1
|
Božič A, Podgornik R. Increased preference for lysine over arginine in spike proteins of SARS-CoV-2 BA.2.86 variant and its daughter lineages. PLoS One 2025; 20:e0320891. [PMID: 40193474 PMCID: PMC11975073 DOI: 10.1371/journal.pone.0320891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
The COVID-19 pandemic offered an unprecedented glimpse into the evolution of its causative virus, SARS-CoV-2. It has been estimated that since its outbreak in late 2019, the virus has explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain. Spike protein of the virus exhibits the largest sequence variation in particular, with many individual mutations impacting target recognition, cellular entry, and endosomal escape of the virus. Moreover, recent studies unveiled a significant increase in the total charge on the spike protein during the evolution of the virus in the initial period of the pandemic. While this trend has recently come to a halt, we perform a sequence-based analysis of the spike protein of 2665 SARS-CoV-2 variants which shows that mutations in ionizable amino acids continue to occur with the newly emerging variants, with notable differences between lineages from different clades. What is more, we show that within mutations of amino acids which can acquire positive charge, the spike protein of SARS-CoV-2 exhibits a prominent preference for lysine residues over arginine residues. This lysine-to-arginine ratio increased at several points during spike protein evolution, most recently with BA.2.86 and its sublineages, including the recently dominant JN.1, KP.3, and XEC variants. The increased ratio is a consequence of mutations in different structural regions of the spike protein and is now among the highest among viral species in the Coronaviridae family. The impact of high lysine-to-arginine ratio in the spike proteins of BA.2.86 and its daughter lineages on viral fitness remains unclear; we discuss several potential mechanisms that could play a role and that can serve as a starting point for further studies.
Collapse
Affiliation(s)
- Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
2
|
Sharma P, Gautam S, Sharma A, Parsoya D, Deeba F, Pal N, Singh R, Sharma H, Bhomia N, Sharma RP, Potdar V, Malhotra B. Genomic surveillance of SARS-CoV-2 and emergence of XBB.1.16 variant in Rajasthan. Indian J Med Microbiol 2024; 50:100659. [PMID: 38945273 DOI: 10.1016/j.ijmmb.2024.100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/02/2024]
Abstract
PURPOSE Genomic surveillance of positive SARS-CoV-2 samples is important to monitor the genetic changes occurring in virus, this was enhanced after the WHO designation of XBB.1.16 as a variant under monitoring in March 2023. From 5th February till May 6, 2023 all positive SARS-CoV-2 samples were monitored for genetic changes. METHODS A total of 1757 samples having Ct value <25 (for E and ORF gene) from different districts of Rajasthan were processed for Next Generation Sequencing (NGS). The FASTA files obtained on sequencing were used for lineage determination using Nextclade and phylogenetic tree construction. RESULTS AND CONCLUSIONS Sequencing and lineage identification was done in 1624 samples. XBB.1.16 was the predominant lineage in 1413 (87.0%) cases while rest was other XBB (207, 12.74%) and other lineages (4, 0.2%). Of the 1413 XBB.1.16 cases, 57.47% were males and 42.53% were females. Majority (66.53%) belonged to 19-59 year age. 84.15% of XBB.1.16 cases were infected for the first time. Hospitalization was required in only 2.2% cases and death was reported in 5 (0.35%) patients. Most of the cases were symptomatic and the commonest symptoms were fever, cough and rhinorrhea. Co-morbidities were present in 414 (29.3%) cases. Enhanced genomic surveillance helped to rapidly identify the spread of XBB variant in Rajasthan. This in turn helped to take control measures to prevent spread of virus and estimate public health risks of the new variant relative to the previously circulating lineages. XBB variant was found to spread rapidly but produced milder disease.
Collapse
Affiliation(s)
- Pratibha Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Swati Gautam
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Abhaya Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Dinesh Parsoya
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Farah Deeba
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Nita Pal
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Ruchi Singh
- Directorate of Medical and Health Services, Jaipur, Rajasthan, India.
| | - Himanshu Sharma
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Neha Bhomia
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| | - Ravi P Sharma
- Directorate of Medical and Health Services, Jaipur, Rajasthan, India.
| | - Varsha Potdar
- National Institute of Virology, Pune, Maharashtra, India.
| | - Bharti Malhotra
- Department of Microbiology, SMS Medical College, Jaipur, Rajasthan, India.
| |
Collapse
|
3
|
Scarpa F, Branda F, Petrosillo N, Ciccozzi M. On the SARS-CoV-2 Variants. Infect Dis Rep 2024; 16:289-297. [PMID: 38667750 PMCID: PMC11050187 DOI: 10.3390/idr16020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The evolutionary dynamics of viruses, particularly exemplified by SARS-CoV-2 during the ongoing COVID-19 pandemic, underscore the intricate interplay between genetics, host adaptation, and viral spread. This paper delves into the genetic evolution of SARS-CoV-2, emphasizing the implications of viral variants on global health. Initially emerging from the Wuhan-Hu-1 lineage, SARS-CoV-2 rapidly diversified into numerous variants, each characterized by distinct mutations in the spike protein and other genomic regions. Notable variants such as B.1.1.7 (α), B.1.351 (β), P.1 (γ), B.1.617.2 (δ), and the Omicron variant have garnered significant attention due to their heightened transmissibility and immune evasion capabilities. In particular, the Omicron variant has presented a myriad of subvariants, raising concerns about its potential impact on public health. Despite the emergence of numerous variants, the vast majority have exhibited limited expansion capabilities and have not posed significant threats akin to early pandemic strains. Continued genomic surveillance is imperative to identify emerging variants of concern promptly. While genetic adaptation is intrinsic to viral evolution, effective public health responses must be grounded in empirical evidence to navigate the evolving landscape of the pandemic with resilience and precision.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | - Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.C.)
| | - Nicola Petrosillo
- Infection Prevention Control/Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00127 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy; (F.B.); (M.C.)
| |
Collapse
|
4
|
Scarpa F, Pascarella S, Ciccozzi A, Giovanetti M, Azzena I, Locci C, Casu M, Fiori PL, Quaranta M, Cella E, Sanna D, Ciccozzi M. Genetic and structural analyses reveal the low potential of the SARS-CoV-2 EG.5 variant. J Med Virol 2023; 95:e29075. [PMID: 37665162 DOI: 10.1002/jmv.29075] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 EG.5 lineage is the latest variant under monitoring, and it is generating significant concern due to its recent upward trend in prevalence. Our aim was to gain insights into this emerging lineage and offer insights into its actual level of threat. Both genetic and structural data indicate that this novel variant presently lacks substantial evidence of having a high capacity for widespread transmission. Their viral population sizes expanded following a very mild curve and peaked several months after the earliest detected sample. Currently, neither the viral population size of EG.5 nor that of its first descendant is increasing. The genetic variability appear to be flattened, as evidenced by its relatively modest evolutionary rate (9.05 × 10-4 subs/site/year). As has been observed with numerous prior variants, attributes that might theoretically provide advantages seem to stem from genetic drift, enabling the virus to continually adjust to its host, albeit without a clear association with enhanced dangerousness. These findings further underscore the necessity for ongoing genome-based monitoring, ensuring preparedness and a well-documented understanding of the unfolding situation.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marta Giovanetti
- Department of Science and Technology for Humans and the Environment, Università Campus Bio-Medico di Roma, Rome, Italy
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo, Horizonte, Minas Gerais, Brazil
| | - Ilenia Azzena
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Azienza Ospedaliera Universitaria (AOU) Sassari, Sassari, Italy
| | - Miriana Quaranta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza Università di Roma, Rome, Italy
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
5
|
Scarpa F, Ciccozzi M. On the SARS-CoV-2 BA.2.86 lineage: a mutation point of view. J Med Virol 2023; 95:e29079. [PMID: 37668018 DOI: 10.1002/jmv.29079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
6
|
Scarpa F, Locci C, Azzena I, Casu M, Fiori PL, Ciccozzi A, Giovanetti M, Quaranta M, Ceccarelli G, Pascarella S, Ciccozzi M, Sanna D. SARS-CoV-2 Recombinants: Genomic Comparison between XBF and Its Parental Lineages. Microorganisms 2023; 11:1824. [PMID: 37512996 PMCID: PMC10383834 DOI: 10.3390/microorganisms11071824] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Recombination events are very common and represent one of the primary drivers of RNA virus evolution. The XBF SARS-CoV-2 lineage is one of the most recently generated recombinants during the COVID-19 pandemic. It is a recombinant of BA.5.2.3 and BA.2.75.3, both descendants of lineages that caused many concerns (BA.5 and BA.2.75, respectively). Here, we performed a genomic survey focused on comparing the recombinant XBF with its parental lineages to provide a comprehensive assessment of the evolutionary potential, epidemiological trajectory, and potential risks. Genetic analyses indicated that although XBF initially showed the typical expansion depicted by a steep curve, causing several concerns, currently there is no indication of significant expansion potential or a contagion rate surpassing that of other currently active or previously prevalent lineages. BSP indicated that the peak has been reached around 19 October 2022 and then the genetic variability suffered slight oscillations until early 5 March 2023 when the population size reduced for the last time starting its last plateau that is still lasting. Structural analyses confirmed its reduced potential, also indicating that properties of NTDs and RBDs of XBF and its parental lineages present no significant difference. Of course, cautionary measures must still be taken and genome-based monitoring remains the best tool for detecting any important changes in viral genome composition.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Ilenia Azzena
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Azienza Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Marta Giovanetti
- Sciences and Technologies for Sustainable Development and One Health, University of Campus Bio-Medico of Rome, 00128 Rome, Italy
- Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil
| | - Miriana Quaranta
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza Università di Roma, 00185 Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza Università di Roma, 00185 Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Campus Bio-Medico, Fondazione Policlinico Universitario, 00128 Rome, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
7
|
Scarpa F, Azzena I, Locci C, Casu M, Fiori PL, Ciccozzi A, Angeletti S, Imperia E, Giovanetti M, Maruotti A, Borsetti A, Cauda R, Cassone A, Via A, Pascarella S, Sanna D, Ciccozzi M. Molecular In-Depth on the Epidemiological Expansion of SARS-CoV-2 XBB.1.5. Microorganisms 2023; 11:microorganisms11040912. [PMID: 37110335 PMCID: PMC10142263 DOI: 10.3390/microorganisms11040912] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Since the beginning of the pandemic, the generation of new variants periodically recurs. The XBB.1.5 SARS-CoV-2 variant is one of the most recent. This research was aimed at verifying the potential hazard of this new subvariant. To achieve this objective, we performed a genome-based integrative approach, integrating results from genetic variability/phylodynamics with structural and immunoinformatic analyses to obtain as comprehensive a viewpoint as possible. The Bayesian Skyline Plot (BSP) shows that the viral population size reached the plateau phase on 24 November 2022, and the number of lineages peaked at the same time. The evolutionary rate is relatively low, amounting to 6.9 × 10−4 subs/sites/years. The NTD domain is identical for XBB.1 and XBB.1.5 whereas their RBDs only differ for the mutations at position 486, where the Phe (in the original Wuhan) is replaced by a Ser in XBB and XBB.1, and by a Pro in XBB.1.5. The variant XBB.1.5 seems to spread more slowly than sub-variants that have caused concerns in 2022. The multidisciplinary molecular in-depth analyses on XBB.1.5 performed here does not provide evidence for a particularly high risk of viral expansion. Results indicate that XBB.1.5 does not possess features to become a new, global, public health threat. As of now, in its current molecular make-up, XBB.1.5 does not represent the most dangerous variant.
Collapse
Affiliation(s)
- Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (F.S.); (M.C.)
| | - Ilenia Azzena
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Azienza Ospedaliera Universitaria (AOU) Sassari, 07100 Sassari, Italy
| | - Alessandra Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Silvia Angeletti
- Unit of Clinical Laboratory Science, Department of Medicine and Surgery, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Research Unit of Laboratory, University Hospital Campus Bio-Medico, 00128 Rome, Italy
| | - Elena Imperia
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Unit of Gastroenterology, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Marta Giovanetti
- Instituto Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-009, Minas Gerais, Brazil
- Science and Technology for Sustainable Development and One Health, University of Campus Bio-Medico of Rome, 00128 Rome, Italy
| | | | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberto Cauda
- UOC Malattie Infettive, Infectious Disease Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | | | - Allegra Via
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Stefano Pascarella
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza Università di Roma, 00185 Rome, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- Correspondence: (F.S.); (M.C.)
| |
Collapse
|