1
|
Buonsenso D, Sodero G, Valentini P. Transcript host-RNA signatures to discriminate bacterial and viral infections in febrile children. Pediatr Res 2022; 91:454-463. [PMID: 34912024 DOI: 10.1038/s41390-021-01890-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022]
Abstract
Traditional laboratory markers, such as white blood cell count, C-reactive protein, and procalcitonin, failed to discriminate viral and bacterial infections in children. The lack of an accurate diagnostic test has a negative impact on child's care, limiting the ability of early diagnosis and appropriate management of children. This, on the one hand, may lead to delayed recognition of sepsis and severe bacterial infections, which still represent the leading causes of child morbidity and mortality. On the other hand, this may lead to overuse of empiric antibiotic therapies, particularly for specific subgroups of patients, such as infants younger than 90 days of life or neutropenic patients. This approach has an adverse effect on costs, antibiotic resistance, and pediatric microbiota. Transcript host-RNA signatures are a new tool used to differentiate viral from bacterial infections by analyzing the transcriptional biosignatures of RNA in host leukocytes. In this systematic review, we evaluate the efficacy and the possible application of this new diagnostic method in febrile children, along with challenges in its implementation. Our review support the growing evidence that the application of these new tools can improve the characterization of the spectrum of bacterial and viral infections and optimize the use of antibiotics in children. IMPACT: Transcript host RNA signatures may allow to better characterize the spectrum of viral, bacterial, and inflammatory illnesses in febrile children and can be used with traditional diagnostic methods to determine if and when to start antibiotic therapy. This is the first review on the use of transcript RNA signatures in febrile children to distinguish viral from bacterial infections. Our review identified a wide variability of target populations and gold standards used to define sepsis and SBIs, limiting the generalization of our findings.
Collapse
Affiliation(s)
- Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy. .,Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, 00168, Rome, Italy. .,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168, Rome, Italy. .,Danilo Buonsenso, Largo A. Gemelli 8, 00168, Rome, Italy.
| | - Giorgio Sodero
- Istituto di Pediatria, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Piero Valentini
- Global Health Research Institute, Istituto di Igiene, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.,Istituto di Pediatria, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| |
Collapse
|
2
|
Baker S, Blohmke CJ, Maes M, Johnston PI, Darton TC. The Current Status of Enteric Fever Diagnostics and Implications for Disease Control. Clin Infect Dis 2020; 71:S64-S70. [PMID: 32725220 PMCID: PMC7388712 DOI: 10.1093/cid/ciaa503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Enteric (typhoid) fever remains a problem in low- and middle-income countries that lack the infrastructure to maintain sanitation and where inadequate diagnostic methods have restricted our ability to identify and control the disease more effectively. As we move into a period of potential disease elimination through the introduction of typhoid conjugate vaccine (TCV), we again need to reconsider the role of typhoid diagnostics in how they can aid in facilitating disease control. Recent technological advances, including serology, transcriptomics, and metabolomics, have provided new insights into how we can detect signatures of invasive Salmonella organisms interacting with the host during infection. Many of these new techniques exhibit potential that could be further explored with the aim of creating a new enteric fever diagnostic to work in conjunction with TCV. We need a sustained effort within the enteric fever field to accelerate, validate, and ultimately introduce 1 (or more) of these methods to facilitate the disease control initiative. The window of opportunity is still open, but we need to recognize the need for communication with other research areas and commercial organizations to assist in the progression of these diagnostic approaches. The elimination of enteric fever is now becoming a real possibility, but new diagnostics need to be part of the equation and factored into future calculations for disease control.
Collapse
Affiliation(s)
- Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Mailis Maes
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Peter I Johnston
- Florey Institute for Host-Pathogen Interactions, Department for Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| | - Thomas C Darton
- Florey Institute for Host-Pathogen Interactions, Department for Infection, Immunity and Cardiovascular Disease, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
Goletti D, Lindestam Arlehamn CS, Scriba TJ, Anthony R, Cirillo DM, Alonzi T, Denkinger CM, Cobelens F. Can we predict tuberculosis cure? What tools are available? Eur Respir J 2018; 52:13993003.01089-2018. [PMID: 30361242 DOI: 10.1183/13993003.01089-2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/24/2018] [Indexed: 01/08/2023]
Abstract
Antibiotic treatment of tuberculosis takes ≥6 months, putting a major burden on patients and health systems in large parts of the world. Treatment beyond 2 months is needed to prevent tuberculosis relapse by clearing remaining, drug-tolerant Mycobacterium tuberculosis bacilli. However, the majority of patients treated for only 2-3 months will cure without relapse and do not need prolonged treatment. Assays that can identify these patients at an early stage of treatment may significantly help reduce the treatment burden, while a test to identify those patients who will fail treatment may help target host-directed therapies.In this review we summarise the state of the art with regard to discovery of biomarkers that predict relapse-free cure for pulmonary tuberculosis. Positron emission tomography/computed tomography scanning to measure pulmonary inflammation enhances our understanding of "cure". Several microbiological and immunological markers seem promising; however, they still need a formal validation. In parallel, new research strategies are needed to generate reliable tests.
Collapse
Affiliation(s)
- Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Dept of Epidemiology and Preclinical Research, Rome, Italy
| | | | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and Division of Immunology, Dept of Pathology, University of Cape Town, Cape Town, South Africa
| | - Richard Anthony
- National Institute for Public Health and the Environment (RIVM), Utrecht, The Netherlands
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, San Raffaele Scientific Institute, HSR, Division of Immunology and Infectious Diseases Milan, Milan, Italy
| | - Tonino Alonzi
- Translational Research Unit, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Dept of Epidemiology and Preclinical Research, Rome, Italy
| | | | - Frank Cobelens
- Dept of Global Health and Amsterdam Institute for Global Health and Development, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Incipient and Subclinical Tuberculosis: a Clinical Review of Early Stages and Progression of Infection. Clin Microbiol Rev 2018; 31:31/4/e00021-18. [PMID: 30021818 DOI: 10.1128/cmr.00021-18] [Citation(s) in RCA: 348] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) is the leading infectious cause of mortality worldwide, due in part to a limited understanding of its clinical pathogenic spectrum of infection and disease. Historically, scientific research, diagnostic testing, and drug treatment have focused on addressing one of two disease states: latent TB infection or active TB disease. Recent research has clearly demonstrated that human TB infection, from latent infection to active disease, exists within a continuous spectrum of metabolic bacterial activity and antagonistic immunological responses. This revised understanding leads us to propose two additional clinical states: incipient and subclinical TB. The recognition of incipient and subclinical TB, which helps divide latent and active TB along the clinical disease spectrum, provides opportunities for the development of diagnostic and therapeutic interventions to prevent progression to active TB disease and transmission of TB bacilli. In this report, we review the current understanding of the pathogenesis, immunology, clinical epidemiology, diagnosis, treatment, and prevention of both incipient and subclinical TB, two emerging clinical states of an ancient bacterium.
Collapse
|
5
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
6
|
Goletti D, Lee MR, Wang JY, Walter N, Ottenhoff THM. Update on tuberculosis biomarkers: From correlates of risk, to correlates of active disease and of cure from disease. Respirology 2018; 23:455-466. [PMID: 29457312 DOI: 10.1111/resp.13272] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/18/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022]
Abstract
Tuberculosis (TB) remains a devastating disease, yet despite its enormous toll on global health, tools to control TB are insufficient and often outdated. TB Biomarkers (TB-BM) would constitute extremely useful tools to measure infection status and predict outcome of infection, vaccination or therapy. There are several types of TB-BM: Correlate of Infection; Correlate of TB Disease; Correlate of Increased Risk of Developing Active TB Disease; Correlate of the Curative Response to Therapy; and Correlate of Protection (CoP). Most TB-BM currently studied are host-derived BM, and consist of transcriptomic, proteomic, metabolomic, cellular markers or marker combinations ('signatures'). In particular, vaccine-inducible CoP are expected to be transformative in developing new TB vaccines as they will de-risk vaccine research and development (R&D) as well as human testing at an early stage. In addition, CoP could also help minimizing the need for preclinical studies in experimental animals. Of key importance is that TB-BM are tested and validated in different well-characterized human TB cohorts, preferably with complementary profiles and geographically diverse populations: genetic and environmental factors such as (viral) coinfections, exposure to non-tuberculous mycobacteria, nutritional status, metabolic status, age (infants vs children vs adolescents vs adults) and other factors impact host immune set points and host responses across different populations. In this study, we review the most recent advances in research into TB-BM for the diagnosis of active TB, risk of TB development and treatment-induced TB cure.
Collapse
Affiliation(s)
- Delia Goletti
- Translational Research Unit, Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases "L. Spallanzani", Rome, Italy
| | - Meng-Rui Lee
- Department of Internal Medicine, National Taiwan University Hospital, Hsinchu, Taiwan
| | - Jann-Yuan Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Nicholas Walter
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
de Araujo LS, da Silva NDBM, Leung JAM, Mello FCQ, Saad MHF. IgG subclasses' response to a set of mycobacterial antigens in different stages of Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2018. [DOI: 10.1016/j.tube.2017.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Petruccioli E, Scriba TJ, Petrone L, Hatherill M, Cirillo DM, Joosten SA, Ottenhoff TH, Denkinger CM, Goletti D. Correlates of tuberculosis risk: predictive biomarkers for progression to active tuberculosis. Eur Respir J 2016; 48:1751-1763. [PMID: 27836953 PMCID: PMC5898936 DOI: 10.1183/13993003.01012-2016] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023]
Abstract
New approaches to control the spread of tuberculosis (TB) are needed, including tools to predict development of active TB from latent TB infection (LTBI). Recent studies have described potential correlates of risk, in order to inform the development of prognostic tests for TB disease progression. These efforts have included unbiased approaches employing “omics” technologies, as well as more directed, hypothesis-driven approaches assessing a small set or even individual selected markers as candidate correlates of TB risk. Unbiased high-throughput screening of blood RNAseq profiles identified signatures of active TB risk in individuals with LTBI, ≥1 year before diagnosis. A recent infant vaccination study identified enhanced expression of T-cell activation markers as a correlate of risk prior to developing TB; conversely, high levels of Ag85A antibodies and high frequencies of interferon (IFN)-γ specific T-cells were associated with reduced risk of disease. Others have described CD27−IFN-γ+CD4+ T-cells as possibly predictive markers of TB disease. T-cell responses to TB latency antigens, including heparin-binding haemagglutinin and DosR-regulon-encoded antigens have also been correlated with protection. Further studies are needed to determine whether correlates of risk can be used to prevent active TB through targeted prophylactic treatment, or to allow targeted enrolment into efficacy trials of new TB vaccines and therapeutic drugs. Promising biomarkers may allow accurate prediction of progression from infection to active TB diseasehttp://ow.ly/OzCL304ezfk
Collapse
Affiliation(s)
- Elisa Petruccioli
- Dept of Epidemiology and Preclinical Research, Translational Research Unit, National Institute for Infectious Diseases "L. Spallanzani", Rome, Italy
| | - Thomas J Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa.,Division of Immunology, Dept of Pathology, University of Cape Town, Cape Town, South Africa
| | - Linda Petrone
- Dept of Epidemiology and Preclinical Research, Translational Research Unit, National Institute for Infectious Diseases "L. Spallanzani", Rome, Italy
| | - Mark Hatherill
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Cape Town, South Africa.,Division of Immunology, Dept of Pathology, University of Cape Town, Cape Town, South Africa
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology and Infectious Diseases, San Raffaele Scientific Institute, HSR, Milan, Italy
| | | | | | | | - Delia Goletti
- Dept of Epidemiology and Preclinical Research, Translational Research Unit, National Institute for Infectious Diseases "L. Spallanzani", Rome, Italy
| |
Collapse
|
9
|
Xiao Y, Sha W, Tian Z, Chen Y, Ji P, Sun Q, Wang H, Wang S, Fang Y, Wen HL, Zhao HM, Lu J, Xiao H, Fan XY, Shen H, Wang Y. Adenylate kinase: a novel antigen for immunodiagnosis and subunit vaccine against tuberculosis. J Mol Med (Berl) 2016; 94:823-34. [PMID: 26903285 DOI: 10.1007/s00109-016-1392-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/07/2016] [Accepted: 02/11/2016] [Indexed: 01/09/2023]
Abstract
UNLABELLED Mycobacterium tuberculosis (M.tb)-derived antigens capable of inducing strong cellular and/or humoral responses are potential targets for both immunodiagnosis and vaccine development against tuberculosis (TB). In the present study, we identified adenylate kinase (ADK, Rv0733) as an antigen that induces high cellular and antibody responses in active TB patients. We consequently tested the use of ADK-specific T cells and antibodies as biomarkers for TB diagnosis. The ADK-specific IFN-γ-producing cells detected by ELISPOT assay showed a sensitivity of 85.0 % and specificity of 94.15 % for TB diagnosis while ADK-specific IgG antibody showed a sensitivity of 40.35 % and specificity of 96.43 %. Combining ADK-specific cellular and antibody responses increased the sensitivity to 91.59 % and the specificity to 96.15 %. Immunogenicity and protection against M.tb infection were further tested in a murine model. Immunization with ADK protein elicited strong specific T- and B-cell responses, and provided protection against the virulent H37Rv stain of M.tb resulting in lower bacilli load in the spleens and lungs. More ADK-specific polyfunctional Th1 cells were observed in the lungs when compared to adjuvant-immunized mice. ADK thus may serve as a novel M.tb antigen for TB immunodiagnosis and development of subunit vaccines. KEY MESSAGES ADK induces strong immune responses both in humans and mice. ADK-specific IFN-γ production and B-cell responses have high potential for TB diagnosis. ADK immunization provides protection against M.tb infection.
Collapse
MESH Headings
- Adenylate Kinase/administration & dosage
- Adenylate Kinase/immunology
- Adjuvants, Immunologic/administration & dosage
- Adolescent
- Adult
- Aged
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/administration & dosage
- Antigens, Bacterial/immunology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Bacterial Proteins/administration & dosage
- Bacterial Proteins/immunology
- Case-Control Studies
- Female
- Humans
- Immunity, Cellular/drug effects
- Immunity, Humoral/drug effects
- Immunogenicity, Vaccine
- Interferon-gamma/biosynthesis
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Tuberculosis Vaccines/administration & dosage
- Tuberculosis, Pulmonary/diagnosis
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tuberculosis, Pulmonary/prevention & control
- Vaccines, Subunit
Collapse
Affiliation(s)
- Yangjiong Xiao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Wei Sha
- Shanghai Key Laboratory of Tuberculosis, Diagnosis and Treat Centre of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200433, China
| | - Zhaofeng Tian
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Yingying Chen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Ping Ji
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Qin Sun
- Shanghai Key Laboratory of Tuberculosis, Diagnosis and Treat Centre of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200433, China
| | - Huiyu Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Shujun Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Yong Fang
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Han-Li Wen
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China
| | - Hui-Min Zhao
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China
| | - Jie Lu
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China
| | - Heping Xiao
- Shanghai Key Laboratory of Tuberculosis, Diagnosis and Treat Centre of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200433, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, 201508, China.
| | - Hao Shen
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, 100045, China.
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Ying Wang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
10
|
Iroh Tam PY, Obaro SK, Storch G. Challenges in the Etiology and Diagnosis of Acute Febrile Illness in Children in Low- and Middle-Income Countries. J Pediatric Infect Dis Soc 2016; 5:190-205. [PMID: 27059657 PMCID: PMC7107506 DOI: 10.1093/jpids/piw016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 03/04/2016] [Indexed: 01/01/2023]
Abstract
Acute febrile illness is a common cause of hospital admission, and its associated infectious causes contribute to substantial morbidity and death among children worldwide, especially in low- and middle-income countries. Declining transmission of malaria in many regions, combined with the increasing use of rapid diagnostic tests for malaria, has led to the increasing recognition of leptospirosis, rickettsioses, respiratory viruses, and arboviruses as etiologic agents of fevers. However, clinical discrimination between these etiologies can be difficult. Overtreatment with antimalarial drugs is common, even in the setting of a negative test result, as is overtreatment with empiric antibacterial drugs. Viral etiologies remain underrecognized and poorly investigated. More-sensitive diagnostics have led to additional dilemmas in discriminating whether a positive test result reflects a causative pathogen. Here, we review and summarize the current epidemiology and focus particularly on children and the challenges for future research.
Collapse
Affiliation(s)
- Pui-Ying Iroh Tam
- Department of Pediatrics
,
University of Minnesota Medical School
,
Minneapolis,Corresponding Author:
Pui-Ying Iroh Tam, MD, 3-210 MTRF, 2001 6th St. SE, Minneapolis, MN 55455. E-mail:
| | - Stephen K. Obaro
- Department of Pediatrics, University of Nebraska Medical Center, Omaha
| | - Gregory Storch
- Department of Pediatrics
,
Washington University School of Medicine
,
St Louis, Missouri
| |
Collapse
|
11
|
Bates M, Zumla A. The development, evaluation and performance of molecular diagnostics for detection of Mycobacterium tuberculosis. Expert Rev Mol Diagn 2016; 16:307-22. [PMID: 26735769 DOI: 10.1586/14737159.2016.1139457] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The unique pathogenesis of tuberculosis (TB) poses several barriers to the development of accurate diagnostics: a) the establishment of life-long latency by Mycobacterium tuberculosis (M.tb) after primary infection confounds the development of classical antibody or antigen based assays; b) our poor understanding of the molecular pathways that influence progression from latent to active disease; c) the intracellular nature of M.tb infection in tissues means that M.tb and/or its components, are not readily detectable in peripheral specimens; and d) the variable presence of M.tb bacilli in specimens from patients with extrapulmonary TB or children. The literature on the current portfolio of molecular diagnostics tests for TB is reviewed here and the developmental pipeline is summarized. Also reviewed are data from recently published operational research on the GeneXpert MTB/RIF assay and discussed are the lessons that can be taken forward for the design of studies to evaluate the impact of TB diagnostics.
Collapse
Affiliation(s)
- Matthew Bates
- a UNZA-UCLMS Research & Training Programme , University Teaching Hospital , Lusaka , Zambia.,b Centre for Clinical Microbiology, Division of Infection and Immunity , University College London , London , UK
| | - Alimuddin Zumla
- a UNZA-UCLMS Research & Training Programme , University Teaching Hospital , Lusaka , Zambia.,b Centre for Clinical Microbiology, Division of Infection and Immunity , University College London , London , UK.,c NIHR Biomedical Research Centre , University College London Hospitals , London , UK
| |
Collapse
|
12
|
Blood Transcriptional Biomarkers for Active Tuberculosis among Patients in the United States: a Case-Control Study with Systematic Cross-Classifier Evaluation. J Clin Microbiol 2015; 54:274-82. [PMID: 26582831 DOI: 10.1128/jcm.01990-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/03/2015] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Blood transcriptional signatures are promising for tuberculosis (TB) diagnosis but have not been evaluated among U.S. PATIENTS To be used clinically, transcriptional classifiers need reproducible accuracy in diverse populations that vary in genetic composition, disease spectrum and severity, and comorbidities. In a prospective case-control study, we identified novel transcriptional classifiers for active TB among U.S. patients and systematically compared their accuracy to classifiers from published studies. Blood samples from HIV-uninfected U.S. adults with active TB, pneumonia, or latent TB infection underwent whole-transcriptome microarray. We used support vector machines to classify disease state based on transcriptional patterns. We externally validated our classifiers using data from sub-Saharan African cohorts and evaluated previously published transcriptional classifiers in our population. Our classifier distinguishing active TB from pneumonia had an area under the concentration-time curve (AUC) of 96.5% (95.4% to 97.6%) among U.S. patients, but the AUC was lower (90.6% [89.6% to 91.7%]) in HIV-uninfected Sub-Saharan Africans. Previously published comparable classifiers had AUC values of 90.0% (87.7% to 92.3%) and 82.9% (80.8% to 85.1%) when tested in U.S. PATIENTS Our classifier distinguishing active TB from latent TB had AUC values of 95.9% (95.2% to 96.6%) among U.S. patients and 95.3% (94.7% to 96.0%) among Sub-Saharan Africans. Previously published comparable classifiers had AUC values of 98.0% (97.4% to 98.7%) and 94.8% (92.9% to 96.8%) when tested in U.S. PATIENTS Blood transcriptional classifiers accurately detected active TB among U.S. adults. The accuracy of classifiers for active TB versus that of other diseases decreased when tested in new populations with different disease controls, suggesting additional studies are required to enhance generalizability. Classifiers that distinguish active TB from latent TB are accurate and generalizable across populations and can be explored as screening assays.
Collapse
|
13
|
Venturini E, Remaschi G, Berti E, Montagnani C, Galli L, de Martino M, Chiappini E. What steps do we need to take to improve diagnosis of tuberculosis in children? Expert Rev Anti Infect Ther 2015; 13:907-22. [PMID: 25938981 DOI: 10.1586/14787210.2015.1040764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tuberculosis still represents a big global public health challenge. The diagnosis of tuberculosis and the differentiation between active and latent tuberculosis remain difficult, particularly in childhood, because of the lack of a gold standard test for diagnosis. In the last decade, novel diagnostic assays have been developed. Among immunologic tests, new assays based on the measurement of different cytokines released by specific T cells in response to Mycobacterium tuberculosis antigens, other than INF-γ, have been investigated. Promising results rely on nucleic acid amplification techniques, also able to detect drugs resistance. Innovative research fields studied the modifications of CD27 expression in T cells as well as different host gene expression in response to M. tuberculosis. Further studies are needed to assess the diagnostic value and the accuracy of these new assays.
Collapse
Affiliation(s)
- Elisabetta Venturini
- Department of Health Sciences, Anna Meyer Children's University Hospital, University of Florence, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|