1
|
Zhu C, Wei F, Jiang H, Lin Z, Zhong L, Wu Y, Sun X, Song L. Exploration of the structural mechanism of hydrogen (H 2)-promoted horseradish peroxidase (HRP) activity via multiple spectroscopic and molecular dynamics simulation techniques. Int J Biol Macromol 2024; 258:128901. [PMID: 38128803 DOI: 10.1016/j.ijbiomac.2023.128901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Horseradish peroxidase (HRP) is an enzyme that is widely used in various fields. In this study, the effects of molecular hydrogen (H2) on the activity and structural characteristics of HRP were investigated by employing multiple spectroscopic techniques, atomic force microscopy (AFM) and molecular dynamics (MD) simulations. The results demonstrated that H2 could enhance HRP activity, especially in 1.5 mg/L hydrogen-rich water (HRW). The structural analysis results showed that H2 might alter HRP activity by affecting the active sites, secondary structure, hydrogen bonding network, CS groups, and morphological characteristics. The MD results also confirmed that H2 could increase the FeN bond distance in the active site, affect the secondary structure, and increase the number of hydrogen bonds. The MD results further suggested that H2 could increase the number of salt bridges, and lengthen the SS bonds in HRP. This study primarily revealed the mechanism by which H2 enhances the HRP activity, providing insight into the interactions between gas and macromolecular proteins. However, some of the results obtained via MD simulations still need to be verified experimentally. In addition, our study also provided a new convenient strategy to enhance enzyme activity.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Zhong
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangjun Sun
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Valianti VK, Tselios C, Pinakoulaki E. Reversible thermally induced spin crossover in the myoglobin-nitrito adduct directly monitored by resonance Raman spectroscopy. RSC Adv 2023; 13:9020-9025. [PMID: 36950070 PMCID: PMC10025812 DOI: 10.1039/d3ra00225j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
Myoglobin has been demonstrated to function as a nitrite reductase to produce nitric oxide during hypoxia. One of the most intriguing aspects of the myoglobin/nitrite interactions revealed so far is the unusual O-binding mode of nitrite to the ferric heme iron, although conflicting data have been reported for the electronic structure of this complex also raising the possibility of linkage isomerism. In this work, we applied resonance Raman spectroscopy in a temperature-dependent approach to investigate the binding of nitrite to ferric myoglobin and the properties of the formed adduct from ambient to low temperatures (293 K to 153 K). At ambient temperature the high spin state of the ferric heme Fe-O-N[double bond, length as m-dash]O species is present and upon decreasing the temperature the low spin state is populated, demonstrating that a thermally-induced spin crossover phenomenon takes place analogous to what has been observed in many transition metal complexes. The observed spin crossover is fully reversible and is not due to linkage isomerism, since the O-binding mode is retained upon the spin transition. The role of the heme pocket environment in controlling the nitrite binding mode and spin transition is discussed.
Collapse
Affiliation(s)
| | - Charalampos Tselios
- Department of Chemistry, University of Cyprus 2109 Aglantzia Cyprus
- Department of Chemical Engineering, Cyprus University of Technology Lemesos Cyprus
| | | |
Collapse
|
3
|
|
4
|
Nilsson ZN, Mandella BL, Sen K, Kekilli D, Hough MA, Moenne-Loccoz P, Strange RW, Andrew CR. Distinguishing Nitro vs Nitrito Coordination in Cytochrome c' Using Vibrational Spectroscopy and Density Functional Theory. Inorg Chem 2017; 56:13205-13213. [PMID: 29053273 PMCID: PMC5677563 DOI: 10.1021/acs.inorgchem.7b01945] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrite coordination to heme cofactors is a key step in the anaerobic production of the signaling molecule nitric oxide (NO). An ambidentate ligand, nitrite has the potential to coordinate via the N- (nitro) or O- (nitrito) atoms in a manner that can direct its reactivity. Distinguishing nitro vs nitrito coordination, along with the influence of the surrounding protein, is therefore of particular interest. In this study, we probed Fe(III) heme-nitrite coordination in Alcaligenes xylosoxidans cytochrome c' (AXCP), an NO carrier that excludes anions in its native state but that readily binds nitrite (Kd ∼ 0.5 mM) following a distal Leu16 → Gly mutation to remove distal steric constraints. Room-temperature resonance Raman spectra (407 nm excitation) identify ν(Fe-NO2), δ(ONO), and νs(NO2) nitrite ligand vibrations in solution. Illumination with 351 nm UV light results in photoconversion to {FeNO}6 and {FeNO}7 states, enabling FTIR measurements to distinguish νs(NO2) and νas(NO2) vibrations from differential spectra. Density functional theory calculations highlight the connections between heme environment, nitrite coordination mode, and vibrational properties and confirm that nitrite binds to L16G AXCP exclusively through the N atom. Efforts to obtain the nitrite complex crystal structure were hampered by photochemistry in the X-ray beam. Although low dose crystal structures could be modeled with a mixed nitrite (nitro)/H2O distal population, their photosensitivity and partial occupancy underscores the value of the vibrational approach. Overall, this study sheds light on steric determinants of heme-nitrite binding and provides vibrational benchmarks for future studies of heme protein nitrite reactions.
Collapse
Affiliation(s)
- Zach N. Nilsson
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Brian L. Mandella
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| | - Kakali Sen
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
- Scientific Computing Department, STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - Demet Kekilli
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
| | - Michael A Hough
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
| | - Pierre Moenne-Loccoz
- Division of Environmental and Biomolecular Systems, Oregon Health and Science University, Portland, Oregon 97239, United States
| | - Richard W. Strange
- School of Biological Sciences, University of Essex, Colchester Essex, CO4 3SQ, United Kingdom
| | - Colin R. Andrew
- Department of Chemistry and Biochemistry, Eastern Oregon University, La Grande, Oregon 97850, United States
| |
Collapse
|