1
|
Melenbacher A, Heinlein L, Hartwig A, Stillman MJ. 63Cu(I) binding to human kidney 68Zn7-βα MT1A: determination of Cu(I)-thiolate cluster domain specificity from ESI-MS and room temperature phosphorescence spectroscopy. Metallomics 2023; 15:mfac101. [PMID: 36583699 PMCID: PMC9846682 DOI: 10.1093/mtomcs/mfac101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Mammalian metallothioneins (MTs) are important proteins in Zn(II) and Cu(I) homeostasis with the Zn(II) and Cu(I) binding to the 20 cysteines in metal-thiolate clusters. Previous electrospray ionization (ESI) mass spectrometric (MS) analyses of Cu(I) binding to Zn7-MT were complicated by significant overlap of the natural abundance isotopic patterns for Zn(II) and Cu(I) leading to impossibly ambiguous stoichiometries. In this paper, isotopically pure 63Cu(I) and 68Zn(II) allowed determination of the specific stoichiometries in the 68 Zn,63Cu-βα MT1A species formed following the stepwise addition of 63Cu(I) to 68Zn7-βα MT1A. These species were characterized by ESI-MS and room temperature emission spectroscopy. The key species that form and their emission band centres are Zn5Cu5-βα MT1A (λ = 684 nm), Zn4Cu6-βα MT1A (λ = 750 nm), Zn3Cu9-βα MT1A (λ = 750 nm), Zn2Cu10-βα MT1A (λ = 750 nm), and Zn1Cu14-βα MT1A (λ = 634 nm). The specific domain stoichiometry of each species was determined by assessing the species forming following 63Cu(I) addition to the 68Zn3-β MT1A and 68Zn4-α MT1A domain fragments. The domain fragment emission suggests that Zn5Cu5-βα MT1A contains a Zn1Cu5-β cluster and the Zn4Cu6-βα MT1A, Zn3Cu9-βα MT1A, and Zn2Cu10-βα MT1A each contain a Cu6-β cluster. The species forming with >10 mol. eq. of 63Cu(I) in βα-MT1A exhibit emission from the Cu6-β cluster and an α domain cluster. This high emission intensity is seen at the end of the titrations of 68Zn7-βα MT1A and the 68Zn4-α MT1A domain fragment suggesting that the initial presence of the Zn(II) results in clustered Cu(I) binding in the α domain.
Collapse
Affiliation(s)
- Adyn Melenbacher
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, ON N6A 5B7, Canada
| | - Lina Heinlein
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, ON N6A 5B7, Canada
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Karlsruhe, Baden-Württemberg, 76131, Germany
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Karlsruhe, Baden-Württemberg, 76131, Germany
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, 1151 Richmond St., London, Ontario, ON N6A 5B7, Canada
| |
Collapse
|
2
|
Rahim W, Khan M, Al Azzawi TNI, Pande A, Methela NJ, Ali S, Imran M, Lee DS, Lee GM, Mun BG, Moon YS, Lee IJ, Yun BW. Exogenously Applied Sodium Nitroprusside Mitigates Lead Toxicity in Rice by Regulating Antioxidants and Metal Stress-Related Transcripts. Int J Mol Sci 2022; 23:ijms23179729. [PMID: 36077126 PMCID: PMC9456452 DOI: 10.3390/ijms23179729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Sustainable agriculture is increasingly being put in danger by environmental contamination with dangerous heavy metals (HMs), especially lead (Pb). Plants have developed a sophisticated mechanism for nitric oxide (NO) production and signaling to regulate hazardous effects of abiotic factors, including HMs. In the current study, we investigated the role of exogenously applied sodium nitroprusside (SNP, a nitric oxide (NO) donor) in ameliorating the toxic effects of lead (Pb) on rice. For this purpose, plants were subjected to 1.2 mM Pb alone and in combination with 100 µM SNP. We found that under 1.2 mM Pb stress conditions, the accumulation of oxidative stress markers, including hydrogen peroxide (H2O2) (37%), superoxide anion (O2−) (28%), malondialdehyde (MDA) (33%), and electrolyte leakage (EL) (34%), was significantly reduced via the application of 100 µM SNP. On the other hand, under the said stress of Pb, the activity of the reactive oxygen species (ROS) scavengers such as polyphenol oxidase (PPO) (60%), peroxidase (POD) (28%), catalase (CAT) (26%), superoxide dismutase (SOD) (42%), and ascorbate peroxidase (APX) (58%) was significantly increased via the application of 100 µM SNP. In addition, the application of 100 µM SNP rescued agronomic traits such as plant height (24%), number of tillers per plant (40%), and visible green pigments (44%) when the plants were exposed to 1.2 mM Pb stress. Furthermore, after exposure to 1.2 mM Pb stress, the expression of the heavy-metal stress-related genes OsPCS1 (44%), OsPCS2 (74%), OsMTP1 (83%), OsMTP5 (53%), OsMT-I-1a (31%), and OsMT-I-1b (24%) was significantly enhanced via the application of 100 µM SNP. Overall, our research evaluates that exogenously applied 100 mM SNP protects rice plants from the oxidative damage brought on by 1.2 mM Pb stress by lowering oxidative stress markers, enhancing the antioxidant system and the transcript accumulation of HMs stress-related genes.
Collapse
Affiliation(s)
- Waqas Rahim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | | | - Anjali Pande
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Geun-Mo Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
- Correspondence:
| |
Collapse
|
3
|
Malekzadeh R, Shahpiri A, Siapoush S. Metalation of a rice type 1 metallothionein isoform (OsMTI-1b). Protein Expr Purif 2020; 175:105719. [PMID: 32750405 DOI: 10.1016/j.pep.2020.105719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/11/2020] [Accepted: 07/25/2020] [Indexed: 11/15/2022]
Abstract
The simultaneously functions of Metallothioneins (MTs) are relied on their metalation mechanisms that can be divided into non-cooperative, weakly cooperative and strongly cooperative mechanisms. In this study, we recombinantly synthesized OsMTI-1b, N- and C-terminal Cys-rich regions as glutathione-S-transferase (GST)-fusion proteins in E. coli. In comparison with control strains (The E. coli cells containing pET41a without gene), transgenic E. coli cells showed more tolerance against Cd2+ and Zn2+. The recombinant GST-proteins were purified using affinity chromatography. According to in vitro assays, the recombinant proteins showed a higher binding ability to Cd2+ and Zn2+. However, the affinity of apo-proteins to Cu2+ ions were very low. The coordination of Cd2+ ions in OsMTI-1b demonstrates a strongly cooperative mechanism with a priority for the C-terminal Cys-rich region that indicates the detoxifying of heavy metals as main role of P1 subfamily of MTs. While the metalation with Zn2+ conformed to a weakly cooperative mechanism with a specificity to N-terminal Cys-rich region. It implies the specific function of OsMTI-1b is involved in zinc homeostasis. Nevertheless, a non-cooperative metalation mechanism was perceived for Cu2+ that suggests the fully metalation does not occur and OsMTI-1b cannot play a significant role in dealing with Cu2+ ions.
Collapse
Affiliation(s)
- Rahim Malekzadeh
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, 88157-13471, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Samaneh Siapoush
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Science, Tabriz, 51664-15731, Iran
| |
Collapse
|
4
|
Melenbacher A, Korkola NC, Stillman MJ. The pathways and domain specificity of Cu(i) binding to human metallothionein 1A. Metallomics 2020; 12:1951-1964. [DOI: 10.1039/d0mt00215a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe the sequential formation of 3 key Cu(i)–thiolate clusters in human metallothionein 1A using a combination of ESI-MS and phosphorescence lifetime methods.
Collapse
Affiliation(s)
- Adyn Melenbacher
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | | | | |
Collapse
|
5
|
Chromatographic separation of similar post-translationally modified metallothioneins reveals the changing conformations of apo-MT upon cysteine alkylation by high resolution LC-ESI-MS. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018. [PMID: 29518586 DOI: 10.1016/j.bbapap.2018.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metallothioneins (MTs) are a class of small cysteine-rich proteins essential for Zn and Cu homeostasis, heavy metal detoxification, and cellular redox chemistry. Herein, we describe the separation and characterization of MTs differentially modified with N-ethylmaleimide (NEM) by liquid chromatography-mass spectrometry (LC-MS). The full-length recombinant MT isoform 1a as well as is isolated domain fragments were first alkylated, then separated on column with subsequent detection by ultra-high resolution ESI-MS. Different behavior was observed for the three peptides with the full-length protein and the isolated α-domain exhibiting similar separation characteristics. For the isolated β-domain, the smallest peptide with 9 cysteines in the sequence, each alkylated species was well separated, indicating large changes in protein conformation. For the full-length (20 cysteines in the sequence) and α-domain (11 cysteiens in the sequence) peptides, the apo- and lightly alkylated species co-eluted, indicating similar structural properties. However, the more extensively alkylated species were well separated from each other, indicating the sequential unfolding of the apo-MT peptides and providing evidence for the mechanistic explanation for the cooperative alkylation reaction observed for NEM and other bulky and hydrophobic alkylation reagents. We show for the first time clear separation of highly similar MTs, differing by only +125 Da, and can infer structural properties from the LC-MS data, analogous to more complicated and less ubiquitous ion-mobility experiments. The data suggest a compact globular structure for each of the apo-MTs, but where the β-domain is more easily unfolded. This differential folding stability may have biological implications in terms of domain-specific participation of MT in cellular redox chemistry and resulting metal release.
Collapse
|
6
|
Wong DL, Stillman MJ. Capturing platinum in cisplatin: kinetic reactions with recombinant human apo-metallothionein 1a. Metallomics 2018; 10:713-721. [DOI: 10.1039/c8mt00029h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Detailed mass spectra data show the stepwise sequence of cisplatin deconstruction by apo-metallothionein.
Collapse
Affiliation(s)
- Daisy L. Wong
- Stillman Bioinorganic Group
- Department of Chemistry
- The University of Western Ontario, London
- Ontario
- Canada N6A 5B7
| | - Martin J. Stillman
- Stillman Bioinorganic Group
- Department of Chemistry
- The University of Western Ontario, London
- Ontario
- Canada N6A 5B7
| |
Collapse
|
7
|
Imam HT, Blindauer CA. Differential reactivity of closely related zinc(II)-binding metallothioneins from the plant Arabidopsis thaliana. J Biol Inorg Chem 2018; 23:137-154. [PMID: 29218630 PMCID: PMC5756572 DOI: 10.1007/s00775-017-1516-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/12/2017] [Indexed: 12/04/2022]
Abstract
The dynamics of metal binding to and transfer from metalloproteins involved in metal homeostasis are important for understanding cellular distribution of metal ions. The dicotyledonous plant Arabidopsis thaliana has two type 4 seed-specific metallothionein homologues, MT4a and MT4b, with likely roles in zinc(II) homeostasis. These two metallothioneins are 84% identical, with full conservation of all metal-binding cysteine and histidine residues. Yet, differences in their spatial and temporal expression patterns suggested divergence in their biological roles. To investigate whether biological functions are reflected in molecular properties, we compare aspects of zinc(II)-binding dynamics of full-length MT4a and MT4b, namely the pH dependence of zinc(II) binding and protein folding, and zinc(II) transfer to the chelator EDTA. UV-Vis and NMR spectroscopies as well as native electrospray ionisation mass spectrometry consistently showed that transfer from Zn6MT4a is considerably faster than from Zn6MT4b, with pseudo-first-order rate constants for the fastest observed step of k obs = 2.8 × 10-4 s-1 (MT4b) and k obs = 7.5 × 10-4 s-1 (MT4a) (5 µM protein, 500 µM EDTA, 25 mM Tris buffer, pH 7.33, 298 K). 2D heteronuclear NMR experiments allowed locating the most labile zinc(II) ions in domain II for both proteins. 3D homology models suggest that reactivity of this domain is governed by the local environment around the mononuclear Cys2His2 site that is unique to type 4 MTs. Non-conservative amino acid substitutions in this region affect local electrostatics as well as whole-domain dynamics, with both effects rendering zinc(II) ions bound to MT4a more reactive in metal transfer reactions. Therefore, domain II of MT4a is well suited to rapidly release its bound zinc(II) ions, in broad agreement with a previously suggested role of MT4a in zinc(II) transport and delivery to other proteins.
Collapse
Affiliation(s)
- Hasan T Imam
- Department of Chemistry, The University of Warwick, Coventry, CV4 7AL, UK
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | | |
Collapse
|
8
|
Irvine GW, Heinlein L, Renaud JB, Sumarah MW, Stillman MJ. Formation of oxidative and non-oxidative dimers in metallothioneins: Implications for charge-state analysis for structural determination. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:2118-2124. [PMID: 28987027 DOI: 10.1002/rcm.8006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/19/2017] [Accepted: 09/24/2017] [Indexed: 05/10/2023]
Abstract
RATIONALE Metallothioneins (MTs) are a class of dynamic proteins that have been investigated extensively using mass spectrometric methods due to their amenability to ionization. Here we detect the formation of oxidative and non-oxidative MT dimers using high-resolution mass spectrometry (HRMS) which has previously been overlooked with lower-resolution techniques. METHODS Recombinant human MT1a and its isolated domain fragments were analyzed by high-resolution Thermo Q-Exactive and Bruker time-of-flight (TOF) mass spectrometers. Covalent Cys modification was performed using N-ethylmalemide to probe the effect of Cys oxidation on dimer formation. RESULTS Dimerization was detected in the analysis of select charge states of Zn7 MT and apo-βMT. Specifically, high resolution (140 k) revealed the +6 dimer peaks overlapping with the +3 charge state, but not with the other charge states (+4, +5, +6). The proteins with covalently modified Cys did not show dimer formation in any of their charge states. Apo-α and apo-βαMT also did not form dimers under the conditions tested. CONCLUSIONS Dimerization of MT was detected for zinc metalated and certain apo-MT forms with HRMS, which was not seen with lower-resolution techniques. These dimers appear overlapped only with certain charge states, confounding their analysis for structural characterization of MTs. The Zn-MT dimers appeared to be non-oxidative; however, the formation of dimers in the apo-protein is likely dependent on Cys oxidation.
Collapse
Affiliation(s)
- Gordon W Irvine
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Lina Heinlein
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
- Department of Food Chemistry and Toxicology, University of Karlsruhe, Profach 6980, D-76128, Karlsruhe, Germany
| | - Justin B Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Mark W Sumarah
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, N5V 4T3, Canada
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
9
|
Hallinger M, Gerhard AC, Ritz MD, Sacks JS, Poutsma JC, Pike RD, Wojtas L, Bebout DC. Metal Substitution and Solvomorphism in Alkylthiolate-Bridged Zn 3 and HgZn 2 Metal Clusters. ACS OMEGA 2017; 2:6391-6404. [PMID: 31457242 PMCID: PMC6645076 DOI: 10.1021/acsomega.7b01087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/21/2017] [Indexed: 06/10/2023]
Abstract
The impact of substituting Hg(II) for Zn(II) in a thiolate-bridged trinuclear cluster with parallels to a metallothionein metal cluster was investigated. A new solvomorph of [Zn(ZnL)2](ClO4)2 (1) (L = N-(2-pyridylmethyl)-N-(2-(ethylthiolato)-amine) and five solvomorphs of a new compound [Hg(ZnL)2](ClO4)2 (2) were characterized by single-crystal X-ray crystallography. The interplay of hydrogen bonding and aromatic-packing interactions in producing lamellar, 2D lamellar, and columnar arrangements of complex cations in the crystalline state is discussed. Both variable temperature proton nuclear magnetic resonance and electrospray ion-mass spectrometry (ESI-MS) suggest that the complex ions of 1 and 2 are the predominant solution species at moderate concentrations. ESI-MS was also used to monitor differences in metal ion redistribution as 1 was titrated with Hg(ClO4)2 and [HgL(ClO4)]. These studies document the facile replacement of Zn(II) by Hg(II) with the preservation of the overall structure in thiolate-rich clusters.
Collapse
Affiliation(s)
- Madeline
R. Hallinger
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - Alison C. Gerhard
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - Mikhaila D. Ritz
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - Joshua S. Sacks
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - John C. Poutsma
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - Robert D. Pike
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| | - Lukasz Wojtas
- Department
of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, Florida 33620, United States
| | - Deborah C. Bebout
- Department
of Chemistry, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia 23188, United
States
| |
Collapse
|
10
|
Irvine GW, Stillman MJ. Residue Modification and Mass Spectrometry for the Investigation of Structural and Metalation Properties of Metallothionein and Cysteine-Rich Proteins. Int J Mol Sci 2017; 18:ijms18050913. [PMID: 28445428 PMCID: PMC5454826 DOI: 10.3390/ijms18050913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Structural information regarding metallothioneins (MTs) has been hard to come by due to its highly dynamic nature in the absence of metal-thiolate cluster formation and crystallization difficulties. Thus, typical spectroscopic methods for structural determination are limited in their usefulness when applied to MTs. Mass spectrometric methods have revolutionized our understanding of protein dynamics, structure, and folding. Recently, advances have been made in residue modification mass spectrometry in order to probe the hard-to-characterize structure of apo- and partially metalated MTs. By using different cysteine specific alkylation reagents, time dependent electrospray ionization mass spectrometry (ESI-MS), and step-wise “snapshot” ESI-MS, we are beginning to understand the dynamics of the conformers of apo-MT and related species. In this review we highlight recent papers that use these and similar techniques for structure elucidation and attempt to explain in a concise manner the data interpretations of these complex methods. We expect increasing resolution in our picture of the structural conformations of metal-free MTs as these techniques are more widely adopted and combined with other promising tools for structural elucidation.
Collapse
Affiliation(s)
- Gordon W Irvine
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| |
Collapse
|
11
|
Scheller JS, Irvine GW, Wong DL, Hartwig A, Stillman MJ. Stepwise copper(i) binding to metallothionein: a mixed cooperative and non-cooperative mechanism for all 20 copper ions. Metallomics 2017; 9:447-462. [DOI: 10.1039/c7mt00041c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|