1
|
Klufah F, Mobaraki G, Liu D, Alharbi RA, Kurz AK, Speel EJM, Winnepenninckx V, Zur Hausen A. Emerging role of human polyomaviruses 6 and 7 in human cancers. Infect Agent Cancer 2021; 16:35. [PMID: 34001216 PMCID: PMC8130262 DOI: 10.1186/s13027-021-00374-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Currently 12 human polyomaviruses (HPyVs) have been identified, 6 of which have been associated with human diseases, including cancer. The discovery of the Merkel cell polyomavirus and its role in the etiopathogenesis in the majority of Merkel cell carcinomas has drawn significant attention, also to other novel HPyVs. In 2010, HPyV6 and HPyV7 were identified in healthy skin swabs. Ever since it has been speculated that they might contribute to the etiopathogenesis of skin and non-cutaneous human cancers. MAIN BODY Here we comprehensively reviewed and summarized the current evidence potentially indicating an involvement of HPyV6 and HPyV7 in the etiopathogenesis of neoplastic human diseases. The seroprevalence of both HPyV6 and 7 is high in a normal population and increases with age. In skin cancer tissues, HPyV6- DNA was far more often prevalent than HPyV7 in contrast to cancers of other anatomic sites, in which HPyV7 DNA was more frequently detected. CONCLUSION It is remarkable to find that the detection rate of HPyV6-DNA in tissues of skin malignancies is higher than HPyV7-DNA and may indicate a role of HPyV6 in the etiopathogenesis of the respected skin cancers. However, the sheer presence of viral DNA is not enough to prove a role in the etiopathogenesis of these cancers.
Collapse
Affiliation(s)
- Faisal Klufah
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Ghalib Mobaraki
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Dan Liu
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.,Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Raed A Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - Anna Kordelia Kurz
- Department of Internal Medicine IV, RWTH Aachen University Hospital, Aachen, Germany
| | - Ernst Jan M Speel
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Axel Zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Prezioso C, Van Ghelue M, Moens U, Pietropaolo V. HPyV6 and HPyV7 in urine from immunocompromised patients. Virol J 2021; 18:24. [PMID: 33482864 PMCID: PMC7821732 DOI: 10.1186/s12985-021-01496-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background Human polyomavirus 6 (HPyV6) and HPyV7 are two of the novel polyomaviruses that were originally detected in non-diseased skin. Serological studies have shown that these viruses are ubiquitous in the healthy adult population with seroprevalence up to 88% for HPyV6 and 72% for HPyV7. Both viruses are associated with pruritic skin eruption in immunocompromised patients, but a role with other diseases in immunoincompetent patients or malignancies has not been established. Methods PCR was used to determine the presence of HPyV6 and HPyV7 DNA in urine samples from systemic lupus erythematosus (n = 73), multiple sclerosis (n = 50), psoriasis vulgaris (n = 15), arthritic psoriasis (n = 15) and HIV-positive patients (n = 66). In addition, urine from pregnant women (n = 47) and healthy blood donors (n = 20) was investigated. Results HPyV6 DNA was detected in 21 (28.8%) of the urine specimens from SLE patients, in 6 (9.1%) of the urine samples from the HIV-positive cohort, and in 19 (40.4%) samples from pregnant women. HPyV7 DNA was only found in 6 (8.2%) of the urine specimens from SLE patients and in 4 (8.5%) samples from pregnant women. No HPyV6 and HPyV7 viruria was detected in the urine samples from the other patients. Conclusions HPyV6, and to a lesser extend HPyV7, viruria seems to be common in SLE and HIV-positive patients, and pregnant women. Whether these viruses are of clinical relevance in these patients is not known.
Collapse
Affiliation(s)
- Carla Prezioso
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy.,Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele Pisana, Rome, Italy
| | - Marijke Van Ghelue
- Department of Medical Genetics, Division of Child and Adolescent Health, University Hospital of North Norway, Tromsø, Norway.,Department of Clinical Medicine Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway.
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, "Sapienza" University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Klufah F, Mobaraki G, Chteinberg E, Alharbi RA, Winnepenninckx V, Speel EJM, Rennspiess D, Olde Damink SW, Neumann UP, Kurz AK, Samarska I, zur Hausen A. High Prevalence of Human Polyomavirus 7 in Cholangiocarcinomas and Adjacent Peritumoral Hepatocytes: Preliminary Findings. Microorganisms 2020; 8:microorganisms8081125. [PMID: 32726909 PMCID: PMC7464213 DOI: 10.3390/microorganisms8081125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a rare biliary-duct malignancy with poor prognosis. Recently, the presence of the human polyomavirus 6 (HPyV6) has been reported in the bile of diverse hepatobiliary diseases, particularly in the bile of CCA patients. Here, we investigated the presence of novel HPyVs in CCA tissues using diverse molecular techniques to assess a possible role of HPyVs in CCA. Formalin-Fixed Paraffin-Embedded (FFPE) tissues of 42 CCA patients were included in this study. PCR-based screening for HPyVs was conducted using degenerated and HPyV-specific primers. Following that, we performed FISH, RNA in situ hybridization (RNA-ISH), and immunohistochemistry (IHC) to assess the presence of HPyVs in selected tissues. Of all 42 CCAs, 25 (59%) were positive for one HPyV, while 10 (24%) CCAs were positive for 2 HPyVs simultaneously, and 7 (17%) were negative for HPyVs. Of the total 35 positive CCAs, 19 (45%) were positive for HPyV7, 4 (9%) for HPyV6, 2 (5%) for Merkel cell polyomavirus (MCPyV), 8 (19%) for both HPyV7/MCPyV, and 2 (5%) for both HPyV6/HPyV7 as confirmed by sequencing. The presence of viral nucleic acids was confirmed by specific FISH, while the RNA-ISH confirmed the presence of HPyV6 on the single-cell level. In addition, expression of HPyV7, HPyV6, and MCPyV proteins were confirmed by IHC. Our results strongly indicate that HPyV7, HPyV6, and MCPyV infect bile duct epithelium, hepatocytes, and CCA cells, which possibly suggest an indirect role of these viruses in the etiopathogenesis of CCA. Furthermore, the observed hepatotropism of these novel HPyV, in particular HPyV7, might implicate a role of these viruses in other hepatobiliary diseases.
Collapse
Affiliation(s)
- Faisal Klufah
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia;
| | - Ghalib Mobaraki
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
- Department of Medical Laboratories Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Emil Chteinberg
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
| | - Raed A. Alharbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65779, Saudi Arabia;
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
| | - Ernst Jan M. Speel
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
| | - Dorit Rennspiess
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
| | - Steven W. Olde Damink
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (S.W.O.D.); (U.P.N.)
- Department of General Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Ulf P. Neumann
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD Maastricht, The Netherlands; (S.W.O.D.); (U.P.N.)
- Department of General Visceral and Transplantation Surgery, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Anna Kordelia Kurz
- Department of Internal Medicine IV, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| | - Iryna Samarska
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
| | - Axel zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University, Medical Centre+, 6229 HX Maastricht, The Netherlands; (F.K.); (G.M.); (E.C.); (V.W.); (E.J.M.S.); (D.R.); (I.S.)
- Correspondence: ; Tel.: +31-433-874-634
| |
Collapse
|
4
|
Hashida Y, Higuchi T, Matsuzaki S, Nakajima K, Sano S, Daibata M. Prevalence and Genetic Variability of Human Polyomaviruses 6 and 7 in Healthy Skin Among Asymptomatic Individuals. J Infect Dis 2019; 217:483-493. [PMID: 29161422 DOI: 10.1093/infdis/jix516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
Background Despite the pathogenetic potential of human polyomavirus 6 (HPyV6) and human polyomavirus 7 (HPyV7), they have been found in the normal skin of healthy individuals. However, little is known about the prevalence, infection levels, and geographical variations of these polyomaviruses in the skin. Methods Using skin swabs from 470 participants aged 2-98 years, we estimated the prevalence of copy numbers of HPyV6 and HPyV7 with respect to age and ethnicity. Phylogenetic analyses were conducted based on viral sequences obtained from Asian and white populations. Results This study provides the first analyses of the age-specific prevalence and levels of HPyV6 and HPyV7 infections in normal skin. Comparisons of age groups revealed that the prevalence and viral loads were significantly higher in elderly persons. Phylogenetic analyses demonstrated the existence of Asian/Japanese-specific strains genetically distinct from strains prevalent in the skin of the white population studied. Conclusions This large study suggests that HPyV6 and HPyV7 infections in the skin are highly prevalent in elderly adults. Further research is warranted to understand whether persistent infection with high viral loads in the skin could be a risk factor for the development of HPyV6- and HPyV7-associated skin disorders.
Collapse
Affiliation(s)
- Yumiko Hashida
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| | - Tomonori Higuchi
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| | - Kimiko Nakajima
- Department of Dermatology, Kochi Medical School, Kochi University, Japan
| | - Shigetoshi Sano
- Department of Dermatology, Kochi Medical School, Kochi University, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Japan
| |
Collapse
|
5
|
Nguyen KD, Chamseddin BH, Cockerell CJ, Wang RC. The Biology and Clinical Features of Cutaneous Polyomaviruses. J Invest Dermatol 2018; 139:285-292. [PMID: 30470393 DOI: 10.1016/j.jid.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
Human polyomaviruses are double-stand DNA viruses with a conserved genomic structure, yet they present with diverse tissue tropisms and disease presentations. Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7, and Malawi polyomavirus are shed from the skin, and Merkel cell polyomavirus, trichodysplasia spinulosa polyomavirus, human polyomavirus 6 and 7 have been linked to specific skin diseases. We present an update on the genomic and clinical features of these cutaneous polyomaviruses.
Collapse
Affiliation(s)
- Khang D Nguyen
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Bahir H Chamseddin
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Clay J Cockerell
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA
| | - Richard C Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Department of Dermatology, Dallas, Texas, USA.
| |
Collapse
|
6
|
Torres C, Barrios ME, Cammarata RV, Victoria M, Fernandez-Cassi X, Bofill-Mas S, Colina R, Blanco Fernández MD, Mbayed VA. Phylodynamics of Merkel-cell polyomavirus and human polyomavirus 6: A long-term history with humans. Mol Phylogenet Evol 2018; 126:210-220. [PMID: 29680507 DOI: 10.1016/j.ympev.2018.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/06/2018] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
Abstract
New human polyomaviruses have been described in the last years, including the Merkel-cell polyomavirus (MCPyV; Human polyomavirus 5) and the Human polyomavirus 6 (HPyV6). Although their infection is usually asymptomatic, in immunocompromised host can cause life-threatening pathologies, such as the Merkel cell carcinoma, an aggressive skin neoplasia associated to the MCPyV. Despite being prevalent viruses in population, epidemiological data from South America are scarce, as well as the characterization of the viral types circulating and their origin. The aims of this work were to describe MCPyV and HPyV6 from environmental samples with different geographical origin and to analyze their phylogenetic and evolutionary histories, particularly for MCPyV. Partial and complete genome sequences were obtained from sewage samples from Argentina, Uruguay and Spain. A total number of 87 sequences were obtained for MCPyV and 33 for HPyV6. Phylogenetic analysis showed that MCPyV sequences distributed according to their geographic origin in Europe/North America, Africa, Asia, South America and Oceania groups, suggesting that viral diversification might have followed human migrations across the globe. In particular, viruses from Argentina associated with Europe/North America and South America genotypes, whereas those from Uruguay and Spain also grouped with Africa genotype, reflecting the origin of the current population in each country, which could arrive not only during ancient human migration but also during recent migratory events. In addition, the South American group presented a high level of clusterization, showing internal clusters that could be related to specific locations, such as French Guiana and Brazil or the Southern region into South America, such as Argentina and Uruguay, suggesting a long term evolutionary process in the region. Additionally, in this work, we carried out the first analysis about the evolutionary history of MCPyV trough the integration of phylogenetic, epidemiological and historical data. Since a strong association is observed between the phylogenetic relationships and the origin of the sampled population, this analysis was based on the hypothesis of co-divergence between the virus and human populations. This analysis resulted in a substitution rate of 5.1 × 10-8 s/s/y (∼5.1% of divergence per million years) for the complete genome of MCPyV, which is in the range of those estimated for other double-stranded DNA viruses. Regarding HPyV6, a South American group with clusterization was observed (sequences from Uruguay). Meanwhile, sequences from Argentina grouped with European ones (France and Spain) and remained separated from those isolated in China, USA or Australia. The analysis of viruses from the environment allowed us to deep characterize prevalent infections in different geographic regions, reveling that viruses circulating in each population reflected its origin and that there are specific lineages associated with South America.
Collapse
Affiliation(s)
- Carolina Torres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| | - Melina Elizabeth Barrios
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Robertina Viviana Cammarata
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Matías Victoria
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Uruguay
| | - Xavier Fernandez-Cassi
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Silvia Bofill-Mas
- Laboratory of Virus Contaminants of Water and Food, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Catalonia, Spain
| | - Rodney Colina
- Laboratorio de Virología Molecular, CENUR Litoral Norte, Sede Salto, Universidad de la República, Uruguay
| | - María Dolores Blanco Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Viviana Andrea Mbayed
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología, Cátedra de Virología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| |
Collapse
|