1
|
Mangioni D, Fox V, Saltini P, Lombardi A, Bussini L, Carella F, Cariani L, Comelli A, Matinato C, Muscatello A, Teri A, Terranova L, Cento V, Carloni S, Bartoletti M, Alteri C, Bandera A. Increase in invasive group A streptococcal infections in Milan, Italy: a genomic and clinical characterization. Front Microbiol 2024; 14:1287522. [PMID: 38274761 PMCID: PMC10808429 DOI: 10.3389/fmicb.2023.1287522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Background Group A Streptococcus (GAS) causes multiple clinical manifestations, including invasive (iGAS) or even life-threatening (severe-iGAS) infections. After the drop in cases during COVID-19 pandemic, in 2022 a sharp increase of GAS was reported globally. Methods GAS strains collected in 09/2022-03/2023 in two university hospitals in Milan, Italy were retrospectively analyzed. Clinical/epidemiological data were combined with whole-genome sequencing to: (i) define resistome/virulome, (ii) identify putative transmission chains, (iii) explore associations between emm-types and clinical severity. Results Twenty-eight isolates were available, 19/28 (67.9%) from adults and 9/28 (32.1%) from pediatric population. The criteria for iGAS were met by 19/28 cases (67.9%), of which 11/19 (39.3%) met the further criteria for severe-iGAS. Pediatric cases were mainly non-invasive infections (8/9, 88.9%), adult cases were iGAS and severe-iGAS in 18/19 (94.7%) and 10/19 (52.6%), respectively. Thirteen emm-types were detected, the most prevalent being emm1 and emm12 (6/28 strains each, 21.4%). Single nucleotide polymorphism (SNP) analysis of emm1.0 and emm12.0 strains revealed pairwise SNP distance always >10, inconsistent with unique transmission chains. Emm12.0-type, found to almost exclusively carry virulence factors speH and speI, was mainly detected in children and in no-iGAS infections (55.6 vs. 5.3%, p = 0.007 and 66.7 vs. 0.0%, p < 0.001, respectively), while emm1.0-type was mainly detected in severe-iGAS (0.0 vs. 45.5%, p = 0.045). Conclusions This study showed that multiple emm-types contributed to a 2022/2023 GAS infection increase in two hospitals in Milan, with no evidence of direct transmission chains. Specific emm-types could be associated with disease severity or invasiveness. Overall, these results support the integration of classical epidemiological studies with genomic investigation to appropriately manage severe infections and improve surveillance.
Collapse
Affiliation(s)
- Davide Mangioni
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Valeria Fox
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paola Saltini
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Linda Bussini
- Infectious Disease Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Francesco Carella
- Infectious Disease Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Lisa Cariani
- Microbiology Laboratory, Clinical Pathology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Agnese Comelli
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Caterina Matinato
- Microbiology Laboratory, Clinical Pathology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Teri
- Microbiology Laboratory, Clinical Pathology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Leonardo Terranova
- Respiratory Unit and Adult Cystic Fibrosis Center, Department of Internal Medicine, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Cento
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Microbiology and Virology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Michele Bartoletti
- Infectious Disease Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
2
|
Attwood LO, O'Keefe D, Higgs P, Vujovic O, Doyle JS, Stewardson AJ. Epidemiology of acute infections in people who inject drugs in Australia. Drug Alcohol Rev 2024; 43:304-314. [PMID: 37995135 PMCID: PMC10952783 DOI: 10.1111/dar.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/23/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023]
Abstract
ISSUES People who inject drugs are at risk of acute infections, such as skin and soft tissue infections, infective endocarditis, bone and joint infections and bloodstream infections. There has been an increase in these infections in people who inject drugs internationally over the past 10 years. However, the local data regarding acute infections in Australia has not been well described. APPROACH We review the epidemiology of acute infections and associated morbidity and mortality amongst people who inject drugs in Australia. We summarise risk factors for these infections, including the concurrent social and psychological determinants of health. KEY FINDINGS The proportion of people who report having injected drugs in the prior 12 months in Australia has decreased over the past 18 years. However, there has been an increase in the burden of acute infections in this population. This increase is driven largely by skin and soft tissue infections. People who inject drugs often have multiple conflicting priorities that can delay engagement in care. IMPLICATIONS Acute infections in people who inject drugs are associated with significant morbidity and mortality. Acute infections contribute to significant bed days, surgical requirements and health-care costs in Australia. The increase in these infections is likely due to a complex interplay of microbiological, individual, social and environmental factors. CONCLUSION Acute infections in people who inject drugs in Australia represent a significant burden to both patients and health-care systems. Flexible health-care models, such as low-threshold wound clinics, would help directly target, and address early interventions, for these infections.
Collapse
Affiliation(s)
- Lucy O. Attwood
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical SchoolMonash UniversityMelbourneAustralia
| | | | - Peter Higgs
- Burnet InstituteMelbourneAustralia
- Department of Public HealthLa Trobe UniversityMelbourneAustralia
| | - Olga Vujovic
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical SchoolMonash UniversityMelbourneAustralia
| | - Joseph S. Doyle
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical SchoolMonash UniversityMelbourneAustralia
- Burnet InstituteMelbourneAustralia
| | - Andrew J. Stewardson
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical SchoolMonash UniversityMelbourneAustralia
| |
Collapse
|
3
|
Li Y, Rivers J, Mathis S, Li Z, McGee L, Chochua S, Metcalf BJ, Fleming-Dutra KE, Nanduri SA, Beall B. Continued Increase of Erythromycin Nonsusceptibility and Clindamycin Nonsusceptibility Among Invasive Group A Streptococci Driven by Genomic Clusters, United States, 2018-2019. Clin Infect Dis 2023; 76:e1266-e1269. [PMID: 35684991 PMCID: PMC11120049 DOI: 10.1093/cid/ciac468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
We analyzed 9630 invasive GAS surveillance isolates in the USA. From 2015-2017 to 2018-2019, significant increases in erythromycin-nonsusceptibility (18% vs 25%) and clindamycin-nonsusceptibility (17% vs 24%) occurred, driven by rapid expansions of genomic subclones. Prevention and control of clustered infections appear key to containing antimicrobial resistance.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Saundra Mathis
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Katherine E Fleming-Dutra
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Srinivas A Nanduri
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Bernard Beall
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Jespersen MG, Lacey JA, Tong SYC, Davies MR. Global genomic epidemiology of Streptococcus pyogenes. INFECTION GENETICS AND EVOLUTION 2020; 86:104609. [PMID: 33147506 DOI: 10.1016/j.meegid.2020.104609] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 02/04/2023]
Abstract
Streptococcus pyogenes is one of the Top 10 human infectious disease killers worldwide causing a range of clinical manifestations in humans. Colonizing a range of ecological niches within its sole host, the human, is key to the ability of this opportunistic pathogen to cause direct and post-infectious manifestations. The expansion of genome sequencing capabilities and data availability over the last decade has led to an improved understanding of the evolutionary dynamics of this pathogen within a global framework where epidemiological relationships and evolutionary mechanisms may not be universal. This review uses the recent publication by Davies et al., 2019 as an updated global framework to address S. pyogenes population genomics, highlighting how genomics is being used to gain new insights into evolutionary processes, transmission pathways, and vaccine design.
Collapse
Affiliation(s)
- Magnus G Jespersen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia; Victorian Infectious Diseases Service, The Royal Melbourne Hospital, at the Peter Doherty Institute for Infection and Immunity, VIC, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Wright T, Hope V, Ciccarone D, Lewer D, Scott J, Harris M. Prevalence and severity of abscesses and cellulitis, and their associations with other health outcomes, in a community-based study of people who inject drugs in London, UK. PLoS One 2020; 15:e0235350. [PMID: 32663203 PMCID: PMC7360031 DOI: 10.1371/journal.pone.0235350] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Skin and soft tissue infections (SSTI) are a common but preventable cause of morbidity and mortality among people who inject drugs (PWID). They can be severe, and hospitalisations of PWID with SSTI are rising. The most common SSTI presentations are abscesses and cellulitis. METHODS We used data from Care & Prevent, a cross-sectional community survey of PWID in London. We reported the lifetime prevalence of SSTI, severity of infections, key risk factors, and associated sequelae. Pictorial questions were used to assess SSTI severity. RESULTS We recruited 455 PWID. SSTI lifetime prevalence was high: 64% reported an abscess and/or cellulitis. Over one-third (37%) reported a severe infection, 137 (47%) reported hospitalisation. SSTIrisk factors were: aged 35+ years, injecting once or more times a day, subcutaneous or intra-muscular injections, and making four or more attempts to achieve an injection. Those who reported having other health conditions were at higher odds of having an abscess or cellulitis, with risk tending to increase with number of reported conditions. Half (46%) employed self-care for their worst SSTI, and 43% waited for ten or more days before seeking medical care or not seeking medical care at all. CONCLUSIONS Abscess and cellulitis are very common among PWID in London. We corroborate findings indicating SSTIs are associated with risks, e.g. venous access problems, as well as other co-morbid conditions: septicaemia, endocarditis, DVT, and kidney disease. These co-morbidities may impact SSTIs severity and outcomes. Delayed healthcare seeking potentially exacerbates infection severity, which in turn increases poorer health outcomes and complications.
Collapse
Affiliation(s)
- Talen Wright
- Department of Public Health, Environments & Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Vivian Hope
- Public Health Institute, Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel Ciccarone
- Department of Family and Community Medicine, University of California, San Francisco, San Francisco, CA, United States of America
| | - Dan Lewer
- Institute of Epidemiology and Healthcare, University College London, London, United Kingdom
| | - Jenny Scott
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, United Kingdom
| | - Magdalena Harris
- Department of Public Health, Environments & Society, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
6
|
Li H, Zhou L, Zhao Y, Ma L, Liu X, Hu J. Molecular epidemiology and antimicrobial resistance of group a streptococcus recovered from patients in Beijing, China. BMC Infect Dis 2020; 20:507. [PMID: 32660436 PMCID: PMC7359455 DOI: 10.1186/s12879-020-05241-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern. The objective of this study was to investigate the molecular epidemiological characteristics and antimicrobial resistance of GAS isolates from patients in Children's Hospital in Beijing. METHODS From 2016 to 2017, pharyngeal swab samples were collected from the outpatients in Children's Hospital, Capital Institute of Pediatrics, who were diagnosed with scarlet fever. Antimicrobial susceptibility test was performed according to the distribution of conventional antibiotics and Clinical and Laboratory Standards Institute (CLSI) recommendations. The distribution of the macrolide-resistance genes (ermB, ermA, mefA), emm (M protein-coding gene) typing, and superantigens (SAg) gene profiling were examined by polymerase chain reaction (PCR). RESULTS A total of 297 GAS isolates were collected. The susceptibility of the isolates to penicillin, ceftriaxone, and levofloxacin was 100%. The resistance rate to erythromycin and clindamycin was 98.3 and 96.6%, respectively. The dominant emm types were emm12 (65.32%), emm1 (27.61%), emm75 (2.69%), and emm89 (1.35%). Of the 297 isolates, 290 (97.64%) carried the ermB gene, and 5 (1.68%) carried the mefA gene, while none carried the ermA gene. The most common superantigen genes identified from GAS isolates were smeZ (96.97%), speC (92.59%), speG (91.58%), ssa (85.52%), speI (54.55%), speH (52.19%), and speA (34.34%). Isolates with the genotype emm1 possessed speA, speC, speG, speJ, speM, ssa, and smeZ, while emm12 possessed speC, speG, speH, speI, speM, ssa, and smeZ superantigens. CONCLUSIONS The prevalent strain of GAS isolates in Beijing has a high resistance rate to macrolides; however, penicillin can still be the preferred antibiotic for treatment. Erythromycin resistance was predominantly mediated by ermB. The common emm types were emm12 and emm1. There was a correlation between emm and the superantigen gene. Thus, long-term monitoring and investigation of the emm types and superantigen genes of GAS prevalence are imperative.
Collapse
Affiliation(s)
- Hongxin Li
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Lin Zhou
- Department of Clinical Laboratory, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yong Zhao
- The Sixth Medical Centre of PLA, General Hospital, Beijing, 100048, China
| | - Lijuan Ma
- Department of Clinical Laboratory, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xiaoyan Liu
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jin Hu
- Department of Dermatology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
7
|
Vasylyeva TI, Smyrnov P, Strathdee S, Friedman SR. Challenges posed by COVID-19 to people who inject drugs and lessons from other outbreaks. J Int AIDS Soc 2020; 23:e25583. [PMID: 32697423 PMCID: PMC7375066 DOI: 10.1002/jia2.25583] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION In light of the COVID-19 pandemic, considerable effort is going into identifying and protecting those at risk. Criminalization, stigmatization and the psychological, physical, behavioural and economic consequences of substance use make people who inject drugs (PWID) extremely vulnerable to many infectious diseases. While relationships between drug use and blood-borne and sexually transmitted infections are well studied, less attention has been paid to other infectious disease outbreaks among PWID. DISCUSSION COVID-19 is likely to disproportionally affect PWID due to a high prevalence of comorbidities that make the disease more severe, unsanitary and overcrowded living conditions, stigmatization, common incarceration, homelessness and difficulties in adhering to quarantine, social distancing or self-isolation mandates. The COVID-19 pandemic also jeopardizes essential for PWID services, such as needle exchange or substitution therapy programmes, which can be affected both in a short- and a long-term perspective. Importantly, there is substantial evidence of other infectious disease outbreaks in PWID that were associated with factors that enable COVID-19 transmission, such as poor hygiene, overcrowded living conditions and communal ways of using drugs. CONCLUSIONS The COVID-19 crisis might increase risks of homelessnes, overdoses and unsafe injecting and sexual practices for PWID. In order to address existing inequalities, consultations with PWID advocacy groups are vital when designing inclusive health response to the COVID-19 pandemic.
Collapse
|