer, due to the progress in various immunotherapies, such as monoclonal antibodies, recombinant proteins, vaccinations (both preventative and curative), cellular immunotherapies, and cytokines.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunraj Namachivayam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Gnanasambandan Ramanathan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - George Priya Doss C.
- Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
6
|
Quach ABV, Little SR, Shih SCC. Viral Generation, Packaging, and Transduction on a Digital Microfluidic Platform. Anal Chem 2022; 94:4039-4047. [PMID: 35192339 DOI: 10.1021/acs.analchem.1c05227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Viral-based systems are a popular delivery method for introducing exogenous genetic material into mammalian cells. Unfortunately, the preparation of lentiviruses containing the machinery to edit the cells is labor-intensive, with steps requiring optimization and sensitive handling. To mitigate these challenges, we introduce the first microfluidic method that integrates lentiviral generation, packaging, and transduction. The new method allows the production of viral titers between 106 and 107 (similar to macroscale production) and high transduction efficiency for hard-to-transfect cell lines. We extend the technique for gene editing applications and show how this technique can be used to knock out and knock down estrogen receptor gene─a gene prominently responsible for 70% of breast cancer cases. This new technique is automated with multiplexing capabilities, which have the potential to standardize the methods for viral-based genome engineering.
Collapse
Affiliation(s)
- Angela B V Quach
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada
| | - Samuel R Little
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec H3G 1M8, Canada
| | - Steve C C Shih
- Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec H4B 1R6, Canada.,Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec H3G 1M8, Canada
| |
Collapse
|
7
|
Strack A, Deinzer A, Thirion C, Schrödel S, Dörrie J, Sauerer T, Steinkasserer A, Knippertz I. Breaking Entry-and Species Barriers: LentiBOOST ® Plus Polybrene Enhances Transduction Efficacy of Dendritic Cells and Monocytes by Adenovirus 5. Viruses 2022; 14:v14010092. [PMID: 35062296 PMCID: PMC8781300 DOI: 10.3390/v14010092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/19/2022] Open
Abstract
Due to their ability to trigger strong immune responses, adenoviruses (HAdVs) in general and the serotype5 (HAdV-5) in particular are amongst the most popular viral vectors in research and clinical application. However, efficient transduction using HAdV-5 is predominantly achieved in coxsackie and adenovirus receptor (CAR)-positive cells. In the present study, we used the transduction enhancer LentiBOOST® comprising the polycationic Polybrene to overcome these limitations. Using LentiBOOST®/Polybrene, we yielded transduction rates higher than 50% in murine bone marrow-derived dendritic cells (BMDCs), while maintaining their cytokine expression profile and their capability to induce T-cell proliferation. In human dendritic cells (DCs), we increased the transduction rate from 22% in immature (i)DCs or 43% in mature (m)DCs to more than 80%, without inducing cytotoxicity. While expression of specific maturation markers was slightly upregulated using LentiBOOST®/Polybrene on iDCs, no effect on mDC phenotype or function was observed. Moreover, we achieved efficient HAdV5 transduction also in human monocytes and were able to subsequently differentiate them into proper iDCs and functional mDCs. In summary, we introduce LentiBOOST® comprising Polybrene as a highly potent adenoviral transduction agent for new in-vitro applications in a set of different immune cells in both mice and humans.
Collapse
Affiliation(s)
- Astrid Strack
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (A.D.); (A.S.)
- Correspondence: (A.S.); (I.K.)
| | - Andrea Deinzer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (A.D.); (A.S.)
- Institute of Clinical Microbiology, Immunology and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054 Erlangen, Germany
| | - Christian Thirion
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany; (C.T.); (S.S.)
| | - Silke Schrödel
- SIRION Biotech GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany; (C.T.); (S.S.)
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (J.D.); (T.S.)
| | - Tatjana Sauerer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (J.D.); (T.S.)
| | - Alexander Steinkasserer
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (A.D.); (A.S.)
| | - Ilka Knippertz
- Department of Immune Modulation, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany; (A.D.); (A.S.)
- Correspondence: (A.S.); (I.K.)
| |
Collapse
|
8
|
Transient blockade of TBK1/IKKε allows efficient transduction of primary human natural killer cells with vesicular stomatitis virus G-pseudotyped lentiviral vectors. Cytotherapy 2021; 23:787-792. [PMID: 34119434 DOI: 10.1016/j.jcyt.2021.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS Vesicular stomatitis virus G (VSV-G)-pseudotyped lentiviral vectors (LVs) are widely used to reliably generate genetically modified, clinical-grade T-cell products. However, the results of genetically modifying natural killer (NK) cells with VSV-G LVs have been variable. The authors explored whether inhibition of the IKK-related protein kinases TBK1 and IKKε, key signaling molecules of the endosomal TLR4 pathway, which is activated by VSV-G, would enable the reliable transduction of NK cells by VSV-G LVs. METHODS The authors activated NK cells from peripheral blood mononuclear cells using standard procedures and transduced them with VSV-G LVs encoding a marker gene (yellow fluorescent protein [YFP]) or functional genes (chimeric antigen receptors [CARs], co-stimulatory molecules) in the presence of three TBK1/IKKε inhibitors (MRT67307, BX-795, amlexanox). NK cell transduction was evaluated by flow cytometry and/or western blot and the functionality of expressed CARs was evaluated in vitro. RESULTS Blocking TBK1/IKKε during transduction of NK cells enabled their efficient transduction by VSV-G LVs as judged by YFPexpression of 40-50%, with half maximal effective concentrations of 1.1 µM (MRT67307), 5 µM (BX-795) and 24.8 µM (amlexanox). Focusing on MRT67307, the authors successfully generated NK cells expressing CD19-CARs or HER2-CARs with an inducible co-stimulatory molecule. CAR NK cells exhibited increased cytolytic activity and ability to produce cytokines in comparison to untreated controls, confirming CAR functionality. CONCLUSIONS The authors demonstrate that inhibition of TBK1/IKKε enables the reliable generation of genetically modified NK cells using VSV-G LVs. The authors' protocol can be readily adapted to generate clinical-grade NK cells and thus has the potential to facilitate the clinical evaluation of genetically modified NK cell-based therapeutics in the future.
Collapse
|
9
|
Lo Presti V, Cornel AM, Plantinga M, Dünnebach E, Kuball J, Boelens JJ, Nierkens S, van Til NP. Efficient lentiviral transduction method to gene modify cord blood CD8 + T cells for cancer therapy applications. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:357-368. [PMID: 33898633 PMCID: PMC8056177 DOI: 10.1016/j.omtm.2021.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/17/2021] [Indexed: 01/01/2023]
Abstract
Adoptive T cell therapy utilizing tumor-specific autologous T cells has shown promising results for cancer treatment. However, the limited numbers of autologous tumor-associated antigen (TAA)-specific T cells and the functional aberrancies, due to disease progression or treatment, remain factors that may significantly limit the success of the therapy. The use of allogeneic T cells, such as umbilical cord blood (CB) derived, overcomes these issues but requires gene modification to induce a robust and specific anti-tumor effect. CB T cells are readily available in CB banks and show low toxicity, high proliferation rates, and increased anti-leukemic effect upon transfer. However, the combination of anti-tumor gene modification and preservation of advantageous immunological traits of CB T cells represent major challenges for the harmonized production of T cell therapy products. In this manuscript, we optimized a protocol for expansion and lentiviral vector (LV) transduction of CB CD8+ T cells, achieving a transduction efficiency up to 83%. Timing of LV treatment, selection of culture media, and the use of different promoters were optimized in the transduction protocol. LentiBOOST was confirmed as a non-toxic transduction enhancer of CB CD8+ T cells, with minor effects on the proliferation capacity and cell viability of the T cells. Positively, the use of LentiBOOST does not affect the functionality of the cells, in the context of tumor cell recognition. Finally, CB CD8+ T cells were more amenable to LV transduction than peripheral blood (PB) CD8+ T cells and maintained a more naive phenotype. In conclusion, we show an efficient method to genetically modify CB CD8+ T cells using LV, which is especially useful for off-the-shelf adoptive cell therapy products for cancer treatment.
Collapse
Affiliation(s)
- Vania Lo Presti
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Annelisa M Cornel
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Maud Plantinga
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Ester Dünnebach
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jurgen Kuball
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Department of Hematology, UMC Utrecht, Utrecht, the Netherlands
| | - Jaap Jan Boelens
- Stem Cell Transplant and Cellular Therapies, MSK Kids, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefan Nierkens
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Niek P van Til
- Center for Translational Immunology, UMC Utrecht, Utrecht, the Netherlands.,AVROBIO, Inc., Cambridge, MA, USA.,Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Uslu U. CAR‐T‐Zellen auf dem Weg zur praktischen Anwendung in der dermatologischen Onkologie. J Dtsch Dermatol Ges 2021; 19:359-363. [PMID: 33709602 DOI: 10.1111/ddg.14402_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/04/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Ugur Uslu
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen.,CCC Comprehensive Cancer Center Erlangen.,Deutsches Zentrum Immuntherapie (DZI), Erlangen
| |
Collapse
|
11
|
Vimond N, Lasselin J, Anegon I, Guillonneau C, Bézie S. Genetic engineering of human and mouse CD4 + and CD8 + Tregs using lentiviral vectors encoding chimeric antigen receptors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 20:69-85. [PMID: 33376756 PMCID: PMC7749301 DOI: 10.1016/j.omtm.2020.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 11/30/2022]
Abstract
The last decade has seen a significant increase of cell therapy protocols using effector T cells (Teffs) in particular, but also, more recently, non-engineered and expanded polyclonal regulatory T cells (Tregs) to control pathological immune responses such as cancer, autoimmune diseases, or transplantation rejection. However, limitations, such as stability, migration, and specificity of the cell products, have been seen. Thus, genetic engineering of these cell subsets is expected to provide the next generation of T cell therapy products. Lentiviral vectors are commonly used to modify Teffs; however, Tregs are more sensitive to mechanical stress and require specific culture conditions. Also, there is a lack of reproducible and efficient protocols to expand and genetically modify Tregs without affecting their growth and function. Due to smaller number of cells and poorer viability upon culture in vitro, mouse Tregs are more difficult to transduce and amplify in vitro than human Tregs. Here we propose a step-by-step protocol to produce both human and mouse genetically modified CD8+ and CD4+ Tregs in sufficient amounts to assess their therapeutic efficacy in humanized immunocompromised mouse models and murine models of disease and to establish pre-clinical proofs of concept. We report, for the first time, an efficient and reproducible method to isolate Tregs from human blood or mouse spleen, transduce with a lentiviral vector, and culture, in parallel, CD8+ and CD4+ Tregs while preserving their function. Beyond chimeric antigen receptor (CAR)-Treg cell therapy, this protocol will promote the development of potential new engineered T cell therapies to treat autoimmune diseases and transplantation rejection.
Collapse
Affiliation(s)
- Nadège Vimond
- Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093 Nantes Cedex 01, France
| | - Juliette Lasselin
- Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093 Nantes Cedex 01, France
| | - Ignacio Anegon
- Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093 Nantes Cedex 01, France
| | - Carole Guillonneau
- Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093 Nantes Cedex 01, France
- Corresponding author: Carole Guillonneau, Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 30 Bd Jean Monnet, 44093, Nantes Cedex 01, France.
| | - Séverine Bézie
- Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 44093 Nantes Cedex 01, France
- Corresponding author: Séverine Bézie, Université de Nantes, CHU Nantes, Inserm, CNRS, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, 30 Bd Jean Monnet, 44093, Nantes Cedex 01, France.
| |
Collapse
|
12
|
Uslu U. Driving CAR T cells towards dermatologic oncology. J Dtsch Dermatol Ges 2021; 19:359-362. [PMID: 33591642 DOI: 10.1111/ddg.14402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022]
Abstract
Whereas approximately half of metastatic melanoma patients benefit from combined immune checkpoint inhibition targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and Programmed cell death protein 1 (PD-1), for those who do not respond, further strategies and treatment options need to be developed. Thus, focus is turning to the use of chimeric antigen receptor (CAR) T cells, a novel therapy that has not yet achieved a major breakthrough in solid tumors despite the impressive response rates reported for their use in hematologic malignancies. In melanoma and other solid tumor entities, different problems still need to be addressed to improve this therapy, with mechanisms to counteract tumor escape being one of them. In this context, we could show the feasibility of combining two different transfection methods - lentiviral transduction and RNA-electroporation - for equipping the same T lymphocyte with two different tumor antigen-specific receptors. While further analysis is required to transfer this novel strategy from bench to bedside, appropriate target antigens that avoid on-target/off-tumor toxicities and additional optimization to increase CAR T cell power are also needed to maximize their potential use in dermatologic oncology.
Collapse
Affiliation(s)
- Ugur Uslu
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Department of Dermatology, Erlangen, Germany.,Comprehensive Cancer Center Erlangen- European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
13
|
Abstract
Therapeutic viral gene delivery is an emerging technology which aims to correct genetic mutations by introducing new genetic information to cells either to correct a faulty gene or to initiate cell death in oncolytic treatments. In recent years, significant scientific progress has led to several clinical trials resulting in the approval of gene therapies for human treatment. However, successful therapies remain limited due to a number of challenges such as inefficient cell uptake, low transduction efficiency (TE), limited tropism, liver toxicity and immune response. To adress these issues and increase the number of available therapies, additives from a broad range of materials like polymers, peptides, lipids, nanoparticles, and small molecules have been applied so far. The scope of this review is to highlight these selected delivery systems from a materials perspective.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | |
Collapse
|
14
|
Li L, Gao Y, Srivastava R, Wang W, Xiong Q, Fang Z, Pelayo A, Denson C, Goswami A, Harari-Steinfeld R, Yang Z, Weng L, Qi LS, Marincola FM. Lentiviral delivery of combinatorial CAR/CRISPRi circuit into human primary T cells is enhanced by TBK1/IKKɛ complex inhibitor BX795. J Transl Med 2020; 18:363. [PMID: 32967676 PMCID: PMC7510327 DOI: 10.1186/s12967-020-02526-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023] Open
Abstract
Background Adoptive transfer of engineered immune cells is a promising strategy for cancer treatment. However, low transduction efficiency particularly when large payload lentiviral vectors are used on primary T cells is a limitation for the development of cell therapy platforms that include multiple constructs bearing long DNA sequences. RB-340-1 is a new CAR T cell that combines two strategies in one product through a CRISPR interference (CRISPRi) circuit. Because multiple regulatory components are included in the circuit, RB-340-1 production needs delivery of two lentiviral vectors into human primary T cells, both containing long DNA sequences. To improve lentiviral transduction efficiency, we looked for inhibitors of receptors involved in antiviral response. BX795 is a pharmacological inhibitor of the TBK1/IKKɛ complex, which has been reported to augment lentiviral transduction of human NK cells and some cell lines, but it has not been tested with human primary T cells. The purpose of this study was to test if BX795 treatment promotes large payload RB-340-1 lentiviral transduction of human primary T cells. Methods To make the detection of gene delivery more convenient, we constructed another set of RB-340-1 constructs containing fluorescent labels named RB-340-1F. We incorporated BX795 treatment into the human primary T cell transduction procedure that was optimized for RB-340-1F. We tested BX795 with T cells collected from multiple donors, and detected the effect of BX795 on T cell transduction, phenotype, cell growth and cell function. Results We found that BX795 promotes RB-340-1F lentiviral transduction of human primary T cells, without dramatic change in cell growth and T cell functions. Meanwhile, BX795 treatment increased CD8+ T cell ratios in transduced T cells. Conclusions These results indicate that BX795 treatment is effective, and might be a safe approach to promote RB-340-1F lentiviral transduction of human primary T cells. This approach might also be helpful for other T cell therapy products that need delivery of complicated platform via large payload lentiviral vectors.
Collapse
Affiliation(s)
- Lingyu Li
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA.
| | - Yuan Gao
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | | | - Wei Wang
- Hangzhou Juwu Biotech Co., Ltd., Hangzhou, 310018, Zhejiang, China
| | - Qinghui Xiong
- Hangzhou Juwu Biotech Co., Ltd., Hangzhou, 310018, Zhejiang, China
| | - Zhiming Fang
- Hangzhou Juwu Biotech Co., Ltd., Hangzhou, 310018, Zhejiang, China
| | | | | | | | | | - Zhifen Yang
- Refuge Biotechnologies Inc., Menlo Park, CA, 94025, USA
| | - Lihong Weng
- Hangzhou Juwu Biotech Co., Ltd., Hangzhou, 310018, Zhejiang, China
| | - Lei Stanley Qi
- Department of Bioengineering, Department of Chemical and Systems Biology, ChEM-H, Stanford University, Stanford, CA, USA, 94305
| | | |
Collapse
|
15
|
Simon B, Uslu U. Fasten the seat belt: Increasing safety of CAR T-cell therapy. Exp Dermatol 2020; 29:1039-1045. [PMID: 32627228 DOI: 10.1111/exd.14131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
After the recent success and approvals of chimeric antigen receptor (CAR) T cells in haematological malignancies, its efficacy is currently evaluated in a broad spectrum of tumor entities including melanoma. However, severe and potentially life-threatening side effects like cytokine release syndrome, neurologic toxicities, and the competing risk of morbidity and mortality from the treatment itself are still a major limiting factor in the current CAR T-cell landscape. In addition, especially in solid tumors, the lack of ideal target antigens to avoid on-target/off-tumor toxicities also restricts its use. While various groups are working on strategies to boost CAR T-cell efficacy, mechanisms to increase engineered T-cell safety should not move out of focus. Thus, the aim of this article is to summarize and to discuss current and potential future strategies and mechanisms to increase CAR T-cell safety in order to enable the wide use of this promising approach in melanoma and other tumor entities.
Collapse
Affiliation(s)
- Bianca Simon
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen- European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.,Division of Genetics, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ugur Uslu
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen- European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
16
|
Concise review on optimized methods in production and transduction of lentiviral vectors in order to facilitate immunotherapy and gene therapy. Biomed Pharmacother 2020; 128:110276. [PMID: 32502836 DOI: 10.1016/j.biopha.2020.110276] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/10/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Lentiviral vectors (LVs) have provided an efficient way to integrate our gene of interest into eukaryote cells. Human immunodeficiency virus (HIV)-derived LVs have been vastly studied to become an invaluable asset in gene delivery. This abled LVs to be used in both research laboratories and gene therapy. Pseudotyping HIV-1 based LVs, abled it to transduce different types of cells, especially hematopoietic stem cells. A wide range of tropism, plus to the ability to integrate genes into target cells, made LVs an armamentarium in gene therapy. The third and fourth generations of self-inactivating LVs are being used to achieve safe gene therapy. Not only advanced methods enabled the clinical-grade LV production on a large scale, but also considerably heightened transduction efficiency. One of which is microfluidic systems that revolutionized gene delivery approaches. Since gene therapy using LVs attracted lots of attention to itself, we provided a brief review of LV structure and life-cycle along with methods for improving both LV production and transduction. Also, we mentioned some of their utilization in immunotherapy and gene therapy.
Collapse
|
17
|
Hromic-Jahjefendic A, Lundstrom K. Viral Vector-Based Melanoma Gene Therapy. Biomedicines 2020; 8:E60. [PMID: 32187995 PMCID: PMC7148454 DOI: 10.3390/biomedicines8030060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy applications of oncolytic viruses represent an attractive alternative for cancer treatment. A broad range of oncolytic viruses, including adenoviruses, adeno-associated viruses, alphaviruses, herpes simplex viruses, retroviruses, lentiviruses, rhabdoviruses, reoviruses, measles virus, Newcastle disease virus, picornaviruses and poxviruses, have been used in diverse preclinical and clinical studies for the treatment of various diseases, including colon, head-and-neck, prostate and breast cancer as well as squamous cell carcinoma and glioma. The majority of studies have focused on immunotherapy and several drugs based on viral vectors have been approved. However, gene therapy for malignant melanoma based on viral vectors has not been utilized to its full potential yet. This review represents a summary of the achievements of preclinical and clinical studies using viral vectors, with the focus on malignant melanoma.
Collapse
Affiliation(s)
- Altijana Hromic-Jahjefendic
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | | |
Collapse
|