1
|
Lou E, Choudhry MS, Starr TK, Folsom TD, Bell J, Rathmann B, DeFeo AP, Kim J, Slipek N, Jin Z, Sumstad D, Klebanoff CA, Ladner K, Sarkari A, McIvor RS, Murray TA, Miller JS, Rao M, Jensen E, Ankeny J, Khalifa MA, Chauhan A, Spilseth B, Dixit A, Provenzano PP, Pan W, Weber D, Byrne-Steele M, Henley T, McKenna DH, Johnson MJ, Webber BR, Moriarity BS. Targeting the intracellular immune checkpoint CISH with CRISPR-Cas9-edited T cells in patients with metastatic colorectal cancer: a first-in-human, single-centre, phase 1 trial. Lancet Oncol 2025; 26:559-570. [PMID: 40315882 DOI: 10.1016/s1470-2045(25)00083-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Over the past decade, immunotherapeutic strategies-mainly targeting the PD-1-PD-L1 immune checkpoint axis-have altered cancer treatment for many solid tumours, but few patients with gastrointestinal forms of cancer have benefited to date. There remains an urgent need to extend immunotherapy efficacy to more patients while addressing resistance to current immune checkpoint inhibitors. The aim of this study was to determine the safety and anti-tumour activity of knockout of CISH, which encodes cytokine-inducible SH2-containing protein, a novel intracellular immune checkpoint target and a founding member of the SOCS family of E3-ligases, using tumour infiltrating lymphocyte (TILs) genetically edited with CRISPR-Cas9 in patients with metastatic gastrointestinal epithelial cancers. METHODS For this first-in-human, single-centre, phase 1 trial, patients aged 18-70 years with a diagnosis of metastatic gastrointestinal epithelial cancer with progressive disease following at least one first line standard therapy, measurable disease with at least one lesion identified as resectable for TIL generation and at least one other lesion meeting RECIST criteria as measurable to serve as an indicator of disease response, and an ECOG performance status of 0 or 1 were screened and enrolled if meeting these and all other eligibility criteria. TILs procured from tumour biopsies were expanded on the basis of neoantigen reactivity, subjected to CRISPR-Cas9-mediated CISH knockout, and infused intravenously into 12 patients after non-myeloablative lymphocyte depleting chemotherapy (cyclophosphamide 60 mg/kg per dose on study days -6 and -5, and fludarabine 25 mg/m2 per dose on days -7 to -3) followed by high-dose IL-2 (aldesleukin; 720 000 IU/kg per dose). The primary endpoint was safety of administration of neoantigen-reactive TILs with knockout of the CISH gene, and a key secondary endpoint was anti-tumour activity measured as objective radiographic response and progression-free and overall survival. This study is registered with ClinicalTrials.gov, NCT04426669, and is complete. FINDINGS Between May 12, 2020, and Sept 16, 2022, 22 participants were enrolled in the trial (one patient was enrolled twice owing to lack of TIL outgrowth on the first attempt); ten patients were female, and 11 were male (self-defined). One patient was Asian, the remainder were White (self-defined). We successfully manufactured CISH knockout TIL products for 19 (86%) of the patients, of whom 12 (63%) received autologous CISH knockout TIL infusion. The median follow-up time for the study was 129 days (IQR 15-283). All 12 (100%) patients had treatment-related severe adverse events. The most common grade 3-4 adverse events included haematological events (12 patients [100%]) attributable to the preparative lymphodepleting chemotherapy regimen or expected effects of IL-2, fatigue (four patients [33%]), and anorexia (three patients [25%]). Deaths of any cause for patients on study were attributed to the underlying disease under study (metastatic gastrointestinal cancer) and related complications (10 patients) or infection (grade 5 septicaemia in one patient). There were no severe (≥grade 3) cytokine release or neurotoxicity events. Six (50%) of 12 patients had stable disease by day 28, and four (33%) had stable disease ongoing at 56 days. One young adult patient with microsatellite-instability-high colorectal cancer refractory to anti-PD1/CTLA-4 therapies had a complete and ongoing response (>21 months). INTERPRETATION These results support the safety and potential antitumour activity of inhibiting the immune checkpoint CISH through the administration of neoantigen-reactive CISH-knockout TILs, with implications for patients with advanced metastatic cancers refractory to checkpoint inhibitor immunotherapies, and provide the first evidence that a novel intracellular checkpoint can be targeted with therapeutic effect. FUNDING Intima Bioscience.
Collapse
Affiliation(s)
- Emil Lou
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA.
| | | | - Timothy K Starr
- Department of Obstetrics, Gynecology, and Women's Health, University of Minnesota, Minneapolis, MN, USA
| | - Timothy D Folsom
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jason Bell
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Blaine Rathmann
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Anthony P DeFeo
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jihyun Kim
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas Slipek
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhaohui Jin
- Deparment of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Darin Sumstad
- Cell Therapy Clinical Laboratory, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Christopher A Klebanoff
- Department of Medicine, Human Oncology and Pathogenesis Program, and Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Ladner
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Akshat Sarkari
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - R Scott McIvor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Thomas A Murray
- Division of Biostatistics and Health Data Science, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Madhuri Rao
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Eric Jensen
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jacob Ankeny
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Mahmoud A Khalifa
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Anil Chauhan
- Department of Radiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin Spilseth
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ajay Dixit
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Paolo P Provenzano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Center for Multiparametric Imaging of Tumor Immune Microenvironments, University of Minnesota, Minneapolis, MN, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | - David H McKenna
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Cell Therapy Clinical Laboratory, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matthew J Johnson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Beau R Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Branden S Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
2
|
Lv X, Liu J, Ruan J, Chen P, He C, Zhao X, Huang C, Chen L, Wang H, Hua G, Shi D, Yang S, Moness ML, Montoute I, Dhar A, Chen X, Kumar R, Lu H, Sadreyev R, Yeku O, Wu X, Davis JS, Wang C. Targeting the disrupted Hippo signaling to prevent neoplastic renal epithelial cell immune evasion. Nat Commun 2025; 16:2858. [PMID: 40128178 PMCID: PMC11933345 DOI: 10.1038/s41467-025-57697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
Large-scale cancer genetic/genomic studies demonstrated that papillary renal cell carcinoma (pRCC) is featured with a frequent shallow deletion of the upstream tumor suppressors of the Hippo/YAP signaling pathway, suggesting that this signaling pathway may play a role in pRCC development. Here we develop a transgenic mouse model with a renal epithelial cell-specific hyperactivation of YAP1 and find that hyperactivation of YAP1 can induce dedifferentiation and transformation of renal tubular epithelial cells leading to the development of pRCC. We analyze at the single-cell resolution the cellular landscape alterations during cancer initiation and progression. Our data indicate that the hyperactivated YAP1, via manipulating multiple signaling pathways, induces epithelial cell transformation, MDSC (Myeloid-derived suppressor cells) accumulation, and pRCC development. Interestingly, we find that depletion of MDSC blocks YAP1-induced kidney overgrowth and tumorigenesis. Inhibiting YAP1 activity with MGH-CP1, a recently developed TEAD inhibitor, impedes MDSC accumulation and suppresses tumor development. Our results identify the disrupted Hippo/YAP signaling as a major contributor to pRCC and suggest that targeting the disrupted Hippo pathway represents a plausible strategy to prevent and treat pRCC.
Collapse
Affiliation(s)
- Xiangmin Lv
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiyuan Liu
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinpeng Ruan
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peichao Chen
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chunbo He
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xingeng Zhao
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cong Huang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Li Chen
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongbo Wang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guohua Hua
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Davie Shi
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Siyi Yang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Madelyn L Moness
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabelle Montoute
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anjali Dhar
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Cell Biology, Dartmouth College, Hanover, NH, USA
| | - Xingcheng Chen
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Raj Kumar
- Division of Hematology and oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hu Lu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Oladapo Yeku
- Division of Hematology and oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xu Wu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Gynecological Cancer Program, Dana-Farber/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
3
|
Jin Y, Jia Z, Xia X, Gordon NB, Ludwig JA, Somaiah N, Li S. Anti-CD137 agonist antibody-independent and clinically feasible preparation of tumor-infiltrating lymphocytes from soft tissue sarcoma and osteosarcoma. Front Immunol 2025; 16:1557006. [PMID: 40145091 PMCID: PMC11936977 DOI: 10.3389/fimmu.2025.1557006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background Tumor infiltrating lymphocytes (TILs) therapy has been proved for treatment of metastatic melanoma and is under investigation for other types of solid tumors. However, these successes are threatened by discontinued supply of GMP-grade anti-CD137 agonist, a key TIL preparation reagent. Therefore, exploring a GMP-adherent method for expanding endogenous TILs without anti-CD137 agonist is urgent. Toward this end, we aimed to establish an anti-CD137-independent and clinically feasible TIL expansion protocol to prepare TILs from under investigated sarcoma tumors. Methods We collected resected tumors from patients and cut tissues into fragments. We used IL-2 and T-cell activator CD3/CD28 without anti-CD137 agonist to expand nonselected TILs in 2-3 weeks, then rapidly expanded them over 2 weeks. Their phenotypes were characterized using flow cytometry. Their antitumor activity was validated in vitro using cytotoxic T lymphocyte assays measuring CD107a on the TILs and the viability of tumor cells and in vivo using an autologous patient-derived xenograft (PDX) tumor model. Results We successfully expanded TILs in > 90% of collected samples. TILs generated preferentially increased CD8+ T cells but suppressed CD4+ T cells. A small portion of TILs were resident memory T cells. The expanded TILs reduced autologous tumor cells by 37.5% within 24 hours. Infusion of TILs in mice bearing autologous PDX tumors strongly inhibited liposarcoma growth. FDA has approved use of this GMP-feasible protocol in our clinical trial (IND 30562). Conclusion It is feasible to generate antitumor TILs using CD3/CD28 activator to replace the unavailable anti-CD137 agonist. Our study supports the further development of TIL-based therapy.
Collapse
Affiliation(s)
- Yining Jin
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhiliang Jia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xueqing Xia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nancy B. Gordon
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Joseph A. Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
4
|
Wang Z, Kelley SO. Microfluidic technologies for enhancing the potency, predictability and affordability of adoptive cell therapies. Nat Biomed Eng 2025:10.1038/s41551-024-01315-2. [PMID: 39953325 DOI: 10.1038/s41551-024-01315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/31/2024] [Indexed: 02/17/2025]
Abstract
The development and wider adoption of adoptive cell therapies is constrained by complex and costly manufacturing processes and by inconsistent efficacy across patients. Here we discuss how microfluidic and other fluidic devices can be implemented at each stage of cell manufacturing for adoptive cell therapies, from the harvesting and isolation of the cells to their editing, culturing and functional selection. We suggest that precise and controllable microfluidic systems can streamline the development of these therapies by offering scalability in cell production, bolstering the efficacy and predictability of the therapies and improving their cost-effectiveness and accessibility for broader populations of patients with cancer.
Collapse
Affiliation(s)
- Zongjie Wang
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Shana O Kelley
- Chan Zuckerberg Biohub Chicago, Chicago, IL, USA.
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Weinberg College of Arts & Sciences, Northwestern University, Evanston, IL, USA.
- Department of Biochemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Ye R, Zheng H, Yang D, Lin J, Li L, Li Y, Pan H, Dai H, Zhao L, Zhou Y, Han S, Lu Y. irAE-colitis induced by CTLA-4 and PD-1 blocking were ameliorated by TNF blocking and modulation of gut microbial. Biomed Pharmacother 2024; 177:116999. [PMID: 38925021 DOI: 10.1016/j.biopha.2024.116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Immune-related adverse events, particularly colitis (irAE-colitis), are significant impediments to the advancement of immune checkpoint therapy. To address this, blocking TNF-α and modulating gut microbiota are effective strategies. However, their precise roles in irAE-colitis pathogenesis and potential reciprocal relationship remain unclear. An irAE-colitis model was established to evaluate the toxicity of DICB and the efficacy of Infliximab, validated through a tumor irAE-colitis mice model. Co-administration of Infliximab with DICB mitigates colitis and enhances efficacy. Analysis of fecal samples from mice reveals altered gut microbiota composition and function induced by irAE-colitis, restored by Infliximab. Notably, Bacteriodes abundance is significantly higher in irAE-colitis. Disruption of arachidonic acid and tyrosine metabolism, and steroid hormone biosynthesis is evident. Mechanistically, a regenerative feedback loop involving DICB, TNF-α and gut microbiota underlies irAE-colitis pathogenesis. In conclusion, Infliximab shows therapeutic effects against DICB toxicity, highlighting the unforeseen roles of gut microbiota and TNF-α in irAE-colitis.
Collapse
Affiliation(s)
- Ruiwei Ye
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai 201908, China; Shanghai Marine Medical Engineering Integration Innovation Center,School of Medicine, Shanghai University, Shanghai 200444, China
| | - Hao Zheng
- Shanghai Marine Medical Engineering Integration Innovation Center,School of Medicine, Shanghai University, Shanghai 200444, China
| | - Dandan Yang
- Shanghai Marine Medical Engineering Integration Innovation Center,School of Medicine, Shanghai University, Shanghai 200444, China
| | - Jiayi Lin
- Shanghai Marine Medical Engineering Integration Innovation Center,School of Medicine, Shanghai University, Shanghai 200444, China
| | - Linxue Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai 201908, China
| | - Yingying Li
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai 201908, China
| | - Hanyu Pan
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai 201908, China
| | - Haorui Dai
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai 201908, China
| | - Liang Zhao
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai 201908, China.
| | - Yonghong Zhou
- Shanghai Marine Medical Engineering Integration Innovation Center,School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Sheng Han
- Shanghai Marine Medical Engineering Integration Innovation Center,School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Yiming Lu
- Shanghai Baoshan Luodian Hospital, School of Medicine, Shanghai University, Shanghai 201908, China; Shanghai Marine Medical Engineering Integration Innovation Center,School of Medicine, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
6
|
He J, Niu J, Wang L, Zhang W, He X, Zhang X, Hu W, Tang Y, Yang H, Sun J, Cui W, Shi Q. An injectable hydrogel microsphere-integrated training court to inspire tumor-infiltrating T lymphocyte potential. Biomaterials 2024; 306:122475. [PMID: 38306733 DOI: 10.1016/j.biomaterials.2024.122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Although tumor-infiltrating T lymphocytes (TIL-Ts) play a crucial role in solid tumor immunotherapy, their clinical application has been limited because of the immunosuppressive microenvironment. Herein, we developed an injectable hydrogel microsphere-integrated training court (MS-ITC) to inspire the function of TIL-Ts and amplify TIL-Ts, through grafting with anti-CD3 and anti-CD28 antibodies and bovine serum albumin nanoparticles encapsulated with IL-7 and IL-15. MS-ITC provided the T-cell receptor and co-stimulatory signals required for TIL-Ts activation and IL-7/IL-15 signals for TIL-Ts expansion. Afterward, the MS-ITC was injected locally into the osteosarcoma tumor tissue in mice. MS-ITC suppressed the growth of primary osteosarcoma by more than 95 %, accompanied with primed and expanded TIL-Ts in the tumor tissues, compromising significantly increased CD8+ T and memory T cells, thereby enhancing the anti-tumor effect. Together, this work provides an injectable hydrogel microsphere-integrated training platform capable of inspiring TIL-Ts potential for a range of solid tumor immunotherapy.
Collapse
Affiliation(s)
- Jiachen He
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Junjie Niu
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Lin Wang
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Wen Zhang
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Xu He
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Xiongjinfu Zhang
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Wei Hu
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Yunkai Tang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Huilin Yang
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China
| | - Jie Sun
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China.
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
| | - Qin Shi
- Department of Orthopedics, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, PR China.
| |
Collapse
|
7
|
Yan H, Yan H, Liu L, Su R, Gao C, Li X, Wang C. Low-dose interleukin-2 treatment increases the proportion of regulatory T cells in patients with rheumatic diseases: A meta-analysis. Autoimmun Rev 2023; 22:103270. [PMID: 36627065 DOI: 10.1016/j.autrev.2023.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND It is now accepted that immune tolerance disorders caused by inadequate Treg cell function or number are important factors in the development and progression of rheumatic diseases. There is increasing evidence that ld IL-2 treatment increases the proportion of Treg cells in patients' peripheral blood, but this conclusion is still controversial. Here, we performed a meta-analysis of reports documenting the proportion of Treg cells and the rate of adverse events in patients with rheumatic disease before and after the administration of ld IL-2 to better understand its effect and safety on Treg cells in the field of rheumatic diseases. METHODS We systematically searched PubMed, Embase, Scopus, Cochrane Library, and Web of science databases up to 15th November 2022 and identified studies that reported the proportion of peripheral blood Treg cells before and after ld IL-2 treatment in patients with rheumatic disease. Random-effects model was used to perform a meta-analysis of Treg cell proportions before and after ld IL-2 administration, and a meta-regression analysis was performed to explore heterogeneity. Inconsistency was evaluated using the I-squared index (I2), and publication bias was assessed by examining funnel plot asymmetry using the Egger tests. RESULTS Eighteen studies involving 1608 patients were included in the meta-analysis. The proportion of Treg cells in peripheral blood of these patients increased significantly after receiving ld IL-2 treatment [1.07 (95% CI 0.86,1.27), p < 0.001, I2 = 67.3%]. Next, Meta-regression was performed for 5 variables including publish year, disease type, trail type and dosage and duration of the medication. The results suggest that these variables do not lead to high heterogeneity. (p = 0.698, 0.267, 0.502, 0.843, 0.560, respectively). And finally, statistical analysis showed no difference in adverse reactions between ld IL-2 group and control group in treatment [1.06 (95% CI 0.86,1.31), p = 0.586, I2 = 53.8%], which is unreliable because the data is so small. CONCLUSIONS Ld IL-2 does increase the proportion of peripheral blood Treg cells in patients with rheumatism, and single and cumulative doses must be considered when using ld IL-2. In addition, more studies on the safety of ld IL-2 are urgently needed.
Collapse
Affiliation(s)
- Huanhuan Yan
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Huer Yan
- College of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lu Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women' Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China; Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China.
| |
Collapse
|
8
|
Genetic Modification of T Cells for the Immunotherapy of Cancer. Vaccines (Basel) 2022; 10:vaccines10030457. [PMID: 35335089 PMCID: PMC8949949 DOI: 10.3390/vaccines10030457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/05/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immunotherapy is a beneficial treatment approach for multiple cancers, however, current therapies are effective only in a small subset of patients. Adoptive cell transfer (ACT) is a facet of immunotherapy where T cells targeting the tumor cells are transferred to the patient with several primary forms, utilizing unmodified or modified T cells: tumor-infiltrating lymphocytes (TIL), genetically modified T cell receptor transduced T cells, and chimeric antigen receptor (CAR) transduced T cells. Many clinical trials are underway investigating the efficacy and safety of these different subsets of ACT, as well as trials that combine one of these subsets with another type of immunotherapy. The main challenges existing with ACT are improving clinical responses and decreasing adverse events. Current research focuses on identifying novel tumor targeting T cell receptors, improving safety and efficacy, and investigating ACT in combination with other immunotherapies.
Collapse
|