1
|
Abdolmaleki S, Aliabadi A, Khaksar S. Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review. J Cancer Res Clin Oncol 2024; 150:213. [PMID: 38662225 PMCID: PMC11045632 DOI: 10.1007/s00432-024-05641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 04/26/2024]
Abstract
Copper is a necessary micronutrient for maintaining the well-being of the human body. The biological activity of organic ligands, especially their anticancer activity, is often enhanced when they coordinate with copper(I) and (II) ions. Copper and its compounds are capable of inducing tumor cell death through various mechanisms of action, including activation of apoptosis signaling pathways by reactive oxygen species (ROS), inhibition of angiogenesis, induction of cuproptosis, and paraptosis. Some of the copper complexes are currently being evaluated in clinical trials for their ability to map tumor hypoxia in various cancers, including locally advanced rectal cancer and bulky tumors. Several studies have shown that copper nanoparticles can be used as effective agents in chemodynamic therapy, phototherapy, hyperthermia, and immunotherapy. Despite the promising anticancer activity of copper-based compounds, their use in clinical trials is subject to certain limitations. Elevated copper concentrations may promote tumor growth, angiogenesis, and metastasis by affecting cellular processes.
Collapse
Affiliation(s)
- Sara Abdolmaleki
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samad Khaksar
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| |
Collapse
|
2
|
Tshikhudo PP, Mabhaudhi T, Koorbanally NA, Mudau FN, Avendaño Caceres EO, Popa D, Calina D, Sharifi-Rad J. Anticancer Potential of β-Carboline Alkaloids: An Updated Mechanistic Overview. Chem Biodivers 2024; 21:e202301263. [PMID: 38108650 DOI: 10.1002/cbdv.202301263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
his comprehensive review is designed to evaluate the anticancer properties of β-carbolines derived from medicinal plants, with the ultimate goal of assessing their suitability and potential in cancer treatment, management, and prevention. An exhaustive literature survey was conducted on a wide array of β-carbolines including, but not limited to, harmaline, harmine, harmicine, harman, harmol, harmalol, pinoline, tetrahydroharmine, tryptoline, cordysinin C, cordysinin D, norharmane, and perlolyrine. Various analytical techniques were employed to identify and screen these compounds, followed by a detailed analysis of their anticancer mechanisms. Natural β-carbolines such as harmaline and harmine have shown promising inhibitory effects on the growth of cancer cells, as evidenced by multiple in vitro and in vivo studies. Synthetically derived β-carbolines also displayed noteworthy anticancer, neuroprotective, and cognitive-enhancing effects. The current body of research emphasizes the potential of β-carbolines as a unique source of bioactive compounds for cancer treatment. The diverse range of β-carbolines derived from medicinal plants can offer valuable insights into the development of new therapeutic strategies for cancer management and prevention.
Collapse
Affiliation(s)
- Phumudzo P Tshikhudo
- Department of Agriculture, Land Reform and Rural Development, Directorate Plant Health, Division Pest Risk Analysis, Arcadia, Pretoria, South Africa
| | - Tafadzwanashe Mabhaudhi
- Centre for Transformative Agricultural and Food Systems, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P. Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Neil A Koorbanally
- School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa
| | - Fhatuwani N Mudau
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, P. Bag X01, Scottsville, 3209, Pietermaritzburg, South Africa
| | - Edgardo Oscar Avendaño Caceres
- Departamento de quimica e ingenieria Quimica, Universidad Nacional Jorge Basadre Grohmann. Avenida Miraflores s/n, Tacna, 23001, Perú
| | - Dragos Popa
- Department of Plastic Surgery, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | | |
Collapse
|
3
|
Ermakova EA, Golubeva JA, Smirnova KS, Klyushova LS, Eltsov IV, Zubenko AA, Fetisov LN, Svyatogorova AE, Lider EV. Bioactive mixed-ligand zinc(II) complexes with 1H-tetrazole-5-acetic acid and oligopyridine derivatives. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Agarwal P, Asija S, Deswal Y, Kumar N. Recent advancements in the anticancer potentials of first row transition metal complexes. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Loizou M, Papaphilippou P, Vlasiou M, Spilia M, Peschos D, Simos YV, Keramidas AD, Drouza C. Binuclear VIV/V, MoVI and ZnII - hydroquinonate complexes: Synthesis, stability, oxidative activity and anticancer properties. J Inorg Biochem 2022; 235:111911. [DOI: 10.1016/j.jinorgbio.2022.111911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
6
|
Binuclear Cu(II) complex based on N-acetylanthranilic acid induces significant cytotoxic effect on three cancer cell lines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Mirković M, Radović M, Stanković D, Vranješ-Đurić S, Janković D, Petrović D, Mihajlović-Lalić LE, Prijović Ž, Milanović Z. Co(III), Ni(II) and Cu(II) complexes with a tetradentate Schiff base ligand: synthesis, characterization, electrochemical behavior, binding assessment and in vitro cytotoxicity. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2032683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marija Mirković
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magdalena Radović
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dalibor Stanković
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Sanja Vranješ-Đurić
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Drina Janković
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djordje Petrović
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Željko Prijović
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zorana Milanović
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
8
|
Karim S, Dasgupta S, Parveen R, Biswas S, Das D. A mechanistic approach for in‐vitro anticancer activity via nucleic acid fragmentation by copper(II) complex anchored on MCM‐41. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Suhana Karim
- Department of Chemistry University of Calcutta Kolkata India
| | | | - Rumana Parveen
- Department of Chemistry University of Calcutta Kolkata India
| | - Subhendu Biswas
- Department of Chemistry University of Calcutta Kolkata India
| | - Debasis Das
- Department of Chemistry University of Calcutta Kolkata India
| |
Collapse
|
9
|
Khan RA, BinSharfan II, Alterary SS, Alsaeedi H, Qais FA, AlFawaz A, Hadi AD, Alsalme A. Organometallic (η
6
‐
p
‐cymene)ruthenium(II) complexes with thiazolyl‐based organic twigs: En route towards targeted delivery via human serum albumin of the potential anticancer agents. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Ibtisam I. BinSharfan
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Seham S. Alterary
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Huda Alsaeedi
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences Aligarh Muslim University Aligarh India
| | - Amal AlFawaz
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| | - Arman D. Hadi
- Department of Chemistry University of Texas at San Antonio San Antonio TX USA
| | - Ali Alsalme
- Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia
| |
Collapse
|
10
|
A comprehensive overview of β-carbolines and its derivatives as anticancer agents. Eur J Med Chem 2021; 224:113688. [PMID: 34332400 DOI: 10.1016/j.ejmech.2021.113688] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/05/2021] [Accepted: 07/04/2021] [Indexed: 01/13/2023]
Abstract
β-Carboline alkaloids are a family of natural and synthetic products with structural diversity and outstanding antitumor activities. This review summarizes research developments of β-carboline and its derivatives as anticancer agents, which focused on both natural and synthetic monomers as well as dimers. In addition, the structure-activity relationship (SAR) analysis of β-carboline monomers and dimers are summarized and mechanism of action of β-carboline and its derivatives are also presented. A few possible research directions, suggestions and clues for future work on the development of novel β-carboline-based anticancer agents with improved expected activities and lesser toxicity are also provided.
Collapse
|
11
|
|
12
|
Alharbi W, Hassan I, Khan RA, Parveen S, Alharbi KH, Bin Sharfan II, Alhazza IM, Ebaid H, Alsalme A. Bioactive Tryptophan-Based Copper Complex with Auxiliary β-Carboline Spectacle Potential on Human Breast Cancer Cells: In Vitro and In Vivo Studies. Molecules 2021; 26:1606. [PMID: 33799355 PMCID: PMC8001361 DOI: 10.3390/molecules26061606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Biocompatible tryptophan-derived copper (1) and zinc (2) complexes with norharmane (β-carboline) were designed, synthesized, characterized, and evaluated for the potential anticancer activity in vitro and in vivo. The in vitro cytotoxicity of both complexes 1 and 2 were assessed against two cancerous cells: (human breast cancer) MCF7 and (liver hepatocellular cancer) HepG2 cells with a non-tumorigenic: (human embryonic kidney) HEK293 cells. The results exhibited a potentially decent selectivity of 1 against MCF7 cells with an IC50 value of 7.8 ± 0.4 μM compared to 2 (less active, IC50 ~ 20 μM). Furthermore, we analyzed the level of glutathione, lipid peroxidation, and visualized ROS generation to get an insight into the mechanistic pathway and witnessed oxidative stress. These in vitro results were ascertained by in vivo experiments, which also supported the free radical-mediated oxidative stress. The comet assay confirmed the oxidative stress that leads to DNA damage. The histopathology of the liver also ascertained the low toxicity of 1.
Collapse
Affiliation(s)
- Walaa Alharbi
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.H.); (I.M.A.); (H.E.)
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (A.A.)
| | - Shazia Parveen
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Branch, 46423 Yanbu, Saudi Arabia;
| | - Khadijah H. Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21911, Saudi Arabia;
| | - Ibtisam I. Bin Sharfan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (A.A.)
| | - Ibrahim M. Alhazza
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.H.); (I.M.A.); (H.E.)
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.H.); (I.M.A.); (H.E.)
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.I.B.S.); (A.A.)
| |
Collapse
|
13
|
Porchia M, Pellei M, Del Bello F, Santini C. Zinc Complexes with Nitrogen Donor Ligands as Anticancer Agents. Molecules 2020; 25:E5814. [PMID: 33317158 PMCID: PMC7763991 DOI: 10.3390/molecules25245814] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
The search for anticancer metal-based drugs alternative to platinum derivatives could not exclude zinc derivatives due to the importance of this metal for the correct functioning of the human body. Zinc, the second most abundant trace element in the human body, is one of the most important micro-elements essential for human physiology. Its ubiquity in thousands of proteins and enzymes is related to its chemical features, in particular its lack of redox activity and its ability to support different coordination geometries and to promote fast ligands exchange. Analogously to other trace elements, the impairment of its homeostasis can lead to various diseases and in some cases can be also related to cancer development. However, in addition to its physiological role, zinc can have beneficial therapeutic and preventive effects on infectious diseases and, compared to other metal-based drugs, Zn(II) complexes generally exert lower toxicity and offer few side effects. Zinc derivatives have been proposed as antitumor agents and, among the great number of zinc coordination complexes which have been described so far, this review focuses on the design, synthesis and biological studies of zinc complexes comprising N-donor ligands and that have been reported within the last five years.
Collapse
Affiliation(s)
| | - Maura Pellei
- Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy;
| | - Fabio Del Bello
- Medicinal Chemistry Unit, School of Pharmacy, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy;
| | - Carlo Santini
- Chemistry Division, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy;
| |
Collapse
|
14
|
Machado JF, Sequeira D, Marques F, Piedade MFM, Villa de Brito MJ, Helena Garcia M, Fernandes AR, Morais TS. New copper(I) complexes selective for prostate cancer cells. Dalton Trans 2020; 49:12273-12286. [PMID: 32839796 DOI: 10.1039/d0dt02157a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A new family of eighteen Cu(i) complexes of the general formula [Cu(PP)(LL)][BF4], where PP is a phosphane ligand and LL represents an N,O-heteroaromatic bidentate ligand, has been synthesized and fully characterized by classical analytical and spectroscopic methods. Five complexes of this series were also characterized by single crystal X-ray diffraction studies. The cytotoxicity of all compounds was evaluated in breast (MCF7) and prostate (LNCap) human cancer cells and in a normal prostate cell line (RWPE). In general, all compounds showed higher cytotoxicity for the prostate cancer cells than for the breast cells, with IC50 values in the range 0.2-2 μM after 24 h of treatment. The most cytotoxic compound, [Cu(dppe)(2-ap)][BF4] (16), where dppe = 1,2-bis(diphenylphosphano) ethane and 2-ap = 2-acetylpyridine, showed a high level of cellular internalization, generation of intracellular ROS and activation of the cell death mechanism via apoptosis/necrosis. Owing to its high cytotoxic activity for LNCap cells, being 70-fold higher than that for normal prostate cells (RWPE), complex (16) was found to be the most promising for further research in prostate cancer models.
Collapse
Affiliation(s)
- João Franco Machado
- CQE, Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
β-Carboline copper complex as a potential mitochondrial-targeted anticancer chemotherapeutic agent: Favorable attenuation of human breast cancer MCF7 cells via apoptosis. Saudi J Biol Sci 2020; 27:2164-2173. [PMID: 32714043 PMCID: PMC7376190 DOI: 10.1016/j.sjbs.2020.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/16/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022] Open
Abstract
The development of preferentially selective cancer chemotherapeutics is a new trend in drug research. Thus, we designed and synthesized novel ternary complexes, [Cu(tryp)(Hnor)2(DMSO)]NO3 (1) and [Zn(tryp)(Hnor)2(DMSO)]NO3(2) (tryp = DL-Tryptophane; Hnor = Norharmane, β-carboline; DMSO = Dimethyl sulfoxide), characterized with elemental analysis, FTIR, UV–vis, FL, NMR, ESI-MS, and molar conductivity. Furthermore, the TD-DFT studies with UV–vis and FTIR validated the proposed structures of 1 and 2. Moreover, we evaluated the HOMO-LUMO energy gap and found that 1 has a smaller energy gap than 2. Then, 1 and 2 were assessed for anticancer chemotherapeutic potential against cancer cell lines MCF7 (human breast cancer) and HepG2 (human liver hepatocellular carcinoma) as well as the non-tumorigenic HEK293 (human embryonic kidney) cells. The MTT assay illustrated the preferentially cytotoxic behavior of 1 when compared with that of 2 and cisplatin (standard drug) against MCF7 cells. Moreover, 1 was exposed to MCF7 cells, and the results indicated the arrest of the G2/M phases, which followed the apoptotic pathway predominantly. Generation of ROS, GSH depletion, and elevation in LPO validated the redox changes prompted by 1. These studies establish the great potential of 1 as a candidate for anticancer therapeutics.
Collapse
|
16
|
Štarha P, Trávníček Z. Azaindoles: Suitable ligands of cytotoxic transition metal complexes. J Inorg Biochem 2019; 197:110695. [DOI: 10.1016/j.jinorgbio.2019.110695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/10/2019] [Accepted: 04/21/2019] [Indexed: 12/28/2022]
|
17
|
Hussain A, AlAjmi MF, Rehman MT, Amir S, Husain FM, Alsalme A, Siddiqui MA, AlKhedhairy AA, Khan RA. Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Sci Rep 2019; 9:5237. [PMID: 30918270 PMCID: PMC6437194 DOI: 10.1038/s41598-019-41063-x] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/18/2019] [Indexed: 02/02/2023] Open
Abstract
Copper-based compounds are promising entities for target-specific next-generation anticancer and NSAIDS therapeutics. In lieu of this, benzimidazole scaffold plays an important role, because of their wide variety of potential functionalizations and coordination modes. Herein, we report three copper complexes 1-3 with benzimidazole-derived scaffolds, a biocompatible molecule, and secondary ligands viz, 1-10-phenanthroline and 2,2'-bipyridyl. All the copper complexes have been designed, synthesized and adequately characterized using various spectroscopic techniques. In-vitro, human serum albumin (HSA) binding was also carried out using fluorescence technique and in-silico molecular modeling studies, which exhibited significant binding affinities of the complexes with HSA. Furthermore, copper complexes 1-3 were tested for biological studies, i.e., anticancer as well as NSAIDS. In vitro cytotoxicity results were carried out on cultured MCF-7 cell lines. To get the insight over the mechanism of action, GSH depletion and change in lipid peroxidation were tested and thus confirmed the role of ROS generation, responsible for the cytotoxicity of the complexes 1-3. Moreover, the copper complexes 1-3 were tested for potential to act as NSAIDS on albino rats and mice in animal studies in-vivo. Additionally, we also predicted the mechanism of action of the copper complexes 1-3 using molecular modeling studies with COX-2 inhibitor.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohamed Fahad AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Samira Amir
- Department of Chemistry, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Maqsood Ahmad Siddiqui
- Al-Jeraisy Chair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulaziz A AlKhedhairy
- Al-Jeraisy Chair for DNA Research, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
18
|
Dee C, Esteban-Gómez D, Platas-Iglesias C, Seitz M. Long Wavelength Excitation of Europium Luminescence in Extended, Carboline-Based Cryptates. Inorg Chem 2018; 57:7390-7401. [DOI: 10.1021/acs.inorgchem.8b01031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carolin Dee
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Michael Seitz
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Usman M, Arjmand F, Khan RA, Alsalme A, Ahmad M, Bishwas MS, Tabassum S. Tetranuclear cubane Cu4O4 complexes as prospective anticancer agents: Design, synthesis, structural elucidation, magnetism, computational and cytotoxicity studies. Inorganica Chim Acta 2018; 473:121-132. [DOI: 10.1016/j.ica.2017.12.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Bonaccorso C, Grasso G, Musso N, Barresi V, Condorelli DF, La Mendola D, Rizzarelli E. Water soluble glucose derivative of thiocarbohydrazone acts as ionophore with cytotoxic effects on tumor cells. J Inorg Biochem 2018; 182:92-102. [PMID: 29452884 DOI: 10.1016/j.jinorgbio.2018.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/26/2022]
Abstract
A novel water-soluble ionophore based on the thiocarbohydrazone moiety conjugated with glucose (GluTch) was synthesized through a simple two-step procedure. Structural elucidation was carried out in water solution by means of various spectroscopic techniques (NMR, UV-Vis, and CD), electrospray ionization mass spectrometry and density functional theory calculations. The flexible nature of the thiocarbohydrazone moiety of the new glycoderivative compound induced both different coordination motifs and stoichiometry towards copper and zinc. Cytotoxicity assays of the ligands on the human normal keratinocyte NCTC-2544, MDA-MB-231 breast cancer and PC-3 human prostate adenocarcinoma cell lines demonstrated that i) higher activity on cancer cells growth inhibition compared to a normal cell line; ii) the introduction of the glucose unit does not alter the cytotoxic activity of the underivatized ionophore ligand and iii) the presence of copper ion improves the activity of the thiocarbohydrazones.
Collapse
Affiliation(s)
- Carmela Bonaccorso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani, 27, 70125 Bari, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Nicolò Musso
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica, via S. Sofia 64, I-95125, Catania, Italy
| | - Vincenza Barresi
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica, via S. Sofia 64, I-95125, Catania, Italy
| | - Daniele F Condorelli
- Dipartimento Scienze Biomediche e Biotecnologiche, Sez. Biochimica Medica, via S. Sofia 64, I-95125, Catania, Italy
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani, 27, 70125 Bari, Italy.
| | - Enrico Rizzarelli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, via Celso Ulpiani, 27, 70125 Bari, Italy
| |
Collapse
|
21
|
Usman M, Arjmand F, Khan RA, Alsalme A, Ahmad M, Tabassum S. Biological evaluation of dinuclear copper complex/dichloroacetic acid cocrystal against human breast cancer: design, synthesis, characterization, DFT studies and cytotoxicity assays. RSC Adv 2017; 7:47920-47932. [DOI: 10.1039/c7ra08262b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Binuclear copper(ii) cocrystal “[Cu2(valdien)2⋯2Cl2CHCOOH],”1was synthesized from H2valdien scaffold and anticancer drug pharmacophore “dichloroacetic acid” embedded with two Cu(ii) connectedviaa hydrogen bonded network.
Collapse
Affiliation(s)
- Mohammad Usman
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Farukh Arjmand
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Rais Ahmad Khan
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Musheer Ahmad
- Department of Applied Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Sartaj Tabassum
- Department of Chemistry
- Aligarh Muslim University
- Aligarh-202002
- India
| |
Collapse
|
22
|
Usman M, Zaki M, Khan RA, Alsalme A, Ahmad M, Tabassum S. Coumarin centered copper( ii) complex with appended-imidazole as cancer chemotherapeutic agents against lung cancer: molecular insight via DFT-based vibrational analysis. RSC Adv 2017; 7:36056-36071. [DOI: 10.1039/c7ra05874h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
Synthesis and structural characterization of the novel copper complex, DFT based vibrational analysis, DNA binding studies.In vitrocytotoxicity against A549 cancer cell lines and estimation of GSH, ROS, LPO levels, have been reported.
Collapse
Affiliation(s)
- Mohammad Usman
- Department of Chemistry
- Aligarh Muslim University
- Aligarh – 202002
- India
| | - Mehvash Zaki
- Department of Chemistry
- Aligarh Muslim University
- Aligarh – 202002
- India
| | - Rais Ahmad Khan
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Musheer Ahmad
- Department of Applied Chemistry
- Aligarh Muslim University
- Aligarh – 202002
- India
| | - Sartaj Tabassum
- Department of Chemistry
- Aligarh Muslim University
- Aligarh – 202002
- India
| |
Collapse
|
23
|
Megger DA, Rosowski K, Radunsky C, Kösters J, Sitek B, Müller J. Structurally related hydrazone-based metal complexes with different antitumor activities variably induce apoptotic cell death. Dalton Trans 2017; 46:4759-4767. [DOI: 10.1039/c6dt04613d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three new metal complexes bearing a tridentate hydrazone-based ligand were synthesized and structurally characterized. Depending on the metal ion, the complexes show remarkably different antitumor activities.
Collapse
Affiliation(s)
- Dominik A. Megger
- Medizinisches Proteom-Center
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Kristin Rosowski
- Medizinisches Proteom-Center
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Christian Radunsky
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jutta Kösters
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Barbara Sitek
- Medizinisches Proteom-Center
- Ruhr-Universität Bochum
- 44801 Bochum
- Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|