1
|
Cao H, Huang Z, Hu X, Zhang X, Makunga NP, Zhao H, Du L, Guo L, Ren Y. Structural insight into the unexploited allosteric binding site of fructose 1, 6-bisphosphate aldolase from C. albicans with α-lipoic acid. Int J Biol Macromol 2025; 309:143096. [PMID: 40222520 DOI: 10.1016/j.ijbiomac.2025.143096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
The rising incidence of drug-resistant fungal infections underscores the urgent need for innovative therapeutic strategies. However, developing selective treatments remains a formidable challenge due to the similarities between humans and fungal cells. Class II fructose 1,6-bisphosphate aldolase (FBA) represents an attractive pharmacological target for the development of antifungal agents due to its crucial role in microbial survival and its absence in human. In this work, we identified α-lipoic acid (ALA), a naturally occurring compound, as a novel inhibitor of C. albicans FBA (CaFBA). The co-crystallography, enzyme inhibition assays, and site-directed mutagenesis revealed that ALA acts as a non-covalent inhibitor, binding to an unexploited allosteric site on CaFBA, distinct from the previously reported substrate-binding pocket or C292 covalent binding site. Notably, ALA selectively inhibits CaFBA, likely due to the non-conservation of the allosteric binding site, particularly S268, across species. The synergistic inhibition of C. albicans by ALA and amphotericin B highlights its therapeutic potential as part of a combined antifungal strategy. In summary, this study provides a structural basis for the design and optimization of novel CaFBA inhibitors, enhancing our understanding of FBA's role in fungal growth and establishing a foundation for developing effective antifungal therapeutics against C. albicans.
Collapse
Affiliation(s)
- Hongxuan Cao
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zeyue Huang
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiuqi Hu
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiao Zhang
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Nokwanda P Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Hui Zhao
- Anhui Academy of Science and Technology, Wanshui Road, Hefei 230031, China
| | - Liji Du
- Anhui Academy of Science and Technology, Wanshui Road, Hefei 230031, China
| | - Li Guo
- Hubei Ecological Environment Monitoring Center Station, Wuhan 430072, China.
| | - Yanliang Ren
- State Key Laboratory for Green Pesticide, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| |
Collapse
|
2
|
Lešnik S, Jukić M, Bren U. Unveiling polyphenol-protein interactions: a comprehensive computational analysis. J Cheminform 2025; 17:50. [PMID: 40211304 PMCID: PMC11983793 DOI: 10.1186/s13321-025-00997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Our study investigates polyphenol-protein interactions, analyzing their structural diversity and dynamic behavior. Analysis of the entire Protein Data Bank reveals diverse polyphenolic structures, engaging in various noncovalent interactions with proteins. Interactions observed across crystal structures among diverse polyphenolic classes reveal similarities, underscoring consistent patterns across a spectrum of structural motifs. On the other hand, molecular dynamics (MD) simulations of polyphenol-protein complexes unveil dynamic binding patterns, highlighting the influx of water molecules into the binding site and underscoring limitations of static crystal structures. Water-mediated interactions emerge as crucial in polyphenol-protein binding, leading to variable binding patterns observed in MD simulations. Comparison of high- and low-resolution crystal structures as starting points for MD simulations demonstrates their robustness, exhibiting consistent dynamics regardless of the quality of the initial structural data. Additionally, the impact of glycosylation on polyphenol binding is explored, revealing its role in modulating interactions with proteins. In contrast to synthetic drugs, polyphenol binding seems to exhibit heightened flexibility, driven by dynamic water-mediated interactions, which may also facilitate their promiscuous binding. Comprehensive dynamic studies are, therefore essential to understand polyphenol-protein recognition mechanisms. Overall, our study provides novel insights into polyphenol-protein interactions, informing future research for harnessing polyphenolic therapeutic potential through rational drug design.Scientific contribution: In this study, we present an analysis of (natural) polyphenol-protein binding conformations, leveraging the entirety of the Protein Data Bank structural data on polyphenols, while extending the binding conformation sampling through molecular dynamics simulations. For the first time, we introduce experimentally supported large-scale systematization of polyphenol binding patterns. Moreover, our insight into the significance of explicit water molecules and hydrogen-bond bridging rationalizes the polyphenol promiscuity paradigm, advocating for a deeper understanding of polyphenol recognition mechanisms crucial for informed natural compound-based drug design.
Collapse
Affiliation(s)
- Samo Lešnik
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000, Maribor, Slovenia
- IOS, Institute of Environmental Protection and Sensors, Beloruska 7, 2000, Maribor, Slovenia
| | - Marko Jukić
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000, Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000, Maribor, Slovenia.
- IOS, Institute of Environmental Protection and Sensors, Beloruska 7, 2000, Maribor, Slovenia.
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, 6000, Koper, Slovenia.
| |
Collapse
|
3
|
Grabarek M, Tabor W, Krzyżek P, Grabowiecka A, Berlicki Ł, Mucha A. Halogenated N-Benzylbenzisoselenazolones Efficiently Inhibit Helicobacter pylori Ureolysis In Vitro. ACS Med Chem Lett 2025; 16:675-680. [PMID: 40236561 PMCID: PMC11995230 DOI: 10.1021/acsmedchemlett.5c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Inspired by the recognized activity of Ebselen against urease, we optimized the structure of 1,2-benzisoselenazol-3(2H)-one to provide potent inhibitors of ureolysis in Helicobacter pylori cells. To achieve this goal, we combined the elongation of the N-substituent of Ebselen from phenyl to benzyl with halogenation of the aromatic fragment. The modifications implemented provided compounds with activities that were several times better compared to that of the lead compound. In particular, 3-fluoro-4-trifluoromethyl and 2-chloro-5-fluoro derivatives of N-benzyl-1,2-benzisoselenazol-3(2H)-one achieved a remarkable antiureolytic effect in live H. pylori cells (IC50 < 100 nM) that outperformed the data reported so far. This activity was reflected in the antiurease potential measured for the Sporosarcina pasteurii model enzyme, with the highest affinity observed for 2-chloro-5-fluoro and 2,4-dichloro derivatives (K i < 0.6 nM). The best inhibitor demonstrated considerable antibacterial properties on a multidrug-resistant clinical H. pylori isolate in additive combination with clarithromycin (MIC = 0.073 μg/mL).
Collapse
Affiliation(s)
- Marta Grabarek
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Paweł Krzyżek
- Department
of Microbiology, Faculty of Medicine, Wrocław
Medical University, Chałubińskiego
4, 50-368 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
4
|
Diban F, Di Fermo P, Di Lodovico S, Petrini M, Pilato S, Fontana A, Pinti M, Di Giulio M, Lence E, González-Bello C, Cellini L, D’Ercole S. Methylglyoxal Alone or Combined with Light-Emitting Diodes/Complex Electromagnetic Fields Represent an Effective Response to Microbial Chronic Wound Infections. Antibiotics (Basel) 2025; 14:396. [PMID: 40298537 PMCID: PMC12024167 DOI: 10.3390/antibiotics14040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Background: antimicrobial resistance represents a critical issue leading to delayed wound healing; hence, it is necessary to develop novel strategies to address this phenomenon. Objectives: this study aimed to explore the antimicrobial/anti-virulence action of Methylglyoxal-MGO alone or combined with novel technologies such as Light-Emitting Diodes-LED and Complex Magnetic Fields-CMFs against resistant clinical strains isolated from chronic wounds. Methods: characterized planktonic Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans isolates were used. Antimicrobial activity was evaluated by measuring optical density, Colony Forming Units-CFU, and synergy between MGO/LED or CMFs. Cellular membrane permeability by propidium iodide fluorescence and fluidity by Laurdan generalized polarization measurements were performed. P. aeruginosa motility was tested using the soft agar method. A docking study was performed to evaluate the possible interaction between MGO and urease in P. aeruginosa. Results: single/combined treatments showed significant antimicrobial activity. Major CFU reduction was detected after CMFs/MGO+CMFs application on C. albicans. Treatments exhibited significant changes in membrane permeability and fluidity. The treatments decreased P. aeruginosa motility with a major reduction after LED application. Docking analysis showed that MGO could bind with P. aeruginosa urease leading to defective folding and functional alterations. Conclusions: the results suggest that these treatments could represent promising and green therapeutic solutions against resistant isolates from chronic wounds.
Collapse
Affiliation(s)
- Firas Diban
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Paola Di Fermo
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (M.P.)
| | - Silvia Di Lodovico
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (M.P.)
| | - Serena Pilato
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Antonella Fontana
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Morena Pinti
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Mara Di Giulio
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain; (E.L.); (C.G.-B.)
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain; (E.L.); (C.G.-B.)
| | - Luigina Cellini
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (F.D.); (S.D.L.); (S.P.); (A.F.); (M.P.); (M.D.G.); (L.C.)
| | - Simonetta D’Ercole
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (P.D.F.); (M.P.)
| |
Collapse
|
5
|
Güzel-Akdemir Ö, Akdemir A. Urease inhibitors for the treatment of H. pylori. Expert Opin Ther Pat 2025; 35:17-30. [PMID: 39495126 DOI: 10.1080/13543776.2024.2423004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Helicobacter pylori infects almost half of the World population. Although many infected people are symptom free, the microorganism can still cause a variety of gastrointestinal disorders and gastric adenocarcinoma. It is considered a priority pathogen for the development of new antibiotics by the World Health Organisation (WHO). Many virulence factors of H. pylori have been described. This paper will on H. pylori Urease (HPU). AREA COVERED This paper will discuss the (patho)physiology and structure of HPU. In addition, urease inhibitors with known activity against the HPU or inhibitors that show H. pylori growth inhibition will be discussed. EXPERT OPINION Increase in selectivity, affinity and potency of HPU inhibitors can be achieved by the design of compounds that interact with distinct regions within the enzyme active site. Especially, covalent interactions seem promising as they clearly effect the dose requirement of the drug candidate.
Collapse
Affiliation(s)
- Özlen Güzel-Akdemir
- Department of Pharmaceutical Chemistry, Istanbul University, Faculty of Pharmacy, Beyazit/Istanbul, Turkey
| | - Atilla Akdemir
- Department of Pharmacology, Faculty of Pharmacy, Istinye University, Sariyer/Istanbul, Turkey
| |
Collapse
|
6
|
Mazzei L, Tria G, Ciurli S, Cianci M. Exploring the conformational space of the mobile flap in Sporosarcina pasteurii urease by cryo-electron microscopy. Int J Biol Macromol 2024; 283:137904. [PMID: 39571870 DOI: 10.1016/j.ijbiomac.2024.137904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
To fully understand enzymatic dynamics, it is essential to explore the complete conformational space of a biological catalyst. The catalytic mechanism of the nickel-dependent urease, the most efficient enzyme known, holds significant relevance for medical, pharmaceutical, and agro-environmental applications. A critical aspect of urease function is the conformational change of a helix-turn-helix motif that covers the active site cavity, known as the mobile flap. This motif has been observed in either an open or a closed conformation through X-ray crystallography studies and has been proposed to stabilize the coordination of a urea molecule to the essential dinuclear Ni(II) cluster in the active site, a requisite for subsequent substrate hydrolysis. This study employs cryo-electron microscopy (cryo-EM) to investigate the transient states within the conformational space of the mobile flap, devoid of the possible constraints of crystallization conditions and solid-state effects. By comparing two cryo-EM structures of Sporosarcina pasteurii urease, one in its native form and the other inhibited by N-(n-butyl) phosphoric triamide (NBPTO), we have unprecedently identified an intermediate state between the open and the catalytically efficient closed conformation of the helix-turn-helix motif, suggesting a role of its tip region in this transition between the two states.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, I-40138 Bologna, Italy.
| | - Giancarlo Tria
- Florence Center for Electron Nanoscopy (FloCEN), c/o Chemistry Department "Ugo Schiff", University of Florence, I-50019 Sesto Fiorentino, (FI), Italy; National Research Council, Institute of Cristallography URT Caserta c/o University of Campania "Luigi Vanvitelli", I-81100 Caserta, Italy.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, I-40138 Bologna, Italy.
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, I-60131 Ancona, Italy.
| |
Collapse
|
7
|
Contini L, Paul A, Mazzei L, Ciurli S, Roncarati D, Braga D, Grepioni F. Is bismuth(III) able to inhibit the activity of urease? Puzzling results in the quest for soluble urease complexes for agrochemical and medicinal applications. Dalton Trans 2024; 53:10553-10562. [PMID: 38847020 DOI: 10.1039/d4dt00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Bismuth(III) complexes have been reported to act as inhibitors of the enzyme urease, ubiquitously present in soils and implicated in the pathogenesis of several microorganisms. The general insolubility of Bi(III) complexes in water at neutral pH, however, is an obstacle to their utilization. In our quest to improve the solubility of Bi(III) complexes, we selected a compound reported to inhibit urease, namely [Bi(HEDTA)]·2H2O, and co-crystallized it with (i) racemic DL-histidine to obtain the conglomerate [Bi2(HEDTA)2(μ-D-His)2]·6H2O + [Bi2(HEDTA)2(μ-L-His)2]·6H2O, (ii) enantiopure L-histidine to yield [Bi2(HEDTA)2(μ-L-His)2]·6H2O, and (iii) cytosine to obtain [Bi(HEDTA)]·Cyt·2H2O. All compounds, synthesised by mechanochemical methods and by slurry, were characterized in the solid state by calorimetric (DSC and TGA) and spectroscopic (IR) methods, and their structures were determined using powder X-ray diffraction (PXRD) data. All compounds show an appreciable solubility in water, with values ranging from 6.8 mg mL-1 for the starting compound [Bi(HEDTA)]·2H2O to 36 mg mL-1 for [Bi2(HEDTA)2(μ-L-His)2]·6H2O. The three synthesized compounds as well as [Bi(HEDTA)]·2H2O were then tested for inhibition activity against urease. Surprisingly, no enzymatic inhibition was observed during in vitro assays using Canavalia ensiformis urease and in vivo assays using cultures of Helicobacter pylori, raising questions on the efficacy of Bi(III) compounds to counteract the negative effects of urease activity in the agro-environment and in human health.
Collapse
Affiliation(s)
- Laura Contini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Arundhati Paul
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Dario Braga
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Fabrizia Grepioni
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
8
|
Zhou Y, Lei Y, Kong Q, Cheng F, Fan M, Deng Y, Zhao Q, Qiu J, Wang P, Yang X. o-Semiquinone Radical and o-Benzoquinone Selectively Degrade Aniline Contaminants in the Periodate-Mediated Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2123-2132. [PMID: 38237556 DOI: 10.1021/acs.est.3c08179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Advanced oxidation processes (AOPs) often employ strong oxidizing inorganic radicals (e.g., hydroxyl and sulfate radicals) to oxidize contaminants in water treatment. However, the water matrix could scavenge the strong oxidizing radicals, significantly deteriorating the treatment efficiency. Here, we report a periodate/catechol process in which reactive quinone species (RQS) including the o-semiquinone radical (o-SQ•-) and o-benzoquinone (o-Q) were dominant to effectively degrade anilines within 60 s. The second-order reaction rate constants of o-SQ•- and o-Q with aniline were determined to be 1.0 × 108 and 4.0 × 103 M-1 s-1, respectively, at pH 7.0, which accounted for 21% and 79% of the degradation of aniline with a periodate-to-catechol molar ratio of 1:1. The major byproducts were generated via addition or polymerization. The RQS-based process exhibited excellent anti-interference performance in the degradation of aniline-containing contaminants in real water samples in the presence of diverse inorganic ions and organics. Subsequently, we extended the RQS-based process by employing tea extract and dissolved organic matter as catechol replacements as well as metal ions [e.g., Fe(III) or Cu(II)] as periodate replacements, which also exhibited good performance in aniline degradation. This study provides a novel strategy to develop RQS-based AOPs for the highly selective degradation of aniline-containing emerging contaminants.
Collapse
Affiliation(s)
- Yangjian Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qingqing Kong
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Fangyuan Cheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Mengge Fan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yanchun Deng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Qing Zhao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Junlang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Peng Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Mazzei L, Paul A, Cianci M, Devodier M, Mandelli D, Carloni P, Ciurli S. Kinetic and structural details of urease inactivation by thiuram disulphides. J Inorg Biochem 2024; 250:112398. [PMID: 37879152 DOI: 10.1016/j.jinorgbio.2023.112398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
This paper reports on the molecular details of the reactivity of urease, a nickel-dependent enzyme that catalyses the last step of organic nitrogen mineralization, with thiuram disulphides, a class of molecules known to inactivate the enzyme with high efficacy but for which the mechanism of action had not been yet established. IC50 values of tetramethylthiuram disulphide (TMTD or Thiram) and tetraethylthiuram disulphide (TETD or Disulfiram) in the low micromolar range were determined for plant and bacterial ureases. The X-ray crystal structure of Sporosarcina pasteurii urease inactivated by Thiram, determined at 1.68 Å resolution, revealed the presence of a covalent modification of the catalytically essential cysteine residue. This is located on the flexible flap that modulates the size of the active site channel and cavity. Formation of a Cys-S-S-C(S)-N(CH3)2 functionality responsible for enzyme inactivation was observed. Quantum-mechanical calculations carried out to rationalise the large reactivity of the active site cysteine support the view that a conserved histidine residue, adjacent to the cysteine in the active site flap, modulates the charge and electron density along the thiol SH bond by shifting electrons towards the sulphur atom and rendering the thiol proton more reactive. We speculate that this proton could be transferred to the nickel-coordinated urea amide group to yield a molecule of ammonia from the generated Curea-NH3+ functionality during catalysis.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Arundhati Paul
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, Ancona I-60131, Italy
| | - Marta Devodier
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany; Università degli Studi di Parma, Via Università 12, Parma I-43121, Italy
| | - Davide Mandelli
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany; Department of Physics and Universitätsklinikum, RWTH Aachen University, Aachen D-52074, Germany
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy
| |
Collapse
|
10
|
Varejão JOS, Barbosa LCA, Varejão EVV, Coreas NMG, Morais VSS, de Oliveira AM, Barcelos RC, Maltha CRÁ, Modolo LV. Rubrolide analogues as urease inhibitors. MONATSHEFTE FÜR CHEMIE - CHEMICAL MONTHLY 2023; 154:1177-1187. [DOI: 10.1007/s00706-023-03106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/10/2023] [Indexed: 01/04/2025]
|
11
|
Tabor W, Katsogiannou A, Karta D, Andrianopoulou E, Berlicki Ł, Vassiliou S, Grabowiecka A. Exploration of Thiourea-Based Scaffolds for the Construction of Bacterial Ureases Inhibitors. ACS OMEGA 2023; 8:28783-28796. [PMID: 37576686 PMCID: PMC10413841 DOI: 10.1021/acsomega.3c03702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
A series of 32 thiourea-based urease inhibitors were synthesized and evaluated against native bacterial enzyme and whole cells of Sporosarcina pasteurii and Proteus mirabilis strains. The proposed inhibitors represented structurally diverse thiosemicarbazones and thiocarbohydrazones, benzyl-substituted thiazolyl thioureas, 1H-pyrazole-1-carbothioamides, and dihydropirimidine-2(1H)-thiones. Kinetic characteristics with purified S. pasteurii enzyme determined low micromolar inhibitors within each structural group. (E)-2-(1-Phenylethylidene)hydrazine-1-carbothioamide 19 (Ki = 0.39 ± 0.01 μM), (E)-2-(4-methylbenzylidene)hydrazine-1-carbothioamide 16 (Ki = 0.99 ± 0.04 μM), and N'-((1E,2E)-1,3-diphenylallylidene)hydrazinecarbothiohydrazide 29 (Ki = 2.23 ± 0.19 μM) were used in modeling studies that revealed sulfur ion coordination of the active site nickel ion and hydrogen bonds between the amide group and the side chain of Asp363 and Ala366 carbonyl moiety. Whole-cell studies proved the activity of compounds in Gram-positive and Gram-negative microorganisms. Ureolysis control observed in P. mirabilis PCM 543 (e.g., IC50 = 304 ± 14 μM for 1-benzyl-3-(4-(4-hydroxyphenyl)thiazol-2-yl)thiourea 52) is a valuable achievement, as urease is recognized as a major virulence factor of this urinary tract pathogen.
Collapse
Affiliation(s)
- Wojciech Tabor
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Aikaterini Katsogiannou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Danai Karta
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Evgenia Andrianopoulou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Stamatia Vassiliou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
12
|
Aliyeva-Schnorr L, Schuster C, Deising HB. Natural Urease Inhibitors Reduce the Severity of Disease Symptoms, Dependent on the Lifestyle of the Pathogens. J Fungi (Basel) 2023; 9:708. [PMID: 37504697 PMCID: PMC10381680 DOI: 10.3390/jof9070708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
The development of new anti-ureolytic compounds is of great interest due to the newly discovered role of urease inhibitors in crop protection. Purine degradation and the generation of ammonium by urease are required for the full virulence of biotrophic and hemibiotrophic fungal plant pathogens. Accordingly, chemicals displaying urease inhibitor activity may be used as a novel class of fungicides. Several urease inhibitors belonging to different chemical classes are known, and some compounds have been developed as urea fertilizer additives. We tested whether the natural urease inhibitors p-benzoquinone (p-HQ) and hydroquinone (HQ), as well as the synthetic inhibitors isopropoxy carbonyl phosphoric acid amide (iCPAA), benzyloxy carbonyl phosphoric acid amide (bCPAA), and dipropyl-hexamino-1,3 diphosphazenium chloride (DDC), prevent or delay plant infection caused by pathogens differing in lifestyles and host plants. p-BQ, HQ, and DCC not only protected maize from infection by the hemibiotroph C. graminicola, but also inhibited the infection process of biotrophs such as the wheat powdery mildew fungus Blumeria graminis f. sp. tritici and the broad bean rust fungus Uromyces viciae-fabae. Interestingly, the natural quinone-based compounds even reduced the symptom severity of the necrotrophic fungi, i.e., the grey mold pathogen B. cinerea and the Southern Leaf Spot fungus C. heterostrophus, to some extent. The urease inhibitors p-BQ, HQ, and DCC interfered with appressorial penetration and confirmed the appropriateness of urease inhibitors as novel fungicidal agents.
Collapse
Affiliation(s)
- Lala Aliyeva-Schnorr
- Chair for Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| | - Carola Schuster
- SKW Stickstoffwerke Piesteritz GmbH, Möllensdorfer Str. 13, D-06886 Lutherstadt Wittenberg, Germany
| | - Holger B Deising
- Chair for Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
13
|
Maślanka M, Tabor W, Krzyżek P, Grabowiecka A, Berlicki Ł, Mucha A. Inhibitory activity of catecholic phosphonic and phosphinic acids against Helicobacter pylori ureolysis. Eur J Med Chem 2023; 257:115528. [PMID: 37290184 DOI: 10.1016/j.ejmech.2023.115528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Catechols have been reported to be potent covalent inhibitors of ureases, and they exhibit activity by modifying cysteine residues at the entrance to enzymatic active sites. Following these principles, we designed and synthesized novel catecholic derivatives that contained carboxylate and phosphonic/phosphinic functionalities and assumed expanded specific interactions. When studying the chemical stability of the molecules, we found that their intrinsic acidity catalyzes spontaneous esterification/hydrolysis reactions in methanol or water solutions, respectively. Regarding biological activity, the most promising compound, 2-(3,4-dihydroxyphenyl)-3-phosphonopropionic acid (15), exhibited significant anti-urease potential (Ki = 2.36 μM, Sporosarcinia pasteurii urease), which was reflected in the antiureolytic effect in live Helicobacter pylori cells at a submicromolar concentration (IC50 = 0.75 μM). As illustrated by molecular modeling, this compound was bound in the active site of urease through a set of concerted electrostatic and hydrogen bond interactions. The antiureolytic activity of catecholic phosphonic acids could be specific because these compounds were chemically inert and not cytotoxic to eukaryotic cells.
Collapse
Affiliation(s)
- Marta Maślanka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Wojciech Tabor
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Wybrzeże L. Pasteura 1, 50-367, Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
14
|
Singh R, Kumar P, Devi M, Sindhu J, Kumar A, Lal S, Singh D, Kumar H, Kumar S. Urease Inhibition and Structure‐Activity Relationship Study of Thiazolidinone‐, Triazole‐, and Benzothiazole‐Based Heterocyclic Derivatives: A Focus Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Rahul Singh
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Parvin Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Meena Devi
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Jayant Sindhu
- Department of Chemistry COBS&H, CCS Haryana gricultural University Hisar 125004 India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences GJUS&T Hisar 125001 India
| | - Sohan Lal
- Department of Chemistry Kurukshetra University Kurukshetra 136119 India
| | - Devender Singh
- Department of Chemistry Maharshi Dayanand University Rohtak 124001 India
| | - Harish Kumar
- Department of Chemistry, School of Basic Sciences Central university Haryana Mahendergarh India
| | - Sumit Kumar
- Department of Chemistry DCR University of Science & Technology, Murthal Haryana 131039 India
| |
Collapse
|
15
|
Mohapatra PK, Chopdar KS, Dash GC, Mohanty AK, Raval MK. In silico screening and covalent binding of phytochemicals of Ocimum sanctum against SARS-CoV-2 (COVID 19) main protease. J Biomol Struct Dyn 2023; 41:435-444. [PMID: 34821198 DOI: 10.1080/07391102.2021.2007170] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has compelled the scientific community to search for an effective drug that can cure or a vaccine that can prevent the disease. Alternatively, symptomatic treatment and traditional immunity boosters are prescribed. Holy Tulsi (Ocimum sanctum) has been known as an ancient remedy for cure of common cold and respiratory ailment. Several reports have come on virtual screening of phytochemicals including those of Tulsi against various enzymes of the virus. We undertook in silico analysis of the ethanol extracted phytochemicals of Tulsi as inhibitors of SARS-CoV-2 (2019-nCoV) main protease with an approach to look into the possibility of covalent ligand binding with the catalytic residue Cys145, which makes the report unique. The results suggest that the flavonoids and polyphenolic compounds of Tulsi, have potential to covalently bind to the catalytic residue Cys145 of main protease and irreversibly inhibit the viral enzyme. Luteolin-7-O-glucuronide is specially considered for its optimum properties, namely, low toxicity (LD50 5000 mg/kg body weight), high drug-likeness score (0.71), the active site binding free energy (ΔGbind) -19.19 kcal/mol by GBSA method and covalent binding energy -24.23 kcal/mol. Further experimental validations are required to establish the theoretical findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | | | - Abhay Kumar Mohanty
- AI/ML Centre of Excellence, Department of Computer Science and Information Technology, CV Raman Global University, Bhubaneswar, Odisha, India
| | - Mukesh Kumar Raval
- School of Chemistry, Gangadhar Meher University, Sambalpur, Odisha, India
| |
Collapse
|
16
|
Macegoniuk K, Tabor W, Mazzei L, Cianci M, Giurg M, Olech K, Burda-Grabowska M, Kaleta R, Grabowiecka A, Mucha A, Ciurli S, Berlicki Ł. Optimized Ebselen-Based Inhibitors of Bacterial Ureases with Nontypical Mode of Action. J Med Chem 2023; 66:2054-2063. [PMID: 36661843 PMCID: PMC9923736 DOI: 10.1021/acs.jmedchem.2c01799] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Screening of 25 analogs of Ebselen, diversified at the N-aromatic residue, led to the identification of the most potent inhibitors of Sporosarcina pasteurii urease reported to date. The presence of a dihalogenated phenyl ring caused exceptional activity of these 1,2-benzisoselenazol-3(2H)-ones, with Ki value in a low picomolar range (<20 pM). The affinity was attributed to the increased π-π and π-cation interactions of the dihalogenated phenyl ring with αHis323 and αArg339 during the initial step of binding. Complementary biological studies with selected compounds on the inhibition of ureolysis in whole Proteus mirabilis cells showed a very good potency (IC50 < 25 nM in phosphate-buffered saline (PBS) buffer and IC90 < 50 nM in a urine model) for monosubstituted N-phenyl derivatives. The crystal structure of S. pasteurii urease inhibited by one of the most active analogs revealed the recurrent selenation of the Cys322 thiolate, yielding an unprecedented Cys322-S-Se-Se chemical moiety.
Collapse
Affiliation(s)
- Katarzyna Macegoniuk
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Luca Mazzei
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology
(FaBiT), University of Bologna, Viale Giuseppe Fanin 40, 40138 Bologna, Italy
| | - Michele Cianci
- Department
of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Mirosław Giurg
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kamila Olech
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Małgorzata Burda-Grabowska
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Kaleta
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stefano Ciurli
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology
(FaBiT), University of Bologna, Viale Giuseppe Fanin 40, 40138 Bologna, Italy
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland,. Phone: +48 71 320
3344. Fax: +48 71 320 2427
| |
Collapse
|
17
|
Al-Rooqi MM, Mughal EU, Raja QA, Hussein EM, Naeem N, Sadiq A, Asghar BH, Moussa Z, Ahmed SA. Flavonoids and related privileged scaffolds as potential urease inhibitors: a review. RSC Adv 2023; 13:3210-3233. [PMID: 36756398 PMCID: PMC9869662 DOI: 10.1039/d2ra08284e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Infections caused by bacteria are a significant issue on a global scale, and imperative action is required to discover novel or improved therapeutic agents. Flavonoids are a class of plant-derived compounds that have a variety of potentially useful bioactivities. These activities include immediate antimicrobial properties, synergistic effect with antimicrobials, ferocious repression of pathogenicity, anti-urease activity etc. This review summarizes current studies concerning anti-urease actions of flavonoids as well as structural-activity correlation investigations of the flavonoid core structure. It is possible that if researchers investigate the many structural changes that may be made in flavonoid rings, they'll be able to build up novel compounds that have powerful and effective anti-urease properties.
Collapse
Affiliation(s)
- Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | | | - Essam M Hussein
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Amina Sadiq
- Department of Chemistry, Government College Women University Sialkot-51300 Pakistan
| | - Basim H Asghar
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551, Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
18
|
Lešnik S, Jukič M, Bren U. Mechanistic Insights of Polyphenolic Compounds from Rosemary Bound to Their Protein Targets Obtained by Molecular Dynamics Simulations and Free-Energy Calculations. Foods 2023; 12:408. [PMID: 36673500 PMCID: PMC9858269 DOI: 10.3390/foods12020408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Rosemary represents an important medicinal plant that has been attributed with various health-promoting properties, especially antioxidative, anti-inflammatory, and anticarcinogenic activities. Carnosic acid, carnosol, and rosmanol, as well as the phenolic acid ester rosmarinic acid, are the main compounds responsible for these actions. In our earlier research, we carried out an inverse molecular docking at the proteome scale to determine possible protein targets of the mentioned compounds. Here, we subjected the previously identified ligand-protein complexes with HIV-1 protease, K-RAS, and factor X to molecular dynamics simulations coupled with free-energy calculations. We observed that carnosic acid and rosmanol act as viable binders of the HIV-1 protease. In addition, carnosol represents a potential binder of the oncogene protein K-RAS. On the other hand, rosmarinic acid was characterized as a weak binder of factor X. We also emphasized the importance of water-mediated hydrogen-bond networks in stabilizing the binding conformation of the studied polyphenols, as well as in mechanistically explaining their promiscuous nature.
Collapse
Affiliation(s)
- Samo Lešnik
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- IOS, Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
| | - Marko Jukič
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia
- IOS, Institute of Environmental Protection and Sensors, Beloruska ulica 7, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
19
|
Mazzei L, Cianci M, Ciurli S. Inhibition of Urease by Hydroquinones: A Structural and Kinetic Study. Chemistry 2022; 28:e202201770. [PMID: 35994380 PMCID: PMC9826003 DOI: 10.1002/chem.202201770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/11/2023]
Abstract
Hydroquinones are a class of organic compounds abundant in nature that result from the full reduction of the corresponding quinones. Quinones are known to efficiently inhibit urease, a NiII -containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbonate and acts as a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Here, we report the molecular characterization of the inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by 1,4-hydroquinone (HQ) and its methyl and tert-butyl derivatives. The 1.63-Å resolution X-ray crystal structure of the SPU-HQ complex discloses that HQ covalently binds to the thiol group of αCys322, a key residue located on a mobile protein flap directly involved in the catalytic mechanism. Inhibition kinetic data obtained for the three compounds on JBU reveals the occurrence of an irreversible inactivation process that involves a radical-based autocatalytic mechanism.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT)University of BolognaViale Giuseppe Fanin 4040127BolognaItaly
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheVia Brecce Bianche 1060131AnconaItaly
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT)University of BolognaViale Giuseppe Fanin 4040127BolognaItaly
| |
Collapse
|
20
|
Vassiliou S, Pagoni A, Węglarz-Tomczak E, Talma M, Tabor W, Grabowiecka A, Berlicki Ł, Mucha A. Phosphinic acid-based enzyme inhibitors. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2021.2011882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Stamatia Vassiliou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Aikaterini Pagoni
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Ewelina Węglarz-Tomczak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Michał Talma
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Wojciech Tabor
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| |
Collapse
|
21
|
Loharch S, Berlicki Ł. Rational Development of Bacterial Ureases Inhibitors. CHEM REC 2022; 22:e202200026. [PMID: 35502852 DOI: 10.1002/tcr.202200026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Indexed: 12/23/2022]
Abstract
Urease, an enzyme that catalyzes the hydrolysis of urea, is a virulence factor of various pathogenic bacteria. In particular, Helicobacter pylori, that colonizes the digestive tract and Proteus spp., that can infect the urinary tract, are related to urease activity. Therefore, urease inhibitors are considered as potential therapeutics against these infections. This review describes current knowledge of the structures, activity, and biological importance of bacterial ureases. Moreover, the structure-based design of several classes of bacterial urease inhibitors is presented and discussed. Phosphinic and phosphonic acids were applied as transition-state analogues, while Michael acceptors and ebselen derivatives were applied as covalent binders of cysteine residue. This review incorporates bacterial urease inhibitors from literature published between 2008 and 2021.
Collapse
Affiliation(s)
- Saurabh Loharch
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
22
|
Kong X, Li Y, Liu X. A review of thermosensitive antinutritional factors in plant-based foods. J Food Biochem 2022; 46:e14199. [PMID: 35502149 DOI: 10.1111/jfbc.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/01/2022]
Abstract
Legumes and cereals account for the vast proportion of people's daily intake of plant-based foods. Meanwhile, a large number of antinutritional factors in legumes and cereals hinder the body absorption of nutrients and reduce the nutritional value of food. In this paper, the antinutritional effects, determination, and passivation methods of thermosensitive antinutritional factors such as trypsin inhibitors, urease, lipoxygenase, and lectin were reviewed to provide theoretical help to reduce antinutritional factors in food and improve the utilization rate of plant-based food nutrition. Since trypsin inhibitors and lectin have been more extensively studied and reviewed previously, the review mainly focused on urease and lipoxygenase. This review summarized the information of thermosensitive antinutritional factors, trypsin inhibitors, urease, lipoxygenase, and lectin, in cereals and legumes. The antinutritional effects, and physical and chemical properties of trypsin inhibitors, urease, lipoxygenase, and lectin were introduced. At the same time, the research methods for the detection and inactivation of these four antinutritional factors were also summarized in the order of research conducted time. The rapid determination and inactivation of antinutrients will be the focus of attention for the food industry in the future to improve the nutritional value of food. Exploring what structural changes could passivation technologies bring to antinutritional factors will provide a theoretical basis for further understanding the mechanisms of antinutritional factor inactivation. PRACTICAL APPLICATIONS: Antinutritional factors in plant-based foods hinder the absorption of nutrients and reduce the nutritional value of the food. Among them, thermosensitive antinutritional factors, such as trypsin inhibitors, urease, lipoxygenase, and lectins, have a high proportion among the antinutritional factors. In this paper, we investigate thermosensitive antinutritional factors from three perspectives: the antinutritional effect of thermosensitive antinutritional factors, determination, and passivation methods. The current passivation methods for thermosensitive antinutritional factors revolve around biological, physical, and chemical aspects, and their elimination mechanisms still need further research, especially at the protein structure level. Reducing the level of antinutritional factors in the future food industry while controlling the loss of other nutrients in food is a goal that needs to be balanced. This paper reviews the antinutritional effects of thermosensitive antinutritional factors and passivation methods, expecting to provide new research ideas to improve the nutrient utilization of food.
Collapse
Affiliation(s)
- Xin Kong
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - You Li
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Xinqi Liu
- College of Food and Health, National Soybean Processing Industry Technology Innovation Center, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
23
|
Abstract
![]()
Urease
catalyzes the hydrolysis of urea to form ammonia and carbamate,
inducing an overall pH increase that affects both human health and
agriculture. Inhibition, mutagenesis, and kinetic studies have provided
insights into its enzymatic role, but there have been debates on the
substrate binding mode as well as the reaction mechanism. In the present
study, we report quatum mechanics-only (QM-only) and quantum mechanics/molecular
mechanics molecular dynamics (QM/MM MD) calculations on urease that
mainly investigate the binding mode of urea and the mechanism of the
urease-catalyzed hydrolysis reaction. Comparison between the experimental
data and our QM(GFN2-xTB)/MM metadynamics results demonstrates that
urea hydrolysis via a complex with bidentate-bound urea is much more
favorable than via that with monodentate-bound urea for both nucleophilic
attack and the subsequent proton transfer steps. We also indicate
that the bidentate coordination of urea fits the active site with
a closed conformation of the mobile flap and can facilitate the stabilization
of transition states and intermediates by forming multiple hydrogen
bonds with certain active site residues.
Collapse
Affiliation(s)
- Toru Saito
- Department of Biomedical Information Sciences, Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima 731-3194 Japan
| | - Yu Takano
- Department of Biomedical Information Sciences, Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima 731-3194 Japan
| |
Collapse
|
24
|
Chelerythrine Chloride: A Potential Rumen Microbial Urease Inhibitor Screened by Targeting UreG. Int J Mol Sci 2021; 22:ijms22158212. [PMID: 34360977 PMCID: PMC8347364 DOI: 10.3390/ijms22158212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Inhibition of ruminal microbial urease is of particular interest due to its crucial role in regulating urea-N utilization efficiency and nitrogen pollution in the livestock industry. Acetohydroxamic acid (AHA) is currently the only commercially available urease inhibitor, but it has adverse side effects. The urease accessory protein UreG, which facilitates the functional incorporation of the urease nickel metallocentre, has been proposed in developing urease inhibitor through disrupting urease maturation. The objective of this study was to screen natural compounds as potential urease inhibitors by targeting UreG in a predominant ruminal microbial urease. In silico screening and in vitro tests for potential inhibitors were performed using molecular docking and an assay for the GTPase activity of UreG. Chelerythrine chloride was selected as a potential urease inhibitor of UreG with an inhibition concentration IC50 value of 18.13 μM. It exhibited mixed inhibition, with the Ki value being 26.28 μM. We further explored its inhibition mechanism using isothermal titration calorimetry (ITC) and circular dichroism (CD) spectroscopy, and we found that chelerythrine chloride inhibited the binding of nickel to UreG and induced changes in the secondary structure, especially the α-helix and β-sheet of UreG. Chelerythrine chloride formed a pi-anion interaction with the Asp41 residue of UreG, which is an important residue in initiating the conformational changes of UreG. In conclusion, chelerythrine chloride exhibited a potential inhibitory effect on urease, which provided new evidence for strategies to develop novel urease inhibitors targeting UreG to reduce nitrogen excretion from ruminants.
Collapse
|
25
|
Mazzei L, Contaldo U, Musiani F, Cianci M, Bagnolini G, Roberti M, Ciurli S. Inhibition of Urease, a Ni-Enzyme: The Reactivity of a Key Thiol With Mono- and Di-Substituted Catechols Elucidated by Kinetic, Structural, and Theoretical Studies. Angew Chem Int Ed Engl 2021; 60:6029-6035. [PMID: 33245574 DOI: 10.1002/anie.202014706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/30/2022]
Abstract
The inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by a class of six aromatic poly-hydroxylated molecules, namely mono- and dimethyl-substituted catechols, was investigated on the basis of the inhibitory efficiency of the catechol scaffold. The aim was to probe the key step of a mechanism proposed for the inhibition of SPU by catechol, namely the sulfanyl radical attack on the aromatic ring, as well as to obtain critical information on the effect of substituents of the catechol aromatic ring on the inhibition efficacy of its derivatives. The crystal structures of all six SPU-inhibitors complexes, determined at high resolution, as well as kinetic data obtained on JBU and theoretical studies of the reaction mechanism using quantum mechanical calculations, revealed the occurrence of an irreversible inactivation of urease by means of a radical-based autocatalytic multistep mechanism, and indicate that, among all tested catechols, the mono-substituted 3-methyl-catechol is the most efficient inhibitor for urease.
Collapse
Affiliation(s)
- Luca Mazzei
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Umberto Contaldo
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Chemistry and Biology of Metals, Université Grenoble Alpes, CEA, CNRS, 17 Avenue des Martyrs, 38000, Grenoble, France
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.,Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, 40127, Bologna, Italy
| |
Collapse
|
26
|
Milo S, Heylen RA, Glancy J, Williams GT, Patenall BL, Hathaway HJ, Thet NT, Allinson SL, Laabei M, Jenkins ATA. A small-molecular inhibitor against Proteus mirabilis urease to treat catheter-associated urinary tract infections. Sci Rep 2021; 11:3726. [PMID: 33580163 PMCID: PMC7881204 DOI: 10.1038/s41598-021-83257-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/26/2021] [Indexed: 01/30/2023] Open
Abstract
Infection and blockage of indwelling urinary catheters is significant owing to its high incidence rate and severe medical consequences. Bacterial enzymes are employed as targets for small molecular intervention in human bacterial infections. Urease is a metalloenzyme known to play a crucial role in the pathogenesis and virulence of catheter-associated Proteus mirabilis infection. Targeting urease as a therapeutic candidate facilitates the disarming of bacterial virulence without affecting bacterial fitness, thereby limiting the selective pressure placed on the invading population and lowering the rate at which it will acquire resistance. We describe the design, synthesis, and in vitro evaluation of the small molecular enzyme inhibitor 2-mercaptoacetamide (2-MA), which can prevent encrustation and blockage of urinary catheters in a physiologically representative in vitro model of the catheterized urinary tract. 2-MA is a structural analogue of urea, showing promising competitive activity against urease. In silico docking experiments demonstrated 2-MA's competitive inhibition, whilst further quantum level modelling suggests two possible binding mechanisms.
Collapse
Affiliation(s)
- Scarlet Milo
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - Rachel A. Heylen
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - John Glancy
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - George T. Williams
- grid.9759.20000 0001 2232 2818School of Physical Sciences, University of Kent, Canterbury, CT2 7NH UK
| | - Bethany L. Patenall
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - Hollie J. Hathaway
- grid.9835.70000 0000 8190 6402Department of Chemistry, Lancaster University, Bailrigg, Lancaster, LA1 4YB UK
| | - Naing T. Thet
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| | - Sarah L. Allinson
- grid.9835.70000 0000 8190 6402Biomedical and Life Sciences Division, Lancaster University, Bailrigg, Lancaster, LA1 4YB UK
| | - Maisem Laabei
- grid.7340.00000 0001 2162 1699Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY UK
| | - A. Toby A. Jenkins
- grid.7340.00000 0001 2162 1699Department of Chemistry, University of Bath, Bath, BA2 7AY UK
| |
Collapse
|
27
|
Mazzei L, Contaldo U, Musiani F, Cianci M, Bagnolini G, Roberti M, Ciurli S. Inhibition of Urease, a Ni‐Enzyme: The Reactivity of a Key Thiol With Mono‐ and Di‐Substituted Catechols Elucidated by Kinetic, Structural, and Theoretical Studies. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Luca Mazzei
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Umberto Contaldo
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Chemistry and Biology of Metals Université Grenoble Alpes, CEA CNRS 17 Avenue des Martyrs 38000 Grenoble France
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences Polytechnic University of Marche Via Brecce Bianche 60131 Ancona Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
| | - Stefano Ciurli
- Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Belmeloro 6 40126 Bologna Italy
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT) University of Bologna Via Giuseppe Fanin 40 40127 Bologna Italy
| |
Collapse
|
28
|
Mazzei L, Cirri D, Cianci M, Messori L, Ciurli S. Kinetic and structural analysis of the inactivation of urease by mixed-ligand phosphine halide Ag(I) complexes. J Inorg Biochem 2021; 218:111375. [PMID: 33711632 DOI: 10.1016/j.jinorgbio.2021.111375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023]
Abstract
Soft metal ions can inactivate urease, a Ni(II)-dependent enzyme whose hydrolytic activity has significant implications in agro-environmental science and human health. Kinetic and structural studies of the reaction of Canavalia ensiformis urease (JBU) and Sporosarcina pasteurii urease (SPU) with Ag(I) compounds of general formula [Ag(PEt3)X]4 (X = Cl, Br, I), and with the ionic species [Ag(PEt3)2]NO3, revealed the role of the Ag(I) ion and its ligands in modulating the metal-enzyme interaction. The activity of JBU is obliterated by the [Ag(PEt3)X]4 complexes, with IC50 values in the nanomolar range; the efficiency of the inhibition increases in the Cl- < Br- < I- order. The activity of JBU upon [Ag(PEt3)2]NO3 addition decreases to a plateau corresponding to ca. 60% of the original activity and decreases with time at a reduced rate. Synchrotron X-ray crystallography on single crystals obtained after the incubation of SPU with the Ag(I) complexes yielded high-resolution (1.63-1.97 Å) structures. The metal-protein adducts entail a dinuclear Ag(I) cluster bound to the conserved residues αCys322, αHis323, and αMet367, with a bridging cysteine thiolate atom, a weak Ag…Ag bond, and a quasi-linear Ag(I) coordination geometry. These observations suggest a mechanism that involves the initial substitution of the phosphine ligand, followed by a structural rearrangement to yield the dinuclear Ag(I) cluster. These findings indicate that urease, in addition to the active site dinuclear Ni(II) cluster, possesses a secondary metal binding site, located on the mobile flap domain, capable of recognizing pairs of soft metal ions and controlling catalysis.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy.
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via Moruzzi 13, I-56124 Pisa, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, I-50019 Sesto Fiorentino, Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna, Italy.
| |
Collapse
|
29
|
Pagoni A, Grabowiecka A, Tabor W, Mucha A, Vassiliou S, Berlicki Ł. Covalent Inhibition of Bacterial Urease by Bifunctional Catechol-Based Phosphonates and Phosphinates. J Med Chem 2020; 64:404-416. [PMID: 33369409 DOI: 10.1021/acs.jmedchem.0c01143] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, a new class of bifunctional inhibitors of bacterial ureases, important molecular targets for antimicrobial therapies, was developed. The structures of the inhibitors consist of a combination of a phosphonate or (2-carboxyethyl)phosphinate functionality with a catechol-based fragment, which are designed for complexation of the catalytic nickel ions and covalent bonding with the thiol group of Cys322, respectively. Compounds with three types of frameworks, including β-3,4-dihydroxyphenyl-, α-3,4-dihydroxybenzyl-, and α-3,4-dihydroxybenzylidene-substituted derivatives, exhibited complex and varying structure-dependent kinetics of inhibition. Among irreversible binders, methyl β-(3,4-dihydroxyphenyl)-β-(2-carboxyethyl)phosphorylpropionate was observed to be a remarkably reactive inhibitor of Sporosarcina pasteurii urease (kinact/KI = 10 420 s-1 M-1). The high potential of this group of compounds was also confirmed in Proteus mirabilis whole-cell-based inhibition assays. Some compounds followed slow-binding and reversible kinetics, e.g., methyl β-(3,4-dihydroxyphenyl)-β-phosphonopropionate, with Ki* = 0.13 μM, and an atypical low dissociation rate (residence time τ = 205 min).
Collapse
Affiliation(s)
- Aikaterini Pagoni
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stamatia Vassiliou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
30
|
Li P, Zhong Y, Wang X, Hao J. Enzyme-Regulated Healable Polymeric Hydrogels. ACS CENTRAL SCIENCE 2020; 6:1507-1522. [PMID: 32999926 PMCID: PMC7517121 DOI: 10.1021/acscentsci.0c00768] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 05/11/2023]
Abstract
The enzyme-regulated healable polymeric hydrogels are a kind of emerging soft material capable of repairing the structural defects and recovering the hydrogel properties, wherein their fabrication, self-healing, or degradation is mediated by enzymatic reactions. Despite achievements that have been made in controllable cross-linking and de-cross-linking of hydrogels by utilizing enzyme-catalyzed reactions in the past few years, this substrate-specific strategy for regulating healable polymeric hydrogels remains in its infancy, because both the intelligence and practicality of current man-made enzyme-regulated healable materials are far below the levels of living organisms. A systematic summary of current achievements and a reasonable prospect at this point can play positive roles for the future development in this field. This Outlook focuses on the emerging and rapidly developing research area of bioinspired enzyme-regulated self-healing polymeric hydrogel systems. The enzymatic fabrication and degradation of healable polymeric hydrogels, as well as the enzymatically regulated self-healing of polymeric hydrogels, are reviewed. The functions and applications of the enzyme-regulated healable polymeric hydrogels are discussed.
Collapse
Affiliation(s)
- Panpan Li
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yuanbo Zhong
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xu Wang
- National
Engineering Research Center for Colloidal Materials, School of Chemistry
and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key
Laboratory of Colloid and Interface Chemistry and Key Laboratory of
Special Aggregated Materials of the Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
31
|
The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. J Biol Inorg Chem 2020; 25:829-845. [PMID: 32809087 PMCID: PMC7433671 DOI: 10.1007/s00775-020-01808-w] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023]
Abstract
This review is an attempt to retrace the chronicle that starts from the discovery of the role of nickel as the essential metal ion in urease for the enzymatic catalysis of urea, a key step in the biogeochemical cycle of nitrogen on Earth, to the most recent progress in understanding the chemistry of this historical enzyme. Data and facts are presented through the magnifying lenses of the authors, using their best judgment to filter and elaborate on the many facets of the research carried out on this metalloenzyme over the years. The tale is divided in chapters that discuss and describe the results obtained in the subsequent leaps in the knowledge that led from the discovery of a biological role for Ni to the most recent advancements in the comprehension of the relationship between the structure and function of urease. This review is intended not only to focus on the bioinorganic chemistry of this beautiful metal-based catalysis, but also, and maybe primarily, to evoke inspiration and motivation to further explore the realm of bio-based coordination chemistry.
Collapse
|
32
|
Targeting the Protein Tunnels of the Urease Accessory Complex: A Theoretical Investigation. Molecules 2020; 25:molecules25122911. [PMID: 32599898 PMCID: PMC7355429 DOI: 10.3390/molecules25122911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Urease is a nickel-containing enzyme that is essential for the survival of several and often deadly pathogenic bacterial strains, including Helicobacter pylori. Notwithstanding several attempts, the development of direct urease inhibitors without side effects for the human host remains, to date, elusive. The recently solved X-ray structure of the HpUreDFG accessory complex involved in the activation of urease opens new perspectives for structure-based drug discovery. In particular, the quaternary assembly and the presence of internal tunnels for nickel translocation offer an intriguing possibility to target the HpUreDFG complex in the search of indirect urease inhibitors. In this work, we adopted a theoretical framework to investigate such a hypothesis. Specifically, we searched for putative binding sites located at the protein–protein interfaces on the HpUreDFG complex, and we challenged their druggability through structure-based virtual screening. We show that, by virtue of the presence of tunnels, some protein–protein interfaces on the HpUreDFG complex are intrinsically well suited for hosting small molecules, and, as such, they possess good potential for future drug design endeavors.
Collapse
|
33
|
Lente G. Editorial Book Review: János Tóth, Attila László Nagy, Dávid Papp: Reaction kinetics: exercises, programs and theorems. Mathematica for deterministic and stochastic kinetics. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01793-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Zaborowska M, Wyszkowska J, Borowik A. Soil Microbiome Response to Contamination with Bisphenol A, Bisphenol F and Bisphenol S. Int J Mol Sci 2020; 21:ijms21103529. [PMID: 32429402 PMCID: PMC7278947 DOI: 10.3390/ijms21103529] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 01/13/2023] Open
Abstract
The choice of the study objective was affected by numerous controversies and concerns around bisphenol F (BPF) and bisphenol S (BPS)—analogues of bisphenol A (BPA). The study focused on the determination and comparison of the scale of the BPA, BPF, and BPS impact on the soil microbiome and its enzymatic activity. The following parameters were determined in soil uncontaminated and contaminated with BPA, BPF, and BPS: the count of eleven groups of microorganisms, colony development (CD) index, microorganism ecophysiological diversity (EP) index, genetic diversity of bacteria and activity of dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), arylsulphatase (Aryl) and β-glucosidase (Glu). Bisphenols A, S and F significantly disrupted the soil homeostasis. BPF is regarded as the most toxic, followed by BPS and BPA. BPF and BPS reduced the abundance of Proteobacteria and Acidobacteria and increased that of Actinobacteria. Unique types of bacteria were identified as well as the characteristics of each bisphenol: Lysobacter, Steroidobacter, Variovorax, Mycoplana, for BPA, Caldilinea, Arthrobacter, Cellulosimicrobium and Promicromonospora for BPF and Dactylosporangium Geodermatophilus, Sphingopyxis for BPS. Considering the strength of a negative impact of bisphenols on the soil biochemical activity, they can be arranged as follows: BPS > BPF > BPA. Urease and arylsulphatase proved to be the most susceptible and dehydrogenases the least susceptible to bisphenols pressure, regardless of the study duration.
Collapse
|
35
|
Li WY, Ni WW, Ye YX, Fang HL, Pan XM, He JL, Zhou TL, Yi J, Liu SS, Zhou M, Xiao ZP, Zhu HL. N-monoarylacetothioureas as potent urease inhibitors: synthesis, SAR, and biological evaluation. J Enzyme Inhib Med Chem 2020; 35:404-413. [PMID: 31880473 PMCID: PMC6968641 DOI: 10.1080/14756366.2019.1706503] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A urease inhibitor with good in vivo profile is considered as an alternative agent for treating infections caused by urease-producing bacteria such as Helicobacter pylori. Here, we report a series of N-monosubstituted thioureas, which act as effective urease inhibitors with very low cytotoxicity. One compound (b19) was evaluated in detail and shows promising features for further development as an agent to treat H. pylori caused diseases. Excellent values for the inhibition of b19 against both extracted urease and urease in intact cell were observed, which shows IC50 values of 0.16 ± 0.05 and 3.86 ± 0.10 µM, being 170- and 44-fold more potent than the clinically used drug AHA, respectively. Docking simulations suggested that the monosubstituted thiourea moiety penetrates urea binding site. In addition, b19 is a rapid and reversible urease inhibitor, and displays nM affinity to urease with very slow dissociation (koff=1.60 × 10−3 s−1) from the catalytic domain.
Collapse
Affiliation(s)
- Wei-Yi Li
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China
| | - Wei-Wei Ni
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China
| | - Ya-Xi Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Hai-Lian Fang
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China
| | - Xing-Ming Pan
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China
| | - Jie-Ling He
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China
| | - Tian-Li Zhou
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China
| | - Juan Yi
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China
| | - Shan-Shan Liu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China
| | - Mi Zhou
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China
| | - Zhu-Ping Xiao
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| | - Hai-Liang Zhu
- National Demonstration Center for Experimental Chemistry Education, Hunan Engineering Laboratory for Analyse and Drugs Development of Ethnomedicine in Wuling Mountains, Jishou University, Jishou, PR China.,State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, PR China
| |
Collapse
|
36
|
Zambelli B, Mazzei L, Ciurli S. Intrinsic disorder in the nickel-dependent urease network. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:307-330. [DOI: 10.1016/bs.pmbts.2020.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Liu X, Zhang M, Li Z, Zhang C, Wan C, Zhang Y, Lee DJ. Inhibition of urease activity by humic acid extracted from sludge fermentation liquid. BIORESOURCE TECHNOLOGY 2019; 290:121767. [PMID: 31302466 DOI: 10.1016/j.biortech.2019.121767] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
This study achieved effective extraction of humic acid from sludge fermentation liquid, and the inhibition of urease activity by the extract were investigated in the urea decomposition. The addition of extract could remarkably inhibit urease activity and extend the releasing time of ammonia nitrogen. The interaction between the extract and urease took times, and the inhibition was irreversible. The results of fluorescence analysis revealed that the inhibition of urease activity was correlated to the amount of humic acid extracted. The mechanisms of inhibition were proposed that the functional groups of humic acid might interact with the thiol group of urease and formed a larger particle size of complex to inhibit the activity of urease. The extraction of humic acid from sludge fermentation liquid can not only recover the resource from the fermentation liquid, but also provide a potential urease inhibitor for the sustained-release effect of the soil organic nitrogen fertilizer.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Min Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Zhengwen Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chen Zhang
- Shanghai Municipal Engineering Design General Institute, Shanghai 200092, China
| | - Chunli Wan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
38
|
Mazzei L, Cianci M, Benini S, Ciurli S. The Impact of pH on Catalytically Critical Protein Conformational Changes: The Case of the Urease, a Nickel Enzyme. Chemistry 2019; 25:12145-12158. [DOI: 10.1002/chem.201902320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/01/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic ChemistryDepartment of Pharmacy and BiotechnologyUniversity of Bologna Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marche Ancona Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography LaboratoryFaculty of Science and TechnologyFree University of Bolzano Bolzano Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic ChemistryDepartment of Pharmacy and BiotechnologyUniversity of Bologna Bologna Italy
| |
Collapse
|
39
|
Mazzei L, Cianci M, Benini S, Ciurli S. The Structure of the Elusive Urease–Urea Complex Unveils the Mechanism of a Paradigmatic Nickel‐Dependent Enzyme. Angew Chem Int Ed Engl 2019; 58:7415-7419. [DOI: 10.1002/anie.201903565] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marche Ancona Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl)Faculty of Science and TechnologyFree University of Bolzano Bolzano Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| |
Collapse
|
40
|
Catechol-based inhibitors of bacterial urease. Bioorg Med Chem Lett 2019; 29:1085-1089. [DOI: 10.1016/j.bmcl.2019.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
|
41
|
Mazzei L, Cianci M, Benini S, Ciurli S. The Structure of the Elusive Urease–Urea Complex Unveils the Mechanism of a Paradigmatic Nickel‐Dependent Enzyme. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marche Ancona Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography Laboratory (B2Cl)Faculty of Science and TechnologyFree University of Bolzano Bolzano Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic ChemistryDepartement of Pharmacy and BiotechnologyUniversity of Bologna Via Giuseppe Fanin 40 40138 Bologna Italy
| |
Collapse
|
42
|
Mazzei L, Wenzel MN, Cianci M, Palombo M, Casini A, Ciurli S. Inhibition Mechanism of Urease by Au(III) Compounds Unveiled by X-ray Diffraction Analysis. ACS Med Chem Lett 2019; 10:564-570. [PMID: 30996797 DOI: 10.1021/acsmedchemlett.8b00585] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/04/2019] [Indexed: 11/29/2022] Open
Abstract
The nickel-dependent enzyme urease is a virulence factor for a large number of critical human pathogens, making this enzyme a potential target of therapeutics for the treatment of resistant bacterial infections. In the search for novel urease inhibitors, five selected coordination and organometallic Au(III) compounds containing N∧N or C∧N and C∧N∧N ligands were tested for their inhibitory effects against Canavalia ensiformis (jack bean) urease. The results showed potent inhibition effects with IC50 values in the nanomolar range. The 2.14 Å resolution crystal structure of Sporosarcina pasteurii urease inhibited by the most effective Au(III) compound [Au(PbImMe)Cl2]PF6 (PbImMe = 1-methyl-2-(pyridin-2-yl)-benzimidazole) reveals the presence of two Au ions bound to the conserved triad αCys322/αHis323/αMet367. The binding of the Au ions to these residues blocks the movement of a flap, located at the edge of the active site channel and essential for enzyme catalysis, completely obliterating the catalytic activity of urease. Overall, the obtained results constitute the basis for the design of new gold complexes as selective urease inhibitors with future antibacterial applications.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, I-40127 Bologna, Italy
| | - Margot N. Wenzel
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Marta Palombo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, I-40127 Bologna, Italy
| | - Angela Casini
- School of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT Cardiff, United Kingdom
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Viale Giuseppe Fanin 40, I-40127 Bologna, Italy
| |
Collapse
|
43
|
Mazzei L, Cianci M, Contaldo U, Ciurli S. Insights into Urease Inhibition by N-( n-Butyl) Phosphoric Triamide through an Integrated Structural and Kinetic Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2127-2138. [PMID: 30735374 DOI: 10.1021/acs.jafc.8b04791] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The nickel-dependent enzyme urease represents a negative element for the efficiency of soil nitrogen fertilization as well as a virulence factor for a large number of pathogenic and antibiotic-resistant bacteria. The development of ever more efficient urease inhibitors demands knowledge of their modes of action at the molecular level. N-( n-Butyl)-phosphoric triamide (NBPTO) is the oxo-derivative of N-( n-butyl)-thiophosphoric triamide (NBPT), which is extensively employed in agriculture to increase the efficiency of urea-based fertilizers. The 1.45 Å resolution structure of the enzyme-inhibitor complex obtained upon incubation of Sporosarcina pasteurii urease (SPU) with NBPTO shows the presence of diamido phosphoric acid (DAP), generated upon enzymatic hydrolysis of NBPTO with the release of n-butyl amine. DAP is bound in a tridentate binding mode to the two Ni(II) ions in the active site of urease via two O atoms and an amide NH2 group, whereas the second amide group of DAP points away from the metal center into the active-site channel. The mobile flap modulating the size of the active-site cavity is found in a disordered closed-open conformation. A kinetic characterization of the NBPTO-based inhibition of both bacterial (SPU) and plant ( Canavalia ensiformis or jack bean, JBU) ureases, carried out by calorimetric measurements, indicates the occurrence of a reversible slow-inhibition mode of action. The latter is characterized by a very small value of the equilibrium dissociation constant of the urease-DAP complex caused, in turn, by the large rate constant for the formation of the enzyme-inhibitor complex. The much greater capability of NBPTO to inhibit urease, as compared with that of NBPT, is thus not caused by the presence of a P═O moiety versus a P═S moiety, as previously suggested, but rather by the readiness of NBPTO to react with urease without the need to convert one of the P-NH2 amide moieties to its P-OH acid derivative, as in the case of NBPT. The latter process is indeed characterized by a very small equilibrium constant that reduces drastically the concentration of the active form of the inhibitor in the case of NBPT. This indicates that high-efficiency phosphoramide-based urease inhibitors must have at least one O atom bound to the central P atom in order for the molecule to efficiently and rapidly bind to the dinickel center of the enzyme.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology , University of Bologna , 40126 Bologna , Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences , Polytechnic University of Marche , 60121 Ancona , Italy
| | - Umberto Contaldo
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology , University of Bologna , 40126 Bologna , Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology , University of Bologna , 40126 Bologna , Italy
| |
Collapse
|
44
|
Zaborowska M, Kucharski J, Wyszkowska J. Biochemical and microbiological activity of soil contaminated with o-cresol and biostimulated with Perna canaliculus mussel meal. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:602. [PMID: 30242485 PMCID: PMC6153515 DOI: 10.1007/s10661-018-6979-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
The choice of the study subject was a consequence of the growing interest in volatile organic compounds which are strongly dispersed in the environment. The knowledge of o-cresol's capability for being broken down by bacteria should be supplemented by studies aimed at determining the biochemical and microbiological activity of soils. o-Cresol was applied at the following rates: 0, 0.1, 1, 10, and 50 mg of o-cresol kg-1 d.m. of soil to determine its effect on the biological properties of soil. The activity of dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and β-glucosidase, the eight groups of microorganism counts, was determined in soil samples after 45 days and the barley yield was determined. Preventive biostimulation with Perna canaliculus mussel meal, illustrated by means of the index of fertility (IF), was conducted in order to eliminate the adverse effect of o-cresol. The soil and crop resistance index (RS) was used to illustrate the response of barley, and R:S-the rhizosphere effect index was used to determine the effect of the crop on the enzymatic activity of soil. o-Cresol had a beneficial effect on the biological activity of soil at an acceptable rate of 0.1 and 1 mg kg-1 d.m. of soil, and it became its inhibitor after being applied at 10 and 50 mg kg-1 d.m. of soil, which also brought about a decrease in the resistance of spring barley. Dehydrogenases are the most sensitive, and catalase is the least sensitive, to the pressure of o-cresol in soil. Mussel meal can be recommended as a biostimulator of soil fertility. It also eliminated the negative effect of o-cresol on its biological activity.
Collapse
Affiliation(s)
- Magdalena Zaborowska
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
45
|
Kafarski P, Talma M. Recent advances in design of new urease inhibitors: A review. J Adv Res 2018; 13:101-112. [PMID: 30094085 PMCID: PMC6077125 DOI: 10.1016/j.jare.2018.01.007] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Urease is a nickel-dependent metalloenzyme found in plants, some bacteria, and fungi. Bacterial enzyme is of special importance since it has been demonstrated as a potent virulence factor for some species. Especially it is central to Helicobacter pylori metabolism and virulence being necessary for its colonization of the gastric mucosa, and is a potent immunogen that elicits a vigorous immune response. Therefore, it is not surprising that efforts to design, synthesize and evaluate of new inhibitors of urease are and active field of medicinal chemistry. In this paper recent advances on this field are reviewed.
Collapse
Affiliation(s)
- Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
46
|
Kappaun K, Piovesan AR, Carlini CR, Ligabue-Braun R. Ureases: Historical aspects, catalytic, and non-catalytic properties - A review. J Adv Res 2018; 13:3-17. [PMID: 30094078 PMCID: PMC6077230 DOI: 10.1016/j.jare.2018.05.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Urease (urea amidohydrolase, EC 3.5.1.5) is a nickel-containing enzyme produced by plants, fungi, and bacteria that catalyzes the hydrolysis of urea into ammonia and carbamate. Urease is of historical importance in Biochemistry as it was the first enzyme ever to be crystallized (1926). Finding nickel in urease's active site (1975) was the first indication of a biological role for this metal. In this review, historical and structural features, kinetics aspects, activation of the metallocenter and inhibitors of the urea hydrolyzing activity of ureases are discussed. The review also deals with the non-enzymatic biological properties, whose discovery 40 years ago started a new chapter in the study of ureases. Well recognized as virulence factors due to the production of ammonia and alkalinization in diseases by urease-positive microorganisms, ureases have pro-inflammatory, endocytosis-inducing and neurotoxic activities that do not require ureolysis. Particularly relevant in plants, ureases exert insecticidal and fungitoxic effects. Data on the jack bean urease and on jaburetox, a recombinant urease-derived peptide, have indicated that interactions with cell membrane lipids may be the basis of the non-enzymatic biological properties of ureases. Altogether, with this review we wanted to invite the readers to take a second look at ureases, very versatile proteins that happen also to catalyze the breakdown of urea into ammonia and carbamate.
Collapse
Affiliation(s)
- Karine Kappaun
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Angela Regina Piovesan
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Celia Regina Carlini
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
47
|
Mazzei L, Cianci M, Gonzalez Vara A, Ciurli S. The structure of urease inactivated by Ag(i): a new paradigm for enzyme inhibition by heavy metals. Dalton Trans 2018; 47:8240-8247. [DOI: 10.1039/c8dt01190g] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular details of the inactivation of urease, a nickel-dependent virulence factor for human pathogens and negatively affecting the efficiency of soil nitrogen fertilization, are elucidated through the crystal structure of the enzyme complex with Ag(i).
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- I-40127 Bologna
- Italy
| | - Michele Cianci
- Department of Agricultural
- Food and Environmental Sciences
- Marche Polytechnic University
- Ancona
- Italy
| | | | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry
- Department of Pharmacy and Biotechnology
- University of Bologna
- I-40127 Bologna
- Italy
| |
Collapse
|
48
|
Sasaki S, Kishii K, Okazaki M. Contactless Ammonia Mapping for Concentric Colony Pattern of <i>Proteus mirabilis</i>. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2018. [DOI: 10.1252/jcej.17we157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Satoshi Sasaki
- School of Health Sciences, Tokyo University of Technology
| | - Kozue Kishii
- School of Health Sciences, Tokyo University of Technology
| | | |
Collapse
|
49
|
Mazzei L, Cianci M, Contaldo U, Musiani F, Ciurli S. Urease Inhibition in the Presence of N-(n-Butyl)thiophosphoric Triamide, a Suicide Substrate: Structure and Kinetics. Biochemistry 2017; 56:5391-5404. [DOI: 10.1021/acs.biochem.7b00750] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luca Mazzei
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Cianci
- Department
of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Umberto Contaldo
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Musiani
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Ciurli
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|