1
|
Palma E, Santos JF, Fernandes C, Paulo A. DNA-Targeted Complexes of Tc and Re for Biomedical Applications. Chemistry 2024; 30:e202303591. [PMID: 38038361 DOI: 10.1002/chem.202303591] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Due to their favorable chemical features, Re and Tc complexes have been widely used for the development of new therapeutic agents and imaging probes to solve problems of biomedical relevance. This review provides an update of the most relevant research efforts towards the development of novel cancer theranostic agents using Re and Tc-based compounds interacting with specific DNA structures. This includes a variety of homometallic complexes, namely those containing M(CO)3 (M=Re, Tc) moieties, that exhibit different modes of interaction with DNA, such as covalent binding, intercalation, groove binding or G-quadruplex DNA binding. Additionally, heterometallic complexes, designed to potentiate synergistic effects of different metal centers to improve DNA-targeting, cytotoxicity and fluorescence properties, are also reviewed. Particular attention is also given to 99m Tc- and 188 Re-labeled oligonucleotides that have been widely explored to develop imaging and therapeutic radiopharmaceuticals through the in vivo hybridization with a specific complementary DNA or RNA target sequence to provide useful molecular tools in precision medicine for cancer diagnosis and treatment. Finally, the need for further improvement of DNA-targeted Re and Tc-based compounds as potential therapeutic and diagnostic agents is highlighted, and future directions are discussed.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Joana F Santos
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Célia Fernandes
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - António Paulo
- C2TN - Centro de Ciências e Tecnologias, Nucleares Instituto Superior Técnico, Universidade de Lisboa, Portugal
- DECN - Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| |
Collapse
|
2
|
Sidorenko GV, Miroslavov AE, Tyupina MY. Technetium(I) carbonyl complexes for nuclear medicine: Coordination-chemical aspect. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Fantoni NZ, Brown T, Kellett A. DNA-Targeted Metallodrugs: An Untapped Source of Artificial Gene Editing Technology. Chembiochem 2021; 22:2184-2205. [PMID: 33570813 DOI: 10.1002/cbic.202000838] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/09/2021] [Indexed: 12/20/2022]
Abstract
DNA binding metal complexes are synonymous with anticancer drug discovery. Given the array of structural and chemical reactivity properties available through careful design, metal complexes have been directed to bind nucleic acid structures through covalent or noncovalent binding modes. Several recognition modes - including crosslinking, intercalation, and oxidation - are central to the clinical success of broad-spectrum anticancer metallodrugs. However, recent progress in nucleic acid click chemistry coupled with advancement in our understanding of metal complex-nucleic acid interactions has opened up new avenues in genetic engineering and targeted therapies. Several of these applications are enabled by the hybridisation of oligonucleotide or polyamine probes to discrete metal complexes, which facilitate site-specific reactivity at the nucleic acid interface under the guidance of the probe. This Review focuses on recent advancements in hybrid design and, by way of an introduction to this topic, we provide a detailed overview of nucleic acid structures and metal complex-nucleic acid interactions. Our aim is to provide readers with an insight on the rational design of metal complexes with DNA recognition properties and an understanding of how the sequence-specific targeting of these interactions can be achieved for gene engineering applications.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for, Cellular Biotechnology and Nano Research Facility, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
4
|
Fantoni NZ, El-Sagheer AH, Brown T. A Hitchhiker's Guide to Click-Chemistry with Nucleic Acids. Chem Rev 2021; 121:7122-7154. [PMID: 33443411 DOI: 10.1021/acs.chemrev.0c00928] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Click chemistry is an immensely powerful technique for the fast and efficient covalent conjugation of molecular entities. Its broad scope has positively impacted on multiple scientific disciplines, and its implementation within the nucleic acid field has enabled researchers to generate a wide variety of tools with application in biology, biochemistry, and biotechnology. Azide-alkyne cycloadditions (AAC) are still the leading technology among click reactions due to the facile modification and incorporation of azide and alkyne groups within biological scaffolds. Application of AAC chemistry to nucleic acids allows labeling, ligation, and cyclization of oligonucleotides efficiently and cost-effectively relative to previously used chemical and enzymatic techniques. In this review, we provide a guide to inexperienced and knowledgeable researchers approaching the field of click chemistry with nucleic acids. We discuss in detail the chemistry, the available modified-nucleosides, and applications of AAC reactions in nucleic acid chemistry and provide a critical view of the advantages, limitations, and open-questions within the field.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Afaf H El-Sagheer
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Tom Brown
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
5
|
Zuin Fantoni N, McGorman B, Molphy Z, Singleton D, Walsh S, El-Sagheer AH, McKee V, Brown T, Kellett A. Development of Gene-Targeted Polypyridyl Triplex-Forming Oligonucleotide Hybrids. Chembiochem 2020; 21:3563-3574. [PMID: 32755000 DOI: 10.1002/cbic.202000408] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Indexed: 02/02/2023]
Abstract
In the field of nucleic acid therapy there is major interest in the development of libraries of DNA-reactive small molecules which are tethered to vectors that recognize and bind specific genes. This approach mimics enzymatic gene editors, such as ZFNs, TALENs and CRISPR-Cas, but overcomes the limitations imposed by the delivery of a large protein endonuclease which is required for DNA cleavage. Here, we introduce a chemistry-based DNA-cleavage system comprising an artificial metallo-nuclease (AMN) that oxidatively cuts DNA, and a triplex-forming oligonucleotide (TFO) that sequence-specifically recognises duplex DNA. The AMN-TFO hybrids coordinate CuII ions to form chimeric catalytic complexes that are programmable - based on the TFO sequence employed - to bind and cut specific DNA sequences. Use of the alkyne-azide cycloaddition click reaction allows scalable and high-throughput generation of hybrid libraries that can be tuned for specific reactivity and gene-of-interest knockout. As a first approach, we demonstrate targeted cleavage of purine-rich sequences, optimisation of the hybrid system to enhance stability, and discrimination between target and off-target sequences. Our results highlight the potential of this approach where the cutting unit, which mimics the endonuclease cleavage machinery, is directly bound to a TFO guide by click chemistry.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Present address: Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Bríonna McGorman
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Daniel Singleton
- ATDBio Ltd., School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sarah Walsh
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.,ATDBio Ltd., Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
6
|
Salmain M, Fischer-Durand N, Rudolf B. Bioorthogonal Conjugation of Transition Organometallic Complexes to Peptides and Proteins: Strategies and Applications. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michèle Salmain
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; 4 place Jussieu 75005 Paris France
| | - Nathalie Fischer-Durand
- Sorbonne Université; CNRS; Institut Parisien de Chimie Moléculaire; 4 place Jussieu 75005 Paris France
| | - Bogna Rudolf
- Department of Organic Chemistry; Faculty of Chemistry; University of Lodz; 91-403 Lodz Poland
| |
Collapse
|
7
|
Cauteruccio S, Licandro E, Panigati M, D'Alfonso G, Maiorana S. Modifying the properties of organic molecules by conjugation with metal complexes: The case of peptide nucleic acids and of the intrinsically chiral thiahelicenes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Fischer-Durand N, Lizinska D, Guérineau V, Rudolf B, Salmain M. ‘Clickable’ cyclopentadienyl iron carbonyl complexes for bioorthogonal conjugation of mid-infrared labels to a model protein and PAMAM dendrimer. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nathalie Fischer-Durand
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université; 4 place Jussieu 75005 Paris France
| | - Daria Lizinska
- Department of Organic Chemistry; University of Lodz; Tamka 12 91-403 Lodz Poland
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301; Université Paris-Sud, Université Paris-Saclay; Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Bogna Rudolf
- Department of Organic Chemistry; University of Lodz; Tamka 12 91-403 Lodz Poland
| | - Michèle Salmain
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université; 4 place Jussieu 75005 Paris France
| |
Collapse
|
9
|
Sabale P, Ambi UB, Srivatsan SG. Clickable PNA Probes for Imaging Human Telomeres and Poly(A) RNAs. ACS OMEGA 2018; 3:15343-15352. [PMID: 30556003 PMCID: PMC6289544 DOI: 10.1021/acsomega.8b02550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/31/2018] [Indexed: 05/10/2023]
Abstract
The ability to bind strongly to complementary nucleic acid sequences, invade complex nucleic acid structures, and resist degradation by cellular enzymes has made peptide nucleic acid (PNA) oligomers as very useful hybridization probes in molecular diagnosis. For such applications, the PNA oligomers have to be labeled with appropriate reporters as they lack intrinsic labels that can be used in biophysical assays. Although solid-phase synthesis is commonly used to attach reporters onto PNA, development of milder and modular labeling methods will provide access to PNA oligomers labeled with a wider range of biophysical tags. Here, we describe the establishment of a postsynthetic modification strategy based on bioorthogonal chemical reactions in functionalizing PNA oligomers in solution with a variety of tags. A toolbox composed of alkyne- and azide-modified monomers were site-specifically incorporated into PNA oligomers and postsynthetically click-functionalized with various tags, ranging from sugar, amino acid, biotin, to fluorophores, by using copper(I)-catalyzed azide-alkyne cycloaddition, strain-promoted azide-alkyne cycloaddition, and Staudinger ligation reactions. As a proof of utility of this method, fluorescent PNA hybridization probes were developed and used in imaging human telomeres in chromosomes and poly(A) RNAs in cells. Taken together, this simple approach of generating a wide range of functional PNA oligomers will expand the use of PNA in molecular diagnosis.
Collapse
|
10
|
Piras L, Avitabile C, D'Andrea LD, Saviano M, Romanelli A. Detection of oligonucleotides by PNA-peptide conjugates recognizing the biarsenical fluorescein complex FlAsH-EDT 2. Biochem Biophys Res Commun 2017; 493:126-131. [PMID: 28919425 DOI: 10.1016/j.bbrc.2017.09.064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Abstract
We report the application of the arsenical complex FlAsH-EDT2 for the identification of oligonucleotide sequences. We designed PNA sequences conjugated to either a tetracysteine motif and to split tetracysteine sequences, that are recognized by FlAsH. The effect of conjugation of the PNA to the tetracysteine peptide and RNA hybridization on the fluorescence of the arsenical complex has been investigated. The reconstitution of the tetracysteine motif, starting from 15-mer PNAs conjugated to split tetracysteine sequences and hybridized to a complementary oligonucleotide was also explored.
Collapse
Affiliation(s)
- Linda Piras
- Institute of Crystallography (IC), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Concetta Avitabile
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Napoli, Italy
| | - Luca Domenico D'Andrea
- Institute of Biostructures and Bioimaging (IBB), CNR, via Mezzocannone 16, 80134, Napoli, Italy
| | - Michele Saviano
- Institute of Crystallography (IC), CNR, Via Amendola 122/O, 70126, Bari, Italy
| | - Alessandra Romanelli
- Department of Pharmacy, University of Naples "Federico II", via Mezzocannone 16, 80134, Napoli, Italy.
| |
Collapse
|
11
|
Lee E, Mari C, Gel M, Gardiner J, Gasser G, Haylock D. Immobilisation of Multiple Ligands Using Peptide Nucleic Acids: A Strategy to Prepare the Microenvironment for Cell Culture. ChemistrySelect 2017. [DOI: 10.1002/slct.201700541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eun‐ju Lee
- Manufacturing Commonwealth Scientific and Industrial Research Organisation Ian Wark Laboratory Bayview Avenue Clayton, Victoria 3168 Australia
| | - Cristina Mari
- Department of Chemistry University of Zurich Winterthurerstrasse 190 CH-8057 Zurich Switzerland
| | - Murat Gel
- Manufacturing Commonwealth Scientific and Industrial Research Organisation Ian Wark Laboratory Bayview Avenue Clayton, Victoria 3168 Australia
| | - James Gardiner
- Manufacturing Commonwealth Scientific and Industrial Research Organisation Ian Wark Laboratory Bayview Avenue Clayton, Victoria 3168 Australia
| | - Gilles Gasser
- Chimie ParisTech PSL Research University Laboratory for Inorganic Chemical Biology F-75005 Paris France
| | - David Haylock
- Manufacturing Commonwealth Scientific and Industrial Research Organisation Ian Wark Laboratory Bayview Avenue Clayton, Victoria 3168 Australia
- Australian Regenerative Medicine Institute Monash University Clayton, Victoria 3168 Australia
| |
Collapse
|
12
|
A rhodium(III)-based inhibitor of autotaxin with antiproliferative activity. Biochim Biophys Acta Gen Subj 2017; 1861:256-263. [DOI: 10.1016/j.bbagen.2016.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/09/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022]
|
13
|
Gooding M, Malhotra M, Evans JC, Darcy R, O'Driscoll CM. Oligonucleotide conjugates - Candidates for gene silencing therapeutics. Eur J Pharm Biopharm 2016; 107:321-40. [PMID: 27521696 DOI: 10.1016/j.ejpb.2016.07.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/24/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022]
Abstract
The potential therapeutic and diagnostic applications of oligonucleotides (ONs) have attracted great attention in recent years. The capability of ONs to selectively inhibit target genes through antisense and RNA interference mechanisms, without causing un-intended sideeffects has led them to be investigated for various biomedical applications, especially for the treatment of viral diseases and cancer. In recent years, many researchers have focused on enhancing the stability and target specificity of ONs by encapsulating/complexing them with polymers or lipid chains to formulate nanoparticles/nanocomplexes/micelles. Also, chemical modification of nucleic acids has emerged as an alternative to impart stability to ONs against nucleases and other degrading enzymes and proteins found in blood. In addition to chemically modifying the nucleic acids directly, another strategy that has emerged, involves conjugating polymers/peptide/aptamers/antibodies/proteins, preferably to the sense strand (3'end) of siRNAs. Conjugation to the siRNA not only enhances the stability and targeting specificity of the siRNA, but also allows for the development of self-administering siRNA formulations, with a much smaller size than what is usually observed for nanoparticle (∼200nm). This review concentrates mainly on approaches and studies involving ON-conjugates for biomedical applications.
Collapse
Affiliation(s)
- Matt Gooding
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Meenakshi Malhotra
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - James C Evans
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | - Raphael Darcy
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Cork, Ireland
| | | |
Collapse
|
14
|
Castro V, Rodríguez H, Albericio F. CuAAC: An Efficient Click Chemistry Reaction on Solid Phase. ACS COMBINATORIAL SCIENCE 2016; 18:1-14. [PMID: 26652044 DOI: 10.1021/acscombsci.5b00087] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Click chemistry is an approach that uses efficient and reliable reactions, such as Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), to bind two molecular building blocks. CuAAC has broad applications in medicinal chemistry and other fields of chemistry. This review describes the general features and applications of CuAAC in solid-phase synthesis (CuAAC-SP), highlighting the suitability of this kind of reaction for peptides, nucleotides, small molecules, supramolecular structures, and polymers, among others. This versatile reaction is expected to become pivotal for meeting future challenges in solid-phase chemistry.
Collapse
Affiliation(s)
- Vida Castro
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
| | - Hortensia Rodríguez
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- School
of Chemistry, Yachay Tech, Yachay City of Knowledge, Urcuqui, Ecuador
| | - Fernando Albericio
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology 08028-Barcelona, Spain
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, 08028-Barcelona, Spain
- Department
of Organic Chemistry, University of Barcelona, 08028-Barcelona, Spain
- School of Chemistry & Physics, University of KwaZulu-Natal, 4001-Durban, South Africa
| |
Collapse
|
15
|
Mari C, Mosberger S, Llorente N, Spreckelmeyer S, Gasser G. Insertion of organometallic moieties into peptides and peptide nucleic acids using alternative “click” strategies. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00270b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Application of alternative “click” strategies (metal-free photoclick and one-pot click) to cymantrene and ferrocene derivatives yielded novel metal-containing conjugates.
Collapse
Affiliation(s)
- Cristina Mari
- University of Zurich
- Department of Chemistry
- Zurich
- Switzerland
| | | | - Nuria Llorente
- University of Zurich
- Department of Chemistry
- Zurich
- Switzerland
| | | | - Gilles Gasser
- University of Zurich
- Department of Chemistry
- Zurich
- Switzerland
| |
Collapse
|
16
|
Leonidova A, Foerster C, Zarschler K, Schubert M, Pietzsch HJ, Steinbach J, Bergmann R, Metzler-Nolte N, Stephan H, Gasser G. In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system. Chem Sci 2015; 6:5601-5616. [PMID: 29861898 PMCID: PMC5949856 DOI: 10.1039/c5sc00951k] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022] Open
Abstract
A novel, promising strategy for cancer diagnosis and therapy is the use of a pretargeting approach. For this purpose, the non-natural DNA/RNA analogues Peptide Nucleic Acids (PNAs) are ideal candidates as in vivo recognition units due to their high metabolic stability and lack of unspecific accumulation. In the pretargeting approach, an unlabeled, highly specific antibody-PNA conjugate has sufficient time to target a tumor before administration of a small fast-clearing radiolabeled complementary PNA that hybridizes with the antibody-PNA conjugate at the tumor site. Herein, we report the first successful application of this multistep process using a PNA-modified epidermal growth factor receptor (EGFR) specific antibody (cetuximab) and a complementary 99mTc-labeled PNA. In vivo studies on tumor bearing mice demonstrated a rapid and efficient in vivo hybridization of the radiolabeled PNA with the antibody-PNA conjugate. Decisively, a high specific tumor accumulation was observed with a tumor-to-muscle ratio of >8, resulting in a clear visualization of the tumor by single photon emission computed tomography (SPECT).
Collapse
Affiliation(s)
- Anna Leonidova
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland . ; http://www.gassergroup.com ; Tel: +41 44 635 46 30
| | - Christian Foerster
- Helmholtz-Zentrum Dresden - Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , D-01328 Dresden , Germany . ; http://www.hzdr.de/NanoscalicSystems ; Tel: +49 351 260-3091
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden - Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , D-01328 Dresden , Germany . ; http://www.hzdr.de/NanoscalicSystems ; Tel: +49 351 260-3091
| | - Maik Schubert
- Helmholtz-Zentrum Dresden - Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , D-01328 Dresden , Germany . ; http://www.hzdr.de/NanoscalicSystems ; Tel: +49 351 260-3091
| | - Hans-Jürgen Pietzsch
- Helmholtz-Zentrum Dresden - Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , D-01328 Dresden , Germany . ; http://www.hzdr.de/NanoscalicSystems ; Tel: +49 351 260-3091
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden - Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , D-01328 Dresden , Germany . ; http://www.hzdr.de/NanoscalicSystems ; Tel: +49 351 260-3091
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden - Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , D-01328 Dresden , Germany . ; http://www.hzdr.de/NanoscalicSystems ; Tel: +49 351 260-3091
| | - Nils Metzler-Nolte
- Lehrstuhl für Anorganische Chemie I - Bioanorganische Chemie , Fakultät für Chemie und Biochemie , Ruhr-Universität Bochum , Universitätsstrasse 150 , D-44801 Bochum , Germany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden - Rossendorf , Institute of Radiopharmaceutical Cancer Research , Bautzner Landstraße 400 , D-01328 Dresden , Germany . ; http://www.hzdr.de/NanoscalicSystems ; Tel: +49 351 260-3091
| | - Gilles Gasser
- Department of Chemistry , University of Zurich , Winterthurerstrasse 190 , CH-8057 Zurich , Switzerland . ; http://www.gassergroup.com ; Tel: +41 44 635 46 30
| |
Collapse
|
17
|
Leonidova A, Pierroz V, Adams LA, Barlow N, Ferrari S, Graham B, Gasser G. Enhanced Cytotoxicity through Conjugation of a "Clickable" Luminescent Re(I) Complex to a Cell-Penetrating Lipopeptide. ACS Med Chem Lett 2014; 5:809-14. [PMID: 25050170 DOI: 10.1021/ml500158w] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/15/2014] [Indexed: 01/10/2023] Open
Abstract
Re(I) tricarbonyl polypyridine-based complexes are particularly attractive metal complexes in the field of inorganic chemical biology due to their luminescent properties, ease of conjugation to targeting biomolecules, and the possibility to prepare their "hot" (99m)Tc analogues for radioimaging. In this study, we prepared and characterized a novel, "clickable" complex, [Re(2,2'-bipyridine)(3-ethynylpyridine)(CO)3](BF4) ([Re(CO) 3 (bipy)(py-alkyne)](BF 4 )), exhibiting the characteristic luminescent properties and moderate cytotoxicity of this general class of compound. Using Cu(I)-catalyzed "click" chemistry, the complex was efficiently attached to a lipidated peptide known to increase cell permeability, namely, the myristoylated HIV-1 Tat peptide (myr-Tat), to give Re-myr-Tat. Fluorescence microscopy localization in human cervical cancer cells (HeLa) confirmed enhanced cellular uptake of Re-myr-Tat compared with [Re(CO) 3 (bipy)(py-alkyne)](BF 4 ), and cytotoxicity studies showed that this resulted in an increase in potency to a level comparable with cisplatin (13.0 ± 2.0 μM).
Collapse
Affiliation(s)
- Anna Leonidova
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Vanessa Pierroz
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Institute of Molecular Cancer Research, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Luke A. Adams
- Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Nicholas Barlow
- Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Stefano Ferrari
- Institute of Molecular Cancer Research, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Bim Graham
- Monash
Institute of Pharmaceutical Sciences, Monash University, 381 Royal
Parade, Parkville, Victoria 3052, Australia
| | - Gilles Gasser
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
18
|
Gasser G. Preparation of metal-containing peptide nucleic acid bioconjugates on the solid phase. Methods Mol Biol 2014; 1050:55-72. [PMID: 24297350 DOI: 10.1007/978-1-62703-553-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide nucleic acids (PNAs) are a class of artificial DNA/RNA analogues that have unique physicochemical properties, which include a high chemical stability, resistance to nucleases and proteases, and higher mismatch sensitivity than DNA. PNAs were initially anticipated to be useful for application in antisense and antigene therapies; however, their poor cellular uptake has limited their use for such purposes in the "real world." Recently, it has been shown that the addition of metal complexes to these oligonucleotide analogues could open up new avenues for their utilization in various research fields. Such metallo-constructs have shown great promise, for a diverse range of applications, most notably in the biosensing area. In this book chapter, we report on the recent synthetic advances towards the preparation of these "(multi-)metallic PNAs" on the solid phase.
Collapse
Affiliation(s)
- Gilles Gasser
- Institute of Inorganic Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Stephan H, Foerster C, Gasser G. Synthesis, characterization, and evaluation of radiometal-containing peptide nucleic acids. Methods Mol Biol 2014; 1050:37-54. [PMID: 24297349 DOI: 10.1007/978-1-62703-553-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Peptide nucleic acids (PNAs) have very attractive properties for applications in nuclear medicine. Because PNAs have high selectivity for DNA/RNA recognition, resistance to nuclease/protease degradation, and high thermal and radiolytic stabilities, PNA bioconjugates could transform the areas of diagnostic and therapeutic nuclear medicine. In this book chapter, we report on the current developments towards the preparation of radiometal-containing PNA constructs and summarize the protocols for labeling these probes with (99m)Tc, (111)In, (64)Cu, (90)Y, and (177)Lu.
Collapse
Affiliation(s)
- Holger Stephan
- Institute of Radiopharmaceutical Cancer Research, Helmholtz- Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | |
Collapse
|
20
|
Jain DR, Ganesh KN. Clickable Cγ-azido(methylene/butylene) peptide nucleic acids and their clicked fluorescent derivatives: synthesis, DNA hybridization properties, and cell penetration studies. J Org Chem 2014; 79:6708-14. [PMID: 24941399 DOI: 10.1021/jo500834u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synthesis, characterization, and DNA complementation studies of clickable C(γ)-substituted methylene (azm)/butylene (azb) azido PNAs show that these analogues enhance the stability of the derived PNA:DNA duplexes. The fluorescent PNA oligomers synthesized by their click reaction with propyne carboxyfluorescein are seen to accumulate around the nuclear membrane in 3T3 cells.
Collapse
Affiliation(s)
- Deepak R Jain
- Chemical Biology Unit, Indian Institute of Science Education and Research , Dr Homi Bhabha Road, Pune 411008, India
| | | |
Collapse
|
21
|
Kitanovic I, Can S, Alborzinia H, Kitanovic A, Pierroz V, Leonidova A, Pinto A, Spingler B, Ferrari S, Molteni R, Steffen A, Metzler-Nolte N, Wölfl S, Gasser G. A deadly organometallic luminescent probe: anticancer activity of a ReI bisquinoline complex. Chemistry 2014; 20:2496-507. [PMID: 24464824 DOI: 10.1002/chem.201304012] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Indexed: 12/25/2022]
Abstract
The photophysical properties of [Re(CO)3 (L-N3)]Br (L-N3 =2-azido-N,N-bis[(quinolin-2-yl)methyl]ethanamine), which could not be localized in cancer cells by fluorescence microscopy, have been revisited in order to evaluate its use as a luminescent probe in a biological environment. The Re(I) complex displays concentration-dependent residual fluorescence besides the expected phosphorescence, and the nature of the emitting excited states have been evaluated by DFT and time-dependent (TD) DFT methods. The results show that fluorescence occurs from a (1) LC/MLCT state, whereas phosphorescence mainly stems from a (3) LC state, in contrast to previous assignments. We found that our luminescent probe, [Re(CO)3 (L-N3)]Br, exhibits an interesting cytotoxic activity in the low micromolar range in various cancer cell lines. Several biochemical assays were performed to unveil the cytotoxic mechanism of the organometallic Re(I) bisquinoline complex. [Re(CO)3 (L-N3)]Br was found to be stable in human plasma indicating that [Re(CO)3 (L-N3)]Br itself and not a decomposition product is responsible for the observed cytotoxicity. Addition of [Re(CO)3 (L-N3)]Br to MCF-7 breast cancer cells grown on a biosensor chip micro-bioreactor immediately led to reduced cellular respiration and increased glycolysis, indicating a large shift in cellular metabolism and inhibition of mitochondrial activity. Further analysis of respiration of isolated mitochondria clearly showed that mitochondrial respiratory activity was a direct target of [Re(CO)3 (L-N3)]Br and involved two modes of action, namely increased respiration at lower concentrations, potentially through increased proton transport through the inner mitochondrial membrane, and efficient blocking of respiration at higher concentrations. Thus, we believe that the direct targeting of mitochondria in cells by [Re(CO)3 (L-N3)]Br is responsible for the anticancer activity.
Collapse
Affiliation(s)
- Igor Kitanovic
- Department of Bioanalytics and Molecular Biology, Institute for Pharmacy and Molecular Biology, University of Heidelberg im Neuenheimer Feld 364, 69120 Heidelberg (Germany), Tel: (+49) 622-1544-878 http://www.uni-heidelberg.de/fakultaeten/biowissenschaften/ipmb/biologie/woelfl/index.html
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Anderson CB, Elliott ABS, Lewis JEM, McAdam CJ, Gordon KC, Crowley JD. fac-Re(CO)3 complexes of 2,6-bis(4-substituted-1,2,3-triazol-1-ylmethyl)pyridine "click" ligands: synthesis, characterisation and photophysical properties. Dalton Trans 2013; 41:14625-32. [PMID: 23104300 DOI: 10.1039/c2dt31569f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The syntheses of the 4-n-propyl and 4-phenyl substituted fac-Re(CO)(3) complexes of the tridentate "click" ligand (2,6-bis(4-substituted-1,2,3-triazol-1-ylmethyl)pyridine) are described. The complexes were obtained by refluxing methanol solutions of [Re(CO)(5)Cl], AgPF(6) and either the 4-propyl or 4-phenyl substituted ligand for 16 h. The ligands and the two rhenium(I) complexes were characterised by elemental analysis, HR-ESMS, ATR-IR, (1)H and (13)C NMR spectroscopy and the molecular structures of both complexes were confirmed by X-ray crystallography. The electronic structure of the fac-Re(CO)(3) "click" complexes was probed using UV-Vis, Raman and emission spectroscopy, cyclic voltammetry and DFT calculations. Altering the electronic nature of the ligand's substituent, from aromatic to alkyl, had little effect on the absorption/emission maxima and electrochemical properties of the complexes indicating that the 1,2,3-triazole unit may insulate the metal centre from the electronic modification at the ligands' periphery. Both Re(I) complexes were found to be weakly emitting with short excited state lifetimes. The electrochemistry of the complexes is defined by quasi-reversible Re oxidation and irreversible triazole-based ligand reduction processes.
Collapse
|
23
|
Joshi T, Patra M, Spiccia L, Gasser G. Di-heterometalation of thiol-functionalized peptide nucleic acids. ARTIFICIAL DNA, PNA & XNA 2013; 4:11-8. [PMID: 23422249 PMCID: PMC3654725 DOI: 10.4161/adna.24019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 12/21/2022]
Abstract
As a proof-of-principle, two hetero-bimetallic PNA oligomers containing a ruthenium(II) polypyridyl and a cyclopentadienyl manganese tricarbonyl complex have been prepared by serial combination of solid-phase peptide coupling and in-solution thiol chemistry. Solid-phase N-terminus attachment of Ru(II)-polypyridyl carboxylic acid derivative, C1, onto the thiol-functionalized PNA backbone (H-a-a-g-t-c-t-g-c-linker-cys-NH 2) has been performed by standard peptide coupling method. As two parallel approaches, the strong affinity of thiols for maleimide and haloacetyl group has been exploited for subsequent post-SPPS addition of cymantrene-based organometallic cores, C2 and C3. Michael-like addition and thioether ligation of thiol functionalized PNA1 (H-gly-a-a-g-t-c-t-g-c-linker-cys-NH 2) and PNA2 (C1-a-a-g-t-c-t-g-c-linker-cys-NH 2) to cymantrene maleimide and chloroacetyl derivatives, C2 and C3, respectively, has been performed. The synthesized ruthenium(II)-cymantrenyl PNA oligomers have been characterized by mass spectrometry (ESI-MS) and IR spectroscopy. The distinct Mn-CO vibrational IR stretches, between 1,924-2,074 cm (-1) , have been used as markers to confirm the presence of cymantrenyl units in the PNA sequences and the purity of the HPLC-purified PNA thioethers assessed using LC-MS.
Collapse
Affiliation(s)
- Tanmaya Joshi
- Institute of Inorganic Chemistry; University of Zurich; Zurich, Switzerland
| | - Malay Patra
- Institute of Inorganic Chemistry; University of Zurich; Zurich, Switzerland
| | - Leone Spiccia
- ARC Centre of Excellence for Electromaterials Science and School of Chemistry; Monash University; Clayton, VIC Australia
| | - Gilles Gasser
- Institute of Inorganic Chemistry; University of Zurich; Zurich, Switzerland
| |
Collapse
|
24
|
Knott SA, Templeton JN, Durham JL, Howard AM, McDonald R, Szczepura LF. Azide alkyne cycloaddition facilitated by hexanuclear rhenium chalcogenide cluster complexes. Dalton Trans 2013; 42:8132-9. [DOI: 10.1039/c3dt50436k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Fernández S, Crócamo N, Incerti M, Giglio J, Scarone L, Rey A. Preparation and preliminary bioevaluation of a 99mTc(CO)3-glucose derivative prepared by a click chemistry route. J Labelled Comp Radiopharm 2012. [DOI: 10.1002/jlcr.2933] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Soledad Fernández
- Cátedra de Radioquímica, Facultad de Química; Universidad de la República; Montevideo; Uruguay
| | - Nancy Crócamo
- Cátedra de Radioquímica, Facultad de Química; Universidad de la República; Montevideo; Uruguay
| | - Marcelo Incerti
- Cátedra de Química Farmacéutica, Facultad de Química; Universidad de la República; Montevideo; Uruguay
| | - Javier Giglio
- Cátedra de Radioquímica, Facultad de Química; Universidad de la República; Montevideo; Uruguay
| | - Laura Scarone
- Cátedra de Química Farmacéutica, Facultad de Química; Universidad de la República; Montevideo; Uruguay
| | - Ana Rey
- Cátedra de Radioquímica, Facultad de Química; Universidad de la República; Montevideo; Uruguay
| |
Collapse
|
26
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
27
|
Joshi T, Barbante GJ, Francis PS, Hogan CF, Bond AM, Gasser G, Spiccia L. Electrochemiluminescent monomers for solid support syntheses of Ru(II)-PNA bioconjugates: multimodal biosensing tools with enhanced duplex stability. Inorg Chem 2012; 51:3302-15. [PMID: 22339152 DOI: 10.1021/ic202761w] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The feasibility of devising a solid support mediated approach to multimodal Ru(II)-peptide nucleic acid (PNA) oligomers is explored. Three Ru(II)-PNA-like monomers, [Ru(bpy)(2)(Cpp-L-PNA-OH)](2+) (M1), [Ru(phen)(2)(Cpp-L-PNA-OH)](2+) (M2), and [Ru(dppz)(2)(Cpp-L-PNA-OH)](2+) (M3) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine, Cpp-L-PNA-OH = [2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[6-(2-(pyridin-2yl)pyrimidine-4-carboxamido)hexanoyl]-glycine), have been synthesized as building blocks for Ru(II)-PNA oligomers and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, electrochemistry and elemental analysis. As a proof of principle, M1 was incorporated on the solid phase within the PNA sequences H-g-c-a-a-t-a-a-a-a-Lys-NH(2) (PNA1) and H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-lys-NH(2) (PNA4) to give PNA2 (H-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)) and PNA3 (H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)), respectively. The two Ru(II)-PNA oligomers, PNA2 and PNA3, displayed a metal to ligand charge transfer (MLCT) transition band centered around 445 nm and an emission maximum at about 680 nm following 450 nm excitation in aqueous solutions (10 mM PBS, pH 7.4). The absorption and emission response of the duplexes formed with the cDNA strand (DNA: 5'-T-T-T-T-T-T-T-A-T-T-G-C-T-T-T-3') showed no major variations, suggesting that the electronic properties of the Ru(II) complexes are largely unaffected by hybridization. The thermal stability of the PNA·DNA duplexes, as evaluated from UV melting experiments, is enhanced compared to the corresponding nonmetalated duplexes. The melting temperature (T(m)) was almost 8 °C higher for PNA2·DNA duplex, and 4 °C for PNA3·DNA duplex, with the stabilization attributed to the electrostatic interaction between the cationic residues (Ru(II) unit and positively charged lysine/arginine) and the polyanionic DNA backbone. In presence of tripropylamine (TPA) as co-reactant, PNA2, PNA3, PNA2·DNA and PNA3·DNA displayed strong electrochemiluminescence (ECL) signals even at submicromolar concentrations. Importantly, the combination of spectrochemical, thermal and ECL properties possessed by the Ru(II)-PNA sequences offer an elegant approach for the design of highly sensitive multimodal biosensing tools.
Collapse
Affiliation(s)
- Tanmaya Joshi
- ARC Centre of Excellence for Electromaterials Science and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | |
Collapse
|
28
|
Joshi T, Gasser G, Martin LL, Spiccia L. Specific uptake and interactions of peptide nucleic acid derivatives with biomimetic membranes. RSC Adv 2012. [DOI: 10.1039/c2ra20462b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
Abstract
Drug development is a complex process, requiring scientific and regulatory input at almost all stages from multiple groups of expertise. Small molecule development issues are covered in other parts of this volume. This chapter is devoted to discussing the large molecules, or biologics, and the particular nuances involved in developing these molecules as medicines. Our definition of biologic, for the purposes of this chapter, differs from that described by the regulatory bodies. Where regulators state that a biologic is a molecule produced by a living organism, be it a mammalian, insect, yeast or bacteria cell, or whole animal, we prefer to include molecules such as oligonucleotides and peptides here, which are usually chemically synthesized. So our definition is that of a molecule whose composition mostly entails naturally occurring amino acids, sugars or nucleotide bases. There are modifications made chemically to oligonucleotides and peptides to improve their drug-like properties, but for this volume, we class them as biologics. The aim of this chapter is to describe some of the differences, complexities and paradoxically, simplifications in the pharmacokinetics and ADME sciences during drug development of biologics when compared to the more familiar small molecule drug development process. The impact of the particular pharmacokinetics and ADME sciences of biologics on toxicological and pharmacological end points will be discussed.
Collapse
Affiliation(s)
- Kevin Brady
- Bicycle Therapeutics Ltd., Cambridge, United Kingdom
| | | |
Collapse
|
30
|
Abstract
Peptide nucleic acid (PNA) is a non-cyclic pseudopeptide-nucleic acid structural mimic with promising applications within diagnostics and drug discovery. This review focuses on metal complex derivatives of PNA. Metal ions and their complexes display unique physical and chemical properties and offer the opportunity to introduce new labels and probes for bioanalytical and diagnostic applications of PNA, but also to modulate or to introduce new (for example catalytic) functions and biological activities.
Collapse
|
31
|
Gasser G, Pinto A, Neumann S, Sosniak AM, Seitz M, Merz K, Heumann R, Metzler-Nolte N. Synthesis, characterisation and bioimaging of a fluorescent rhenium-containing PNA bioconjugate. Dalton Trans 2011; 41:2304-13. [PMID: 22183093 DOI: 10.1039/c2dt12114j] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new rhenium tricarbonyl complex of a bis(quinoline)-derived ligand (2-azido-N,N-bis((quinolin-2-yl)methyl)ethanamine, L-N(3)), namely [Re(CO)(3)(L-N(3))]Br was synthesized and characterized in-depth, including by X-ray crystallography. [Re(CO)(3)(L-N(3))]Br exhibits a strong UV absorbance in the range 300-400 nm with a maximum at 322 nm, and upon photoexcitation, shows two distinct emission bands at about 430 and 560 nm in various solvents (water, ethylene glycol). [Re(CO)(3)(L-N(3))]Br could be conjugated, on a solid phase, to a peptide nucleic acid (PNA) oligomer using the copper(I)-catalyzed azide-alkyne cycloaddition reaction (Cu-AAC, "click" chemistry) and an alkyne-containing PNA building block to give Re-PNA. It was demonstrated that upon hybridisation with a complementary DNA strand (DNA), the position of the maxima and emission intensity for the hybrid Re-PNA·DNA remained mainly unchanged compared to those of the single strand Re-PNA. The rhenium-containing PNA oligomer Re-PNA could be then mediated in living cells where they have been shown to be non-toxic contrary to the general notion that organometallic compounds are usually unstable under physiological conditions and/or cytotoxic. Furthermore, Re-PNA could be detected in living cells using fluorescent microscopy.
Collapse
Affiliation(s)
- Gilles Gasser
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Howarth NM, Ricci (née Goujon) J. Synthesis of N-propynyl analogues of peptide nucleic acid (PNA) monomers and their use in the click reaction to prepare N-functionalized PNAs. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.09.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Gasser G, Neumann S, Ott I, Seitz M, Heumann R, Metzler-Nolte N. Preparation and Biological Evaluation of Di-Hetero-Organometallic-Containing PNA Bioconjugates. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201100734] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Patra M, Metzler-Nolte N. Azidomethyl-ruthenocene: facile synthesis of a useful metallocene derivative and its application in the 'click' labelling of biomolecules. Chem Commun (Camb) 2011; 47:11444-6. [PMID: 21935541 DOI: 10.1039/c1cc14537a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient synthesis of azidomethyl-ruthenocene and its use in the covalent labelling of amino acids, peptides and a peptide nucleic acid (PNA) monomer derivative by Cu(I) catalyzed azide-alkyne coupling (Cu-AAC, "click chemistry") are described.
Collapse
Affiliation(s)
- Malay Patra
- Lehrstuhl für Anorganische Chemie I, Bioanorganische Chemie, Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | | |
Collapse
|
35
|
Gasser G, Sosniak AM, Metzler-Nolte N. Metal-containing peptide nucleic acid conjugates. Dalton Trans 2011; 40:7061-76. [PMID: 21541385 DOI: 10.1039/c0dt01706j] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptide Nucleic Acids (PNAs) are non-natural DNA/RNA analogues with favourable physico-chemical properties and promising applications. Discovered nearly 20 years ago, PNAs have recently re-gained quite a lot of attention. In this Perspective article, we discuss the latest advances on the preparation and utilisation of PNA monomers and oligomers containing metal complexes. These metal- conjugates have found applications in various research fields such as in the sequence-specific detection of nucleic acids, in the hydrolysis of nucleic acids and peptides, as radioactive probes or as modulators of PNA·DNA hybrid stability, and last but not least as probes for molecular and cell biology.
Collapse
Affiliation(s)
- Gilles Gasser
- Institute of Inorganic Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
| | | | | |
Collapse
|
36
|
Gasser G, Sosniak AM, Leonidova A, Braband H, Metzler-Nolte N. Towards the Preparation of Novel Re/99mTc Tricarbonyl-Containing Peptide Nucleic Acid Bioconjugates. Aust J Chem 2011. [DOI: 10.1071/ch11010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel azido derivative of the di-(2-picolyl)amide (Dpam) ligand, namely 3-azido-N,N-bis-pyridin-2-ylmethyl-propionamide (3), was prepared from 3-bromo-N,N-bis(pyridin-2-ylmethyl)propanamide (2) with an excess of sodium azide in DMSO. 3 was then reacted, by CuI-catalyzed [3 + 2] cycloaddition (often referred to as ‘Click Chemistry’), with the previously reported alkyne-containing peptide nucleic acid (PNA) monomer Fmoc-1-OtBu to give the Dpam-containing PNA monomer (Fmoc-4-OtBu) in 44% yield. It was also demonstrated that 3 could be reacted by Click Chemistry, on the solid phase, to an alkyne-containing PNA oligomer (Alkyne-PNA) to yield Dpam-PNA. Our attempts to complex Dpam-PNA with [NEt4]2[ReBr3(CO)3] and [99mTc(CO)3(H2O)3]+ are also discussed in detail.
Collapse
|