1
|
Song M, Sun J, Lv K, Li J, Shi J, Xu Y. A comprehensive review of pathology and treatment of staphylococcus aureus osteomyelitis. Clin Exp Med 2025; 25:131. [PMID: 40299136 PMCID: PMC12040984 DOI: 10.1007/s10238-025-01595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/10/2025] [Indexed: 04/30/2025]
Abstract
Osteomyelitis (OM) is an inflammation of the bone and bone marrow triggered by infectious pathogens which may induce progressive bone destruction. The majority of OM cases, especially the chronic OM cases, are induced by the most prevalent and devastating pathogen Staphylococcus aureus (S. aureus), partially due to its resistance mechanisms against the immune system and antibiotic therapies. Regarding the high rate of morbidity and recurrence in patients, it is pivotal to elucidate underlying mechanisms that how S. aureus enter and survive in hosts. The accumulated discoveries have identified multiple distinct strategies associated with chronicity and recurrence include biofilm development, small colony variants (SCVs), staphylococcus abscess communities (SACs), the osteocyte lacuno-canalicular network invasion (OLCN) of cortical bones, and S. aureus protein A (SpA). Unfortunately, little clinical progress has been achieved for the diagnosis and therapeutic treatment for OM patients, indicating that numerous questions remain to be solved. Therefore, we still have a long way to obtain the clear elucidation of the host-pathogen interactions which could be applied for clinical treatment of OM. In this review, we provide insights of current knowledge about how S. aureus evades immune eradication and remains persistent in hosts with recent discoveries. The common and novel treatment strategies for OM are also described. The purpose of this review is to have in-dept understanding of S. aureus OM and bring new perspectives to therapeutic fields which may be translated to the clinic.
Collapse
Affiliation(s)
- Muguo Song
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Jian Sun
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Kehan Lv
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Junyi Li
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Jian Shi
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Yongqing Xu
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| |
Collapse
|
2
|
Peez C, Chen B, Henssler L, Chittò M, Onsea J, Verhofstad MHJ, Arens D, Constant C, Zeiter S, Obremskey W, Trampuz A, Raschke MJ, Zalavras C, Metsemakers WJ, Moriarty TF. Evaluating the safety, pharmacokinetics and efficacy of phage therapy in treating fracture-related infections with multidrug-resistant Staphylococcus aureus: intravenous versus local application in sheep. Front Cell Infect Microbiol 2025; 15:1547250. [PMID: 40256450 PMCID: PMC12006137 DOI: 10.3389/fcimb.2025.1547250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/19/2025] [Indexed: 04/22/2025] Open
Abstract
Background Fracture-related infections (FRI), particularly those caused by antibiotic resistant Staphylococcus aureus, present significant clinical challenges due to the formation of biofilm on the implanted device, and reduced options for conventional antibiotic treatment. Bacteriophage (phage) therapy (PT) offers a targeted approach to managing such infections, however, evidence for pharmacokinetics and optimal route of administration is limited for FRI. This study aimed to evaluate safety, phage distribution kinetics, phage neutralization, and antibacterial efficacy after intravenous or local administration in a sheep model. Methods The study was conducted in two phases: Phase 1 assessed the safety and distribution of two successive rounds of intravenous and local phage administration in non-infected sheep, while Phase 2 evaluated the therapeutic efficacy of intravenous versus local phage administration in combination with intravenous vancomycin in treating MRSA-induced FRI (tibial osteotomy with plate fixation). The specific pathogen and phage used in the sheep were both taken from a human FRI patient treated with PT. Phage neutralization and phage distribution were the primary outcomes measured in both phases of the sheep study. Results Both intravenous and local phage administration were well-tolerated in non-infected sheep. Phages were cleared rapidly from circulation after intravenous administration, with no phage detected after 240 minutes. Phage neutralization increased during PT, peaking at 99.9% in non-inoculated sheep by the end of the second phage treatment (day 50). In infected sheep, phage neutralization levels reached a maximum of 99.9% earlier (day 13), with no significant differences between intravenous and local administration. The bacterial load was not significantly changed by PT, either IV or locally applied. Conclusions PT is a safe adjunct to antibiotic treatment for FRI, however, phage neutralization developed rapidly and was accelerated in infected hosts. Further research is required to optimize phage selection, dosing, and delivery methods to enhance its therapeutic potential as an adjunct to conventional antibiotic therapy, particularly in the face of challenges such as rapid clearance and phage neutralization.
Collapse
Affiliation(s)
- Christian Peez
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Münster, Münster, Germany
- AO Research Institute Davos, Davos, Switzerland
| | - Baixing Chen
- AO Research Institute Davos, Davos, Switzerland
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Leopold Henssler
- AO Research Institute Davos, Davos, Switzerland
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Michael H. J. Verhofstad
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | | | - William Obremskey
- Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrej Trampuz
- Queensland University of Technology, Brisbane, QLD, Australia
| | - Michael J. Raschke
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Charalampos Zalavras
- Department of Orthopaedic Surgery, Los Angeles General Medical Center & Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
3
|
Xu M, Liu H, Zhang J, Xu M, Zhao X, Wang J. Functionalized zeolite regulates bone metabolic microenvironment. Mater Today Bio 2025; 31:101558. [PMID: 40034985 PMCID: PMC11874869 DOI: 10.1016/j.mtbio.2025.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 03/05/2025] Open
Abstract
The regulation of bone metabolic microenvironment imbalances in diseases such as osteoporosis, bone defects, infections, and tumors remains a significant challenge in orthopedics. Therefore, it has become urgent to develop biomaterials with effective bone metabolic microenvironmental regulatory functions. Zeolites, as advanced biomedical materials, possess distinctive physicochemical properties such as multi-level pore structures, adjustable frameworks, easily modifiable surfaces, and excellent adsorption capabilities. These advantageous characteristics give zeolites broad application prospects in regulating the bone metabolic microenvironment. Therefore, this paper first classifies zeolites used to regulate the bone metabolic microenvironment based on their topological structures and compositional frameworks. Subsequently, it provides a detailed description of modification strategies for zeolite materials aimed at regulating this microenvironment. Next, a comprehensive summary was provided on the preparation strategies for zeolite materials aimed at regulating the bone metabolic microenvironment. Additionally, the paper focuses on the specific applications of zeolite materials in conditions of bone metabolic imbalance, such as osteoporosis, bone defects, orthopedic infections, and bone tumors, highlighting their potential in enhancing osteogenic microenvironments, controlling infections, and treating bone tumors. Finally, it outlines the prospects and challenges associated with the application of zeolites in regulating the bone metabolic microenvironment. This review comprehensively summarizes zeolites used for bone metabolic regulation, aiming to provide guidance for future research and application development.
Collapse
Affiliation(s)
| | | | - Jiaxin Zhang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Meng Xu
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Zhao
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Jincheng Wang
- Orthopedic Institute of Jilin Province, Orthopedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, China
| |
Collapse
|
4
|
Liu X, Wang C, Wang H, Wang G, Zhang Y, Zhang Y. Calcium phosphate-based anti-infective bone cements: recent trends and future perspectives. Front Pharmacol 2025; 16:1522225. [PMID: 40078285 PMCID: PMC11897017 DOI: 10.3389/fphar.2025.1522225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Bone infection remains a challenging condition to fully eradicate due to its intricate nature. Traditional treatment strategies, involving long-term and high-dose systemic antibiotic administration, often encounter difficulties in achieving therapeutic drug concentrations locally and may lead to antibiotic resistance. Bone cement, serving as a local drug delivery matrix, has emerged as an effective anti-infective approach validated in clinical settings. Calcium phosphate cements (CPCs) have garnered widespread attention and application in the local management of bone infections due to their injectable properties, biocompatibility, and degradability. The interconnected porous structure of calcium phosphate particles, not only promotes osteoconductivity and osteoinductivity, but also serves as an ideal carrier for antibacterial agents. Various antimicrobial agents, including polymeric compounds, antibiotics, antimicrobial peptides, therapeutic inorganic ions (TIIs) (and their nanoparticles), graphene, and iodine, have been integrated into CPC matrices in numerous studies aimed at treating bone infections in diverse applications such as defect filling, preparation of metal implant surface coatings, and coating of implant surfaces. Additionally, for bone defects and nonunions resulting from chronic bone infections, the utilization of calcium phosphate-calcium sulfate composite multifunctional cement loaded with antibacterial agents serves to efficiently deal with infection, stimulate new bone formation, and attain an optimal degradation rate of the bone cement matrix. This review briefly delves into various antibacterial strategies based on calcium phosphate cement for the prevention and treatment of bone infections, while also discussing the application of calcium phosphate-calcium sulfate composites in the development of multifunctional bone cement against bone infections.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Chaoli Wang
- Department of Pharmacy, Air Force Medical University, Xi’an, China
| | - Han Wang
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Guoliang Wang
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Yong Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, China
| | - Yunfei Zhang
- Department of Orthopaedics, Second Affiliated Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
Su J, Wu Y, Wang Z, Zhang D, Yang X, Zhao Y, Yu A. Probiotic biofilm modified scaffolds for facilitating osteomyelitis treatment through sustained release of bacteriophage and regulated macrophage polarization. Mater Today Bio 2025; 30:101444. [PMID: 39866782 PMCID: PMC11764121 DOI: 10.1016/j.mtbio.2025.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Osteomyelitis has gradually become a catastrophic complication in orthopedic surgery due to the formation of bacterial biofilms on the implant surface and surrounding tissue. The therapeutic challenges of antibiotic resistance and poor postoperative osseointegration provide inspiration for the development of bioactive implants. We have strategically designed bioceramic scaffolds modified with Lactobacillus reuteri (LR) and bacteriophages (phages) to achieve both antibacterial and osteogenic effects. Leveraging the tendency of bacteria to adhere to the surface of implants, bioceramics have been modified with LR biofilm to promote bone repair. The LR biofilm, sterilized by pasteurization, prevents sepsis caused by live bacteria and is biocompatible with phages. Phages, being natural enemies of bacteria, not only effectively kill bacteria and inhibit biofilm formation but also readily adsorb onto the surface of bioceramics. Hence, this scaffold, loaded with a phage cocktail, lysates specific bacterial populations, namely Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). More importantly, the inactivated LR biofilm stimulates macrophages RAW264.7 to polarize towards an anti-inflammatory M2 phenotype, creating an immune microenvironment favorable for inducing osteogenic differentiation of rat mesenchymal stem cells in vitro. In a rat model of infectious cranial defects, the scaffold not only effectively eliminated S. aureus and alleviated associated inflammation but also mediated macrophage-mediated immunoregulation, thus resulting in effective osteogenesis. Collectively, these multifunctional modified scaffolds offer an integrated approach to both bacterium elimination and bone repair, presenting a new strategy for bioactive implants in the clinical management of osteomyelitis.
Collapse
Affiliation(s)
- Junwei Su
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yifan Wu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zheng Wang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Dong Zhang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xianquan Yang
- Department of Orthopaedics, Gucheng County People's Hospital, Xiangyang, 441799, Hubei, China
| | - Yong Zhao
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Aixi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
6
|
Zhao D, Tang M, Ma Z, Hu P, Fu Q, Yao Z, Zhou C, Zhou T, Cao J. Synergy of bacteriophage depolymerase with host immunity rescues sepsis mice infected with hypervirulent Klebsiella pneumoniae of capsule type K2. Virulence 2024; 15:2415945. [PMID: 39429194 PMCID: PMC11497950 DOI: 10.1080/21505594.2024.2415945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/11/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
The hypervirulent Klebsiella pneumoniae (hvKp) with K1 and K2 capsular types causes liver abscess, pneumonia, sepsis, and invasive infections with high lethality. The presence of capsular polysaccharide (CPS) resists phagocytic engulfment and contributes to excessive inflammatory responses. Bacteriophage depolymerases can specifically target bacterial CPS, neutralizing its defense. Based on our previous research, we expressed and purified a bacteriophage depolymerase (Dep1979) targeting hvKp with capsule type K2. Interestingly, although Dep1979 lacked direct bactericidal activity in vitro, it exhibited potent antibacterial activity in vivo. Low-dose Dep1979 (0.1 mg/kg) improved the 7-day survival of immunocompetent mice to 100%. Even at 0.01 mg/kg, mice achieved 100% survival at 5 days, although efficacy sharply declined at doses as low as 0.001 mg/kg. Following Dep1979 treatment, reduced expression of inflammatory factors and no apparent tissue damage were observed. However, therapeutic efficacy significantly diminished in immunosuppressed mice. These findings underscore the critical role of Dep1979 in disarming CPS, which synergizes with host immunity to enhance antibacterial activity against hvKp.
Collapse
Affiliation(s)
- Deyi Zhao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Miran Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Panjie Hu
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Qingxia Fu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Young J, Shariyate MJ, Misra P, Laiwala S, Nazarian A, Rodriguez EK. Assessment of Bacteriophage Pharmacokinetic Parameters After Intra-Articular Delivery in a Rat Prosthetic Joint Infection Model. Viruses 2024; 16:1800. [PMID: 39599913 PMCID: PMC11598970 DOI: 10.3390/v16111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/10/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Prosthetic joint infections (PJIs) are a serious complication of orthopedic surgery. Bacteriophage (phage) therapy shows promise as an adjunctive treatment but requires further study, particularly in its pharmacokinetics. Consequently, we performed a pharmacokinetic assessment of phage therapy for PJIs using a Staphylococcus epidermidis Kirschner wire-based prosthesis rat model. We used 52 male Sprague-Dawley rats in four groups: negative controls (no phage, sterile implant), PJI controls (bacteria, no phage), sterile phage (phages given, sterile implant), and PJI (bacteria, phages given). The PJI groups were inoculated with ~106 CFU of S. epidermidis. The groups receiving phage were intra-articularly injected with ~108 PFU of vB_SepM_Alex five days post-implantation. The rats were euthanized between 30 min and 48 h post-injection. The measured phage concentrations between the PJI rats and the sterile controls in periarticular tissues were not significantly different. In a noncompartmental pharmacokinetic analysis, the estimated phage half-lives were under 6 h (combined: 3.73 [IQR, 1.45, 10.07]). The maximum phage concentrations were reached within 2 h after administration (combined: 0.75 [0.50, 1.75]). The estimated phage mean residence time was approximately three hours (combined: 3.04 [1.44, 4.19]). Our study provides a preliminary set of pharmacokinetic parameters that can inform future phage dosing studies and animal models of phage therapy for PJIs.
Collapse
Affiliation(s)
- Jason Young
- Harvard Combined Orthopedic Residency Program, Boston, MA 02114, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Mohammad Javad Shariyate
- Harvard Medical School, Boston, MA 02115, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Prateek Misra
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Shubham Laiwala
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Ara Nazarian
- Harvard Medical School, Boston, MA 02115, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Orthopedic Surgery, Yerevan State Medical University, Yerevan 0025, Armenia
| | - Edward Kenneth Rodriguez
- Harvard Medical School, Boston, MA 02115, USA
- Musculoskeletal Translational Innovation Initiative, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Carl J. Shapiro Department of Orthopedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
8
|
Chen B, Chittò M, Tao S, Wagemans J, Lavigne R, Richards RG, Metsemakers WJ, Moriarty TF. Isolation and Antibiofilm Activity of Bacteriophages against Cutibacterium acnes from Patients with Periprosthetic Joint Infection. Viruses 2024; 16:1592. [PMID: 39459925 PMCID: PMC11512206 DOI: 10.3390/v16101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Infections following shoulder surgery, particularly periprosthetic joint infection (PJI), are challenging to treat. Cutibacterium acnes is the causative pathogen in 39% to 76% of these cases. This study explores the efficacy of bacteriophage therapy as an alternative to conventional antibiotics for treating such infections. METHODS Nine phages with lytic activity were isolated from the skin of humans using C. acnes ATCC 6919 as the indicator host. These phages were tested individually or in combination to assess host range and antibiofilm activity against clinical strains of C. acnes associated with PJIs. The phage cocktail was optimized for broad-spectrum activity and tested in vitro against biofilms formed on titanium discs to mimic the prosthetic environment. RESULTS The isolated phages displayed lytic activity against a range of C. acnes clinical isolates. The phage cocktail significantly reduced the bacterial load of C. acnes strains 183, 184, and GG2A, as compared with untreated controls (p < 0.05). Individual phages, particularly CaJIE7 and CaJIE3, also demonstrated significant reductions in bacterial load with respect to specific strains. Moreover, phages notably disrupted the biofilm structure and reduced biofilm biomass, confirming the potential of phage therapy in targeting biofilm-associated infections. CONCLUSIONS Our preclinical findings support the potential of phage therapy as a viable adjunct to traditional antibiotics for treating C. acnes infections in orthopedic device-related infections. The ability of phages to disrupt biofilms may be particularly beneficial for managing infections associated with prosthetic implants.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Trauma Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (B.C.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Marco Chittò
- AO Research Institute Davos, 7270 Davos, Switzerland
| | - Siyuan Tao
- Laboratory for Biointerfaces, Empa, 9014 St. Gallen, Switzerland
| | - Jeroen Wagemans
- Laboratory of Gene Technology, KU Leuven, 3000 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3000 Leuven, Belgium
| | | | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (B.C.)
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | | |
Collapse
|
9
|
Abdulrehman T, Qadri S, Haik Y, Sultan A, Skariah S, Kumar S, Mendoza Z, Yadav KK, Titus A, Khader S. Advances in the targeted theragnostics of osteomyelitis caused by Staphylococcus aureus. Arch Microbiol 2024; 206:288. [PMID: 38834761 DOI: 10.1007/s00203-024-04015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.
Collapse
Affiliation(s)
- Tahir Abdulrehman
- eHealth Program, DeGroote School of Business, McMaster University, Hamilton, ON, Canada
- Health Policy, Management and Informatics, Allied Health, Credit Valley Hospital, Mississauga, ON, Canada
| | - Shahnaz Qadri
- School of Pharmacy, Texas A&M University, Kingsville, USA.
| | - Yousef Haik
- Department of Mechanical & Nuclear Engineering, University of Sharjah, Sharjah, UAE.
| | - Ali Sultan
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sini Skariah
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Shourya Kumar
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Zachary Mendoza
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Kamlesh K Yadav
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Anoop Titus
- Department of Preventive Cardiology, Houston Methodist, Houston, TX, USA
| | - Shameer Khader
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|