1
|
Gao H, Chen YJ, Xu XQ, Xu ZY, Xu SJ, Xing JB, Liu J, Zha YF, Sun YK, Zhang GH. Comprehensive phylogeographic and phylodynamic analyses of global Senecavirus A. Front Microbiol 2022; 13:980862. [PMID: 36246286 PMCID: PMC9557172 DOI: 10.3389/fmicb.2022.980862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Senecavirus A (SVA) is a member of the genus Senecavirus in the family Picornaviridae that infects pigs and shows symptoms similar to foot and mouth diseases and other vesicular diseases. It is difficult to prevent, thus, causing tremendous economic loss to the pig industry. However, the global transmission routes of SVA and its natural origins remain unclear. In this study, we processed representative SVA sequences from the GenBank database along with 10 newly isolated SVA strains from the field samples collected from our lab to explore the origins, population characteristics, and transmission patterns of SVA. The SVA strains were firstly systematically divided into eight clades including Clade I–VII and Clade Ancestor based on the maximum likelihood phylogenetic inference. Phylogeographic and phylodynamics analysis within the Bayesian statistical framework revealed that SVA originated in the United States in the 1980s and afterward spread to different countries and regions. Our analysis of viral transmission routes also revealed its historical spread from the United States and the risk of the global virus prevalence. Overall, our study provided a comprehensive assessment of the phylogenetic characteristics, origins, history, and geographical evolution of SVA on a global scale, unlocking insights into developing efficient disease management strategies.
Collapse
Affiliation(s)
- Han Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yong-jie Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Xiu-qiong Xu
- Guangdong Animal Health and Quarantine Office, Guangdong Animal Disease Prevention and Control Center, Guangzhou, China
| | - Zhi-ying Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Si-jia Xu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jia-bao Xing
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yun-feng Zha
- Guangdong Animal Health and Quarantine Office, Guangdong Animal Disease Prevention and Control Center, Guangzhou, China
| | - Yan-kuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- *Correspondence: Yan-kuo Sun,
| | - Gui-hong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Gui-hong Zhang,
| |
Collapse
|
2
|
Zhang Y, Wen J, Xi K, Pan Q. Exploring the dynamic variations of viral genomes via a novel genetic network. Mol Phylogenet Evol 2022; 175:107583. [PMID: 35810971 PMCID: PMC9262653 DOI: 10.1016/j.ympev.2022.107583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Exploring the dynamic variations of viral genomes utilizing with a phylogenetic analysis is vital to control the pandemic and stop its waves. Genetic network can be applied to depict the complicated evolution relationships of viral genomes. However, current phylogenetic methods cannot handle the cases with deletions effectively. Therefore, the k-mer natural vector is employed to characterize the compositions and distribution features of k-mers occurring in a viral genome, and construct a one-to-one relationship between a viral genome and its k-mer natural vector. Utilizing the k-mer natural vector, we proposed a novel genetic network to investigate the variations of viral genomes in transmission among humans. With the assistance of genetic network, we identified the super-spreaders that were responsible for the pandemic outbreaks all over the world and chose the parental strains to evaluate the effectiveness of diagnostics, therapeutics, and vaccines. The obtaining results fully demonstrated that our genetic network can truly describe the relationships of viral genomes, effectively simulate virus spread tendency, and trace the transmission routes precisely. In addition, this work indicated that the k-mer natural vector has the ability to capture established hotspots of diversities existing in the viral genomes and understand how genomic contents change over time.
Collapse
Affiliation(s)
- Yuyan Zhang
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China; School of Information Engineering, Suihua University, Suihua 152061, China
| | - Jia Wen
- School of Information Engineering, Suihua University, Suihua 152061, China; Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China.
| | - Kun Xi
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Qiuhui Pan
- School of Mathematical Science, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
3
|
Zhu M, Shen J, Zeng Q, Tan JW, Kleepbua J, Chew I, Law JX, Chew SP, Tangathajinda A, Latthitham N, Li L. Molecular Phylogenesis and Spatiotemporal Spread of SARS-CoV-2 in Southeast Asia. Front Public Health 2021; 9:685315. [PMID: 34395364 PMCID: PMC8363229 DOI: 10.3389/fpubh.2021.685315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The ongoing coronavirus disease 2019 (COVID-19) pandemic has posed an unprecedented challenge to public health in Southeast Asia, a tropical region with limited resources. This study aimed to investigate the evolutionary dynamics and spatiotemporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the region. Materials and Methods: A total of 1491 complete SARS-CoV-2 genome sequences from 10 Southeast Asian countries were downloaded from the Global Initiative on Sharing Avian Influenza Data (GISAID) database on November 17, 2020. The evolutionary relationships were assessed using maximum likelihood (ML) and time-scaled Bayesian phylogenetic analyses, and the phylogenetic clustering was tested using principal component analysis (PCA). The spatial patterns of SARS-CoV-2 spread within Southeast Asia were inferred using the Bayesian stochastic search variable selection (BSSVS) model. The effective population size (Ne) trajectory was inferred using the Bayesian Skygrid model. Results: Four major clades (including one potentially endemic) were identified based on the maximum clade credibility (MCC) tree. Similar clustering was yielded by PCA; the first three PCs explained 46.9% of the total genomic variations among the samples. The time to the most recent common ancestor (tMRCA) and the evolutionary rate of SARS-CoV-2 circulating in Southeast Asia were estimated to be November 28, 2019 (September 7, 2019 to January 4, 2020) and 1.446 × 10-3 (1.292 × 10-3 to 1.613 × 10-3) substitutions per site per year, respectively. Singapore and Thailand were the two most probable root positions, with posterior probabilities of 0.549 and 0.413, respectively. There were high-support transmission links (Bayes factors exceeding 1,000) in Singapore, Malaysia, and Indonesia; Malaysia involved the highest number (7) of inferred transmission links within the region. A twice-accelerated viral population expansion, followed by a temporary setback, was inferred during the early stages of the pandemic in Southeast Asia. Conclusions: With available genomic data, we illustrate the phylogeography and phylodynamics of SARS-CoV-2 circulating in Southeast Asia. Continuous genomic surveillance and enhanced strategic collaboration should be listed as priorities to curb the pandemic, especially for regional communities dominated by developing countries.
Collapse
Affiliation(s)
- Mingjian Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianli Zeng
- Shanghai Institute of Biological Products, Shanghai, China
| | - Joanna Weihui Tan
- Faculty of Arts and Social Sciences, National University of Singapore, Singapore, Singapore
| | | | - Ian Chew
- Zhejiang University School of Medicine, Hangzhou, China
| | | | - Sien Ping Chew
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Juscamayta-López E, Carhuaricra D, Tarazona D, Valdivia F, Rojas N, Maturrano L, Gavilán R. Phylogenomics reveals multiple introductions and early spread of SARS-CoV-2 into Peru. J Med Virol 2021; 93:5961-5968. [PMID: 34185310 PMCID: PMC8426889 DOI: 10.1002/jmv.27167] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022]
Abstract
Peru has become one of the countries with the highest mortality rates from the current coronavirus disease 2019 (COVID‐19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). To investigate early transmission events and the genomic diversity of SARS‐CoV‐2 isolates circulating in Peru in the early COVID‐19 pandemic, we analyzed 3472 viral genomes, of which 149 were from Peru. Phylogenomic analysis revealed multiple and independent introductions of the virus likely from Europe and Asia and a high diversity of genetic lineages circulating in Peru. In addition, we found evidence for community‐driven transmission of SARS‐CoV‐2 as suggested by clusters of related viruses found in patients living in different regions of Peru. This is the first snapshot of the sources of epidemic transmission and genomic diversity of SARS‐CoV‐2 lineages circulating in Peru during the early COVID‐19 pandemic. Phylogenomic analysis revealed multiple and independent introductions of the virus likely from Europe and Asia, and high diversity of genetic lineages circulating in Peru with predominance of the G614G variant (S gene,n= 136/149). We found evidence that early spread of the virus in Lima City was sustained by community transmission.
Collapse
Affiliation(s)
- Eduardo Juscamayta-López
- Laboratorio de Infecciones Respiratorias Agudas, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.,Laboratorio de Biología y Genética Molecular, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Dennis Carhuaricra
- Laboratorio de Biología y Genética Molecular, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - David Tarazona
- Laboratorio de Infecciones Respiratorias Agudas, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.,Laboratorio de Biología y Genética Molecular, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Faviola Valdivia
- Laboratorio de Infecciones Respiratorias Agudas, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Nancy Rojas
- Laboratorio de Virus Respiratorios, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Lenin Maturrano
- Laboratorio de Biología y Genética Molecular, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Ronnie Gavilán
- Laboratorio de Enteropatógenos, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru.,Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| |
Collapse
|
5
|
Abstract
The rooting of the SARS-CoV-2 phylogeny is important for understanding the origin and early spread of the virus. Previously published phylogenies have used different rootings that do not always provide consistent results. We investigate several different strategies for rooting the SARS-CoV-2 tree and provide measures of statistical uncertainty for all methods. We show that methods based on the molecular clock tend to place the root in the B clade, whereas methods based on outgroup rooting tend to place the root in the A clade. The results from the two approaches are statistically incompatible, possibly as a consequence of deviations from a molecular clock or excess back-mutations. We also show that none of the methods provide strong statistical support for the placement of the root in any particular edge of the tree. These results suggest that phylogenetic evidence alone is unlikely to identify the origin of the SARS-CoV-2 virus and we caution against strong inferences regarding the early spread of the virus based solely on such evidence.
Collapse
Affiliation(s)
- Lenore Pipes
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Hongru Wang
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - John P Huelsenbeck
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Rasmus Nielsen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Statistics, University of California, Berkeley, Berkeley, CA, USA
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Schrago CG, Barzilai LP. Challenges in estimating virus divergence times in short epidemic timescales with special reference to the evolution of SARS-CoV-2 pandemic. Genet Mol Biol 2021; 44:e20200254. [PMID: 33570080 PMCID: PMC7869796 DOI: 10.1590/1678-4685-gmb-2020-0254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
The estimation of evolutionary parameters provides essential information for designing public health policies. In short time intervals, however, nucleotide substitutions are ineffective to record all complexities of virus population dynamics. In this sense, the current SARS-CoV-2 pandemic poses a challenge for evolutionary analysis. We used computer simulation to evolve populations in scenarios of varying temporal intervals to evaluate the impact of the age of an epidemic on estimates of time and geography. Before estimating virus timescales, the shape of tree topologies can be used as a proxy to assess the effectiveness of the virus phylogeny in providing accurate estimates of evolutionary parameters. In short timescales, estimates have larger uncertainty. We compared the predictions from simulations with empirical data. The tree shape of SARS-CoV-2 was closer to shorter timescales scenarios, which yielded parametric estimates with larger uncertainty, suggesting that estimates from these datasets should be evaluated cautiously. To increase the accuracy of the estimates of virus transmission times between populations, the uncertainties associated with the age estimates of both the crown and stem nodes should be communicated. We place the age of the common ancestor of the current SARS-CoV-2 pandemic in late September 2019, corroborating an earlier emergence of the virus.
Collapse
Affiliation(s)
- Carlos G. Schrago
- Universidade Federal do Rio de Janeiro, Departamento de
Genética, Rio de Janeiro, RJ, Brazil
| | - Lucia P. Barzilai
- Universidade Federal do Rio de Janeiro, Departamento de
Genética, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
7
|
Vasilarou M, Alachiotis N, Garefalaki J, Beloukas A, Pavlidis P. Population Genomics Insights into the First Wave of COVID-19. Life (Basel) 2021; 11:129. [PMID: 33562321 PMCID: PMC7914631 DOI: 10.3390/life11020129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 01/09/2023] Open
Abstract
Full-genome-sequence computational analyses of the SARS-coronavirus (CoV)-2 genomes allow us to understand the evolutionary events and adaptability mechanisms. We used population genetics analyses on human SARS-CoV-2 genomes available on 2 April 2020 to infer the mutation rate and plausible recombination events between the Betacoronavirus genomes in nonhuman hosts that may have contributed to the evolution of SARS-CoV-2. Furthermore, we localized the targets of recent and strong, positive selection during the first pandemic wave. The genomic regions that appear to be under positive selection are largely co-localized with regions in which recombination from nonhuman hosts took place. Our results suggest that the pangolin coronavirus genome may have contributed to the SARS-CoV-2 genome by recombination with the bat coronavirus genome. However, we find evidence for additional recombination events that involve coronavirus genomes from other hosts, i.e., hedgehogs and sparrows. We further infer that recombination may have recently occurred within human hosts. Finally, we estimate the parameters of a demographic scenario involving an exponential growth of the size of the SARS-CoV-2 populations that have infected European, Asian, and Northern American cohorts, and we demonstrate that a rapid exponential growth in population size from the first wave can support the observed polymorphism patterns in SARS-CoV-2 genomes.
Collapse
Affiliation(s)
- Maria Vasilarou
- Foundation for Research and Technology Hellas (FORTH) and Department of Biology, Institute of Molecular Biology and Biotechnology (IMBB), University of Crete, 70013 Crete, Greece;
| | | | - Joanna Garefalaki
- Institute of Computer Science (ICS), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| | - Apostolos Beloukas
- Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece
- Institute of Infection and Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Pavlos Pavlidis
- Institute of Computer Science (ICS), Foundation for Research and Technology Hellas (FORTH), 70013 Heraklion, Greece;
| |
Collapse
|
8
|
Ellis P, Somogyvári F, Virok DP, Noseda M, McLean GR. Decoding Covid-19 with the SARS-CoV-2 Genome. CURRENT GENETIC MEDICINE REPORTS 2021; 9:1-12. [PMID: 33457109 PMCID: PMC7794078 DOI: 10.1007/s40142-020-00197-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
Abstract
Purpose of Review SARS-CoV-2, the recently emerged coronavirus (CoV) that is responsible for the current global pandemic Covid-19, first appeared in late 2019 in Wuhan, China. Here, we summarise details of the SARS-CoV-2 genome to assist understanding of the emergence, evolution and diagnosis of this deadly new virus. Recent Findings Based on high similarities in the genome sequences, the virus is thought to have arisen from SARS-like CoVs in bats but the lack of an intermediate species containing a CoV with even greater similarity has so far eluded discovery. The critical determinant of the SARS-CoV-2 genome is the spike (S) gene encoding the viral structural protein that interacts with the host cell entry receptor ACE2. The S protein is sufficiently adapted to bind human ACE2 much more readily than SARS-CoV, the most closely related human CoV. Summary Although the SARS-CoV-2 genome is undergoing subtle evolution in humans through mutation that may enhance transmission, there is limited evidence for attenuation that might weaken the virus. It is also still unclear as to the events that led to the virus’ emergence from bats. Importantly, current diagnosis requires specific recognition and amplification of the SARS-CoV-2 RNA genome by qPCR, despite these ongoing viral genome changes. Alternative diagnostic procedures relying on immunoassay are becoming more prevalent.
Collapse
Affiliation(s)
- Phoebe Ellis
- School of Human Sciences, London Metropolitan University, London, UK
| | - Ferenc Somogyvári
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Dezső P Virok
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gary R McLean
- School of Human Sciences, London Metropolitan University, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK.,Cellular and Molecular Immunology Research Centre, London Metropolitan University, London, UK
| |
Collapse
|
9
|
Ahmed-Abakur EH, Alnour TMS. Genetic variations among SARS-CoV-2 strains isolated in China. GENE REPORTS 2020; 21:100925. [PMID: 33521384 PMCID: PMC7834520 DOI: 10.1016/j.genrep.2020.100925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 12/28/2022]
Abstract
The rapid spread of COVID-19, which has led to a global pandemic, has placed public health systems under severe pressure. Identifying variations in SARS-CoV-2 strains from different regions is a key factor for understanding the pathogenic mechanisms, aid in diagnosis, prevention and therapy of this disease. The present study is an analytical descriptive study aimed to determine genetic variations among SARS-CoV-2 strains isolated in China. Sixty six complete genome sequences of the virus were retrieved from NCBI, the sequence of original Wuhan strain accession number NC 045512 was used as the reference sequence. Each genome sequence was blasted against the original Wuhan strain; the analysis was done using NCBI Nucleo-blast. The collected sequences showed 10 different variants. One hundred and thirty four mutations were identified among the variants of SARS-CoV-2 in this study; most of them 52.2% (70/134) were missense point mutation, majority of the mutations 65.7% (88/134) occurred in the open reading frame a/b (ORFab), few mutations occurred in the structural viral genome, each of spike (S) gene and nucleocapsid (N) gene showed 4 mutations; 2 silent point mutations and 2 missense point mutations occurred in each gene whereas membrane (M) gene showed silent point mutation and no mutation observed in the envelope E gene. The remarkable observation in this study showed by Yunnan variant accession number MT226610 which exhibited high incidence of mutations, it displayed 28 different point mutations; only 3(10.7%) of them were silent mutations while the rest were missense mutations. Our analysis showed several mutations including spike S gene and membrane M gene which may be responsible for a change in the structures of target proteins.
Collapse
Affiliation(s)
- Eltayib H Ahmed-Abakur
- University of Tabuk, Faculty of Applied Medial Sciences, Department of Medical Laboratory Sciences, Tabuk, Saudi Arabia
- AlZaiem AlAzhari University, Faculty of Medical Laboratory Sciences, Department of Microbiology and Immunology, Khartoum North, Sudan
| | - Tarig M S Alnour
- University of Tabuk, Faculty of Applied Medial Sciences, Department of Medical Laboratory Sciences, Tabuk, Saudi Arabia
- AlZaiem AlAzhari University, Faculty of Medical Laboratory Sciences, Department of Microbiology and Immunology, Khartoum North, Sudan
| |
Collapse
|
10
|
Franco-Muñoz C, Álvarez-Díaz DA, Laiton-Donato K, Wiesner M, Escandón P, Usme-Ciro JA, Franco-Sierra ND, Flórez-Sánchez AC, Gómez-Rangel S, Rodríguez-Calderon LD, Barbosa-Ramirez J, Ospitia-Baez E, Walteros DM, Ospina-Martinez ML, Mercado-Reyes M. Substitutions in Spike and Nucleocapsid proteins of SARS-CoV-2 circulating in South America. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 85:104557. [PMID: 32950697 PMCID: PMC7497549 DOI: 10.1016/j.meegid.2020.104557] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 is a new member of the genus Betacoronavirus, responsible for the COVID-19 pandemic. The virus crossed the species barrier and established in the human population taking advantage of the spike protein high affinity for the ACE receptor to infect the lower respiratory tract. The Nucleocapsid (N) and Spike (S) are highly immunogenic structural proteins and most commercial COVID-19 diagnostic assays target these proteins. In an unpredictable epidemic, it is essential to know about their genetic variability. The objective of this study was to describe the substitution frequency of the S and N proteins of SARS-CoV-2 in South America. A total of 504 amino acid and nucleotide sequences of the S and N proteins of SARS-CoV-2 from seven South American countries (Argentina, Brazil, Chile, Ecuador, Peru, Uruguay, and Colombia), reported as of June 3, and corresponding to samples collected between March and April 2020, were compared through substitution matrices using the Muscle algorithm. Forty-three sequences from 13 Colombian departments were obtained in this study using the Oxford Nanopore and Illumina MiSeq technologies, following the amplicon-based ARTIC network protocol. The substitutions D614G in S and R203K/G204R in N were the most frequent in South America, observed in 83% and 34% of the sequences respectively. Strikingly, genomes with the conserved position D614 were almost completely replaced by genomes with the G614 substitution between March to April 2020. A similar replacement pattern was observed with R203K/G204R although more marked in Chile, Argentina and Brazil, suggesting similar introduction history and/or control strategies of SARS-CoV-2 in these countries. It is necessary to continue with the genomic surveillance of S and N proteins during the SARS-CoV-2 pandemic as this information can be useful for developing vaccines, therapeutics and diagnostic tests.
Collapse
Affiliation(s)
- Carlos Franco-Muñoz
- Unidad de Secuenciación y Genómica, Grupo de Investigación Básica y Aplicada en Enfermedades Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Grupo de Parasitología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| | - Diego A Álvarez-Díaz
- Unidad de Secuenciación y Genómica, Grupo de Investigación Básica y Aplicada en Enfermedades Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Katherine Laiton-Donato
- Unidad de Secuenciación y Genómica, Grupo de Investigación Básica y Aplicada en Enfermedades Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Magdalena Wiesner
- Grupo de Microbiología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - Patricia Escandón
- Grupo de Microbiología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá, Colombia
| | - José A Usme-Ciro
- Unidad de Secuenciación y Genómica, Grupo de Investigación Básica y Aplicada en Enfermedades Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Centro de Investigación en Salud para el Trópico-CIST, Universidad Cooperativa de Colombia, Santa Marta, 470003, Colombia
| | - Nicolás D Franco-Sierra
- Programa Ciencias de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá 111311, Colombia
| | | | - Sergio Gómez-Rangel
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Luz D Rodríguez-Calderon
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Juliana Barbosa-Ramirez
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Erika Ospitia-Baez
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | - Diana M Walteros
- Dirección de Vigilancia en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| | | | - Marcela Mercado-Reyes
- Unidad de Secuenciación y Genómica, Grupo de Investigación Básica y Aplicada en Enfermedades Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia
| |
Collapse
|
11
|
Álvarez-Díaz DA, Franco-Muñoz C, Laiton-Donato K, Usme-Ciro JA, Franco-Sierra ND, Flórez-Sánchez AC, Gómez-Rangel S, Rodríguez-Calderon LD, Barbosa-Ramirez J, Ospitia-Baez E, Walteros DM, Ospina-Martinez ML, Mercado-Reyes M. Molecular analysis of several in-house rRT-PCR protocols for SARS-CoV-2 detection in the context of genetic variability of the virus in Colombia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 84:104390. [PMID: 32505692 PMCID: PMC7272177 DOI: 10.1016/j.meegid.2020.104390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 is a public health problem unprecedented in the recent history of humanity. Different in-house real-time RT-PCR (rRT-PCR) methods for SARS-CoV-2 diagnosis and the appearance of genomes with mutations in primer regions have been reported. Hence, whole-genome data from locally-circulating SARS-CoV-2 strains contribute to the knowledge of its global variability and the development and fine tuning of diagnostic protocols. To describe the genetic variability of Colombian SARS-CoV-2 genomes in hybridization regions of oligonucleotides of the main in-house methods for SARS-CoV-2 detection, RNA samples with confirmed SARS-CoV-2 molecular diagnosis were processed through next-generation sequencing. Primers/probes sequences from 13 target regions for SARS-CoV-2 detection suggested by 7 institutions and consolidated by WHO during the early stage of the pandemic were aligned with Muscle tool to assess the genetic variability potentially affecting their performance. Finally, the corresponding codon positions at the 3' end of each primer, the open reading frame inspection was identified for each gene/protein product. Complete SARS-CoV-2 genomes were obtained from 30 COVID-19 cases, representative of the current epidemiology in the country. Mismatches between at least one Colombian sequence and five oligonucleotides targeting the RdRP and N genes were observed. The 3' end of 4 primers aligned to the third codon position, showed high risk of nucleotide substitution and potential mismatches at this critical position. Genetic variability was detected in Colombian SARS-CoV-2 sequences in some of the primer/probe regions for in-house rRT-PCR diagnostic tests available at WHO COVID-19 technical guidelines; its impact on the performance and rates of false-negative results should be experimentally evaluated. The genomic surveillance of SARS-CoV-2 is highly recommended for the early identification of mutations in critical regions and to issue recommendations on specific diagnostic tests to ensure the coverage of locally-circulating genetic variants.
Collapse
Affiliation(s)
- Diego A Álvarez-Díaz
- Unidad de Secuenciación y Genómica, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Grupo de Salud Materna y Perinatal, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| | - Carlos Franco-Muñoz
- Unidad de Secuenciación y Genómica, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Grupo de Parasitología, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| | - Katherine Laiton-Donato
- Unidad de Secuenciación y Genómica, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| | - José A Usme-Ciro
- Unidad de Secuenciación y Genómica, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Centro de Investigación en Salud para el Trópico-CIST, Universidad Cooperativa de Colombia, Santa Marta 470003, Colombia.
| | - Nicolás D Franco-Sierra
- Programa Ciencias de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá 111311, Colombia.
| | | | - Sergio Gómez-Rangel
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| | - Luz D Rodríguez-Calderon
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| | - Juliana Barbosa-Ramirez
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| | - Erika Ospitia-Baez
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| | - Diana M Walteros
- Dirección de Vigilancia en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| | | | - Marcela Mercado-Reyes
- Unidad de Secuenciación y Genómica, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Grupo de Salud Materna y Perinatal, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia.
| |
Collapse
|
12
|
DEMİR AB, BENVENUTO D, ABACIOĞLU H, ANGELETTI S, CICCOZZI M. Identification of the nucleotide substitutions in 62 SARS-CoV-2 sequences from Turkey. Turk J Biol 2020; 44:178-184. [PMID: 32595354 PMCID: PMC7314507 DOI: 10.3906/biy-2005-69] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A previously unknown coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been shown to cause coronavirus disease 2019 (COVID-19) pandemic. The first case of COVID-19 in Turkey has been declared in March 11th, 2020 and from there on, more than 150,000 people in the country have been diagnosed with the disease. In this study, 62 viral sequences from Turkey, which have been uploaded to GISAID database, were analyzed by means of their nucleotide substitutions in comparison to the reference SARS-CoV-2 genome from Wuhan. Our results indicate that the viral isolates from Turkey harbor some common mutations with the viral strains from Europe, Oceania, North America and Asia. When the mutations were evaluated, C3037T, C14408T and A23403G were found to be the most common nucleotide substitutions among the viral isolates in Turkey, which are mostly seen as linked mutations and are part of a haplotype observed high in Europe.
Collapse
Affiliation(s)
- Ayşe Banu DEMİR
- Department of Medical Biology, Faculty of Medicine, İzmir University of Economics, İzmirTurkey
| | - Domenico BENVENUTO
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, RomeItaly
| | - Hakan ABACIOĞLU
- Department of Medical Microbiology, Faculty of Medicine, İzmir University of Economics, İzmirTurkey
| | - Silvia ANGELETTI
- Unit of Clinical LaboratoryScience, University CampusBio-Medico of Rome, RomeItaly
| | - Massimo CICCOZZI
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, RomeItaly
| |
Collapse
|