1
|
Elamine Y, Girón‐Calle J, Alaiz M, Vioque J. Purification, Characterization and Bioactivity of a New Homodimeric Lectin From Vicia Altissima ( Fabaceae) Seeds. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70047. [PMID: 40182644 PMCID: PMC11964946 DOI: 10.1002/pei3.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/05/2025]
Abstract
Vicia altissima Desf. (Fabaceae) belongs to subgenus Vicilla, section Pedunculatae. It is a perennial herb that grows in wet ravines with dense vegetation in western Mediterranean countries. The only population that exists in Spain is under critical threat of extinction. Although lectins are abundant in the seeds from several Vicias belonging to subgenus Vicilla, the presence of lectins in section Pedunculatae has not been investigated. Purification of lectins from V. altissima seeds was carried out by albumin extraction according to solubility in water and gel filtration chromatography using a Superose 12 column. SDS-PAGE and native PAGE analyses revealed single bands at 38 and 87 kDa, respectively, indicating that this protein is a homodimer. The lectin exhibited a high affinity for mannose and glucose and inhibited the proliferation of THP-1 cells. Seed lectins from Vicia species belonging to sect. Cracca in subg. Vicilla are, in general, more sensitive to inhibition by N-acetylgalactosamine than to inhibition by glucose or mannose. On the contrary, the seed lectin from V. altissima, belonging to sect. Pedunculatae, has a higher affinity for mannose and glucose than for N-acetylgalactosamine. Our results show the presence of a lectin with antiproliferative activity in the seeds from V. altissima, indicating that this lectin has potential health-promoting and diagnostic applications. These potential applications could have a positive effect on the preservation of this wild legume, which is represented in Spain by only one endangered population.
Collapse
Affiliation(s)
- Youssef Elamine
- Food Phytochemistry DepartmentInstituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de OlavideSevillaSpain
| | - Julio Girón‐Calle
- Food Phytochemistry DepartmentInstituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de OlavideSevillaSpain
| | - Manuel Alaiz
- Food Phytochemistry DepartmentInstituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de OlavideSevillaSpain
| | - Javier Vioque
- Food Phytochemistry DepartmentInstituto de la Grasa (C.S.I.C.), Campus Universidad Pablo de OlavideSevillaSpain
| |
Collapse
|
2
|
Gurav MJ, Manasa J, Sanji AS, Megalamani PH, Chachadi VB. Lectin-glycan interactions: a comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: a review. Glycoconj J 2024; 41:301-322. [PMID: 39218819 DOI: 10.1007/s10719-024-10161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
This comprehensive review meticulously compiles data on an array of lectins and their interactions with different cancer types through specific glycans. Crucially, it establishes the link between aberrant glycosylation and cancer types. This repository of lectin-defined glycan signatures, assumes paramount importance in the realm of cancer and its dynamic nature. Cancer, known for its remarkable heterogeneity and individualized behaviour, can be better understood through these glycan signatures. The current review discusses the important lectins and their carbohydrate specificities, especially recognizing glycans of cancer origin. The review also addresses the key aspects of differentially expressed glycans on normal and cancerous cell surfaces. Specific cancer types highlighted in this review include breast cancer, colon cancer, glioblastoma, cervical cancer, lung cancer, liver cancer, and leukaemia. The glycan profiles unveiled through this review hold the key to tailor-made treatment and precise diagnostics. It opens up avenues to explore the potential of targeting glycosyltransferases and glycosidases linked with cancer advancement and metastasis. Armed with knowledge about specific glycan expressions, researchers can design targeted therapies to modulate glycan profiles, potentially hampering the advance of this relentless disease.
Collapse
Affiliation(s)
- Maruti J Gurav
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - J Manasa
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Ashwini S Sanji
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Prasanna H Megalamani
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India
| | - Vishwanath B Chachadi
- Post Graduate Department of Studies in Biochemistry, Karnatak University Dharwad, Dharwad, Karnataka, India.
| |
Collapse
|
3
|
Boliukh I, Rombel-Bryzek A, Bułdak RJ. Lectins in oncology and virology: Mechanisms of anticancer activity and SARS-CoV-2 inhibition. Int J Biol Macromol 2024; 275:133664. [PMID: 38969035 DOI: 10.1016/j.ijbiomac.2024.133664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Lectins are proteins or glycoproteins of non-immune origin with carbohydrate-binding properties. They are found both prokaryotic and eukaryotic organisms. The most abundant source of the lectins are plants. Many lectins have anticancer effects by directly exerting cytotoxic effects on malignant cells or indirectly activating the immune system. Lectins also have antiviral activities. These proteins can recognise glycoproteins on the surface of enveloped viruses and bind to them. This creates a physical barrier between them and the corresponding receptors on the surface of the host cell, which prevents the virus from entering the cell and can thus effectively inhibit the replication of the virus. In this review, we focus on the anticancer activities of selected lectins and the underlying mechanisms. We also discuss different types of lectins with antiviral activity. We have paid special attention to lectins with inhibitory activity against SARS-CoV-2. Finally, we outline the challenges of using lectins in therapy and suggest future research directions.
Collapse
Affiliation(s)
- Iryna Boliukh
- Institute of Medical Sciences, University of Opole, Opole, Poland
| | | | - Rafał J Bułdak
- Institute of Medical Sciences, University of Opole, Opole, Poland
| |
Collapse
|
4
|
Une S, Nakata R, Nonaka K, Akiyama J. Antiproliferative and anti-inflammatory effects of fractionated crude lectins from boiled kidney beans (Phaseolus vulgaris). J Food Sci 2024; 89:671-683. [PMID: 37983860 DOI: 10.1111/1750-3841.16847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/05/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
In this study, we investigated the biological profile of lectins isolated from raw and boiled Japanese red Kintoki beans (red kidney beans [RKB]; Phaseolus vulgaris). Lectins in beans showing agglutination activity were retained after heating. Raw and boiled RKB lectins were fractionated using carboxymethyl- and diethylaminoethyl-Sepharose, respectively. Boiled RKB lectins were evaluated for carbohydrate specificity as well as cytokine-inducing and antiproliferative activities against cancer cells and compared with raw RKB lectins. Raw RKB lectins showed specificity for thyroglobulin and fetuin, whereas boiled lectins showed specificity for N-acetylneuraminic acid. Raw RKB lectins showed low resistance to proteases and tolerated temperatures greater than 80°C for 5 min. Notably, lectins from raw and boiled beans showed antiproliferative activity against five types of cancer cells B16, LM8, HeLa, HepG2, and Colo 679. In particular, lectins from raw beans exhibited a significantly stronger activity than those from boiled beans. Anti-inflammatory effects were notably observed in crude extracts from raw and boiled beans. Specifically, lectins fractionated from boiled beans markedly inhibited the expression of tumor necrosis factor-α and interleukin-6. Overall, our results showed that RKB lectins from boiled beans exert anti-inflammatory and anticancer effects and could be developed as potential chemopreventive agents. PRACTICAL APPLICATION: Japanese red kidney beans (RKB) are cultivated in numerous parts of the temperate zone and consumed in many countries. Lectins from boiled beans exhibited anticancer activity, similar to lectins from raw beans. Additionally, crude and fractionated lectins from boiled beans showed anti-inflammatory activity. Thus, boiled RKB lectins have the potential to be used as a bioactive protein for medical research and could be developed as anticancer agents.
Collapse
Affiliation(s)
- Satsuki Une
- Faculty of Education, Kagawa University, Takamatsu, Kagawa, Japan
| | - Rieko Nakata
- Faculty of human Life and Environment, Nara Women's University, Nara, Japan
| | - Koji Nonaka
- Faculty of Health Science, Naragakuen University, Sangho-cho, Nara, Japan
| | - Junich Akiyama
- Department of Physical Therapy, Kibi International University, Takahasi, Okayama, Japan
| |
Collapse
|
5
|
Mitigating Effect of Dietary Dioclea reflexa (Hook F) Seed Inclusion in Experimental Colon Carcinogenesis. J Food Biochem 2023. [DOI: 10.1155/2023/2823143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Rats exposed to 72-hour intrarectal instillations of N-methyl-N-nitrosourea (MNU) were fed with Dioclea reflexa seed-included diets (0, 2.5, 5.0, and 10%). Following sacrifice, organs and blood were collected and analyzed for indices of oxidative stress and carcinogenesis using spectrophotometric, ELISA, histological, and immunohistochemical techniques. Dioclea reflexa seed-included diets significantly (
) prevented MNU-induced elevation of carcinoembryonic antigen (CEA), malondialdehyde, and neutrophil-to-lymphocyte ratio (NLR) and boosted the activities of glutathione s-transferase, superoxide dismutase, and catalase. It also prevented MNU-induced colonic mucosal ulceration/interglandular inflammations and protected the mismatch repair gene, Mutl homolog1, against MNU-induced damage. There was a strong negative relationship between CEA, NLR, and the antioxidant enzyme activities, as well as total polyphenols, total flavonoids, and crude fiber, while CEA correlated positively with malondialdehyde levels. These results suggest that Dioclea reflexa seed is endowed with constituents possessing a potent capacity to mitigate oxidative stress, as well as the initiation and promotion of chemically induced colon carcinogenesis.
Collapse
|
6
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
7
|
Silva JFD, Lima CMG, da Silva DL, do Nascimento IS, Rodrigues SDO, Gonçalves LA, Santana RF, Khalid W, Verruck S, Emran TB, de Menezes IRA, Coutinho HDM, Khandaker MU, Faruque MRI, Fontan RDCI. Lectin Purification through Affinity Chromatography Exploiting Macroporous Monolithic Adsorbents. SEPARATIONS 2023; 10:36. [DOI: 10.3390/separations10010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Growing medical, engineering, biochemical, and biological interest has led to a steady pace of research and development into polymeric monolithic structures with densely interconnected pores for purifying bio compounds. Cryogels, which are generated by freezing a reactive polymerization mixture, are highlighted due to their versatility and low relative cost as macroporous, polymeric, monolithic adsorbents. The conversion of cryogels into affinity adsorbents is one possible alternative to their optimal application. Some of the most often utilized supports for immobilizing particular ligands are monolithic columns manufactured with epoxy radicals on their surfaces. The purification of biomolecules with a high degree of specificity, such as lectins and glycoproteins with an affinity for glycosylated groups, has garnered interest in the use of fixed non-traditional beds functionalized with ligands of particular interest. The interaction is both robust enough to permit the adsorption of glycoproteins and reversible enough to permit the dissociation of molecules in response to changes in the solution’s pH. When compared to other protein A-based approaches, this one has been shown to be more advantageous than its counterparts in terms of specificity, ease of use, and cost-effectiveness. Information on polymeric, macroporous, monolithic adsorbents used in the affinity chromatographic purification of lectins has been published and explored.
Collapse
|
8
|
Cavada BS, Oliveira MVD, Osterne VJS, Pinto-Junior VR, Martins FWV, Correia-Neto C, Pinheiro RF, Leal RB, Nascimento KS. Recent advances in the use of legume lectins for the diagnosis and treatment of breast cancer. Biochimie 2022; 208:100-116. [PMID: 36586566 DOI: 10.1016/j.biochi.2022.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Poor lifestyle choices and genetic predisposition are factors that increase the number of cancer cases, one example being breast cancer, the third most diagnosed type of malignancy. Currently, there is a demand for the development of new strategies to ensure early detection and treatment options that could contribute to the complete remission of breast tumors, which could lead to increased overall survival rates. In this context, the glycans observed at the surface of cancer cells are presented as efficient tumor cell markers. These carbohydrate structures can be recognized by lectins which can act as decoders of the glycocode. The application of plant lectins as tools for diagnosis/treatment of breast cancer encompasses the detection and sorting of glycans found in healthy and malignant cells. Here, we present an overview of the most recent studies in this field, demonstrating the potential of lectins as: mapping agents to detect differentially expressed glycans in breast cancer, as histochemistry/cytochemistry analysis agents, in lectin arrays, immobilized in chromatographic matrices, in drug delivery, and as biosensing agents. In addition, we describe lectins that present antiproliferative effects by themselves and/or in conjunction with other drugs in a synergistic effect.
Collapse
Affiliation(s)
- Benildo Sousa Cavada
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| | - Messias Vital de Oliveira
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Vinícius Jose Silva Osterne
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Vanir Reis Pinto-Junior
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil; Departamento de Física, Universidade Federal do Ceará, Fortaleza, Brazil
| | | | - Cornevile Correia-Neto
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Ronald Feitosa Pinheiro
- Núcleo de Pesquisa e Desenvolvimento de Medicações (NPDM), Universidade Federal do Ceará, Fortaleza, Brazil
| | - Rodrigo Bainy Leal
- Departamento de Bioquímica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Kyria Santiago Nascimento
- BioMol Lab, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Brazil.
| |
Collapse
|
9
|
Lee JH, Lee SB, Kim H, Shin JM, Yoon M, An HS, Han JW. Anticancer Activity of Mannose-Specific Lectin, BPL2, from Marine Green Alga Bryopsis plumosa. Mar Drugs 2022; 20:md20120776. [PMID: 36547923 PMCID: PMC9788543 DOI: 10.3390/md20120776] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Lectin is a carbohydrate-binding protein that recognizes specific cells by binding to cell-surface polysaccharides. Tumor cells generally show various glycosylation patterns, making them distinguishable from non-cancerous cells. Consequently, lectin has been suggested as a good anticancer agent. Herein, the anticancer activity of Bryopsis plumosa lectins (BPL1, BPL2, and BPL3) was screened and tested against lung cancer cell lines (A549, H460, and H1299). BPL2 showed high anticancer activity compared to BPL1 and BPL3. Cell viability was dependent on BPL2 concentration and incubation time. The IC50 value for lung cancer cells was 50 μg/mL after 24 h of incubation in BPL2 containing medium; however, BPL2 (50 μg/mL) showed weak toxicity in non-cancerous cells (MRC5). BPL2 affected cancer cell growth while non-cancerous cells were less affected. Further, BPL2 (20 μg/mL) inhibited cancer cell invasion and migration (rates were ˂20%). BPL2 induced the downregulation of epithelial-to-mesenchymal transition-related genes (Zeb1, vimentin, and Twist). Co-treatment with BPL2 and gefitinib (10 μg/mL and 10 μM, respectively) showed a synergistic effect compared with monotherapy. BPL2 or gefitinib monotherapy resulted in approximately 90% and 70% cell viability, respectively, with concomitant treatment showing 40% cell viability. Overall, BPL2 can be considered a good candidate for development into an anticancer agent.
Collapse
|
10
|
Kim S, Choi Y, Kim K. Coacervate-mediated novel pancreatic cancer drug Aleuria Aurantia lectin delivery for augmented anticancer therapy. Biomater Res 2022; 26:35. [PMID: 35869562 PMCID: PMC9308356 DOI: 10.1186/s40824-022-00282-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/28/2022] [Indexed: 12/20/2022] Open
Abstract
Background Pancreatic cancer, one of the cancers with the highest mortality rate, has very limited clinical treatment. Cancer cells express abnormal glycans on the surface, and some lectins with a high affinity for the glycans induce apoptosis in cancer. In this study, the efficacy of Aleuria Aurantia lectin (AAL) for the treatment of pancreatic cancer was evaluated and the efficacy improvement through AAL delivery with mPEGylated coacervate (mPEG-Coa) was investigated. Methods AAL was treated with pancreatic cancer cells, PANC-1, and the expression level of caspase-3 and subsequent apoptosis was analyzed. In particular, the anticancer efficacy of AAL was compared with that of concanavalin A, one of the representative anticancer lectins. Then, methoxypolyethylene glycol-poly(ethylene arginylaspartate diglyceride), a polycation, was synthesized, and an mPEG-Coa complex was prepared with polyanion heparin. The AAL was incorporated into the mPEG-Coa and the release kinetics of the AAL from the mPEG-Coa and the cargo protection capacity of the mPEG-Coa were evaluated. Finally, improved anticancer ability through Coa-mediated AAL delivery was assessed. Results These results indicated that AAL is a potential effective pancreatic cancer treatment. Moreover, mPEG-Coa rapidly released AAL at pH 6.5, an acidic condition in the cancer microenvironment. The initial rapid release of AAL effectively suppressed pancreatic cancer cells, and the continuous supply of AAL through the Coa transporter effectively inhibited proliferation recurrence of cancer cells. Conclusion AAL is a potential novel drug for the treatment of pancreatic cancer therapeutic agent. In addition, a continuous supply of drugs above the therapeutic threshold using mPEG-Coa could improve therapeutic efficacy. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00282-6.
Collapse
|
11
|
Konozy EHE, Osman MEFM. Plant lectin: A promising future anti-tumor drug. Biochimie 2022; 202:136-145. [PMID: 35952948 DOI: 10.1016/j.biochi.2022.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Since the early discovery of plant lectins at the end of the 19th century, and the finding that they could agglutinate erythrocytes and precipitate glycans from their solutions, many applications and biological roles have been described for these proteins. Later, the observed erythrocytes clumping features were attributed to the lectin-cell surface glycoconjugates recognition. Neoplastic transformation leads to various cellular alterations which impact the growth of the cell and its persistence, among which is the mutation in the outer surface glycosylation signatures. Quite a few lectins have been found to act as excellent biomarkers for cancer diagnosis while some were presented with antiproliferative activity that initiated by lectin binding to the respective glycocalyx receptors. These properties are blocked by the hapten sugar that is competing for the lectin affinity binding site. In vitro investigations of lectin-cancer cell's glycocalyx interactions lead to a series of immunological reactions that result in autophagy or apoptosis of the transformed cells. Mistletoe lectin, an agglutinin purified from the European Viscum album is the first plant lectin employed in the treatment of cancer to enter into the clinical trial phases. The entrapment of lectin in nanoparticles besides other techniques to promote bioavailability and stability have also been recently studied. This review summarizes our up-to-date understanding of the future applications of plant lectins in cancer prognosis and diagnosis. With the provision of many examples of lectins that exhibit anti-neoplastic properties.
Collapse
|
12
|
Abstract
Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.
Collapse
|
13
|
Usman M, Khan WR, Yousaf N, Akram S, Murtaza G, Kudus KA, Ditta A, Rosli Z, Rajpar MN, Nazre M. Exploring the Phytochemicals and Anti-Cancer Potential of the Members of Fabaceae Family: A Comprehensive Review. Molecules 2022; 27:molecules27123863. [PMID: 35744986 PMCID: PMC9230627 DOI: 10.3390/molecules27123863] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is the second-ranked disease and a cause of death for millions of people around the world despite many kinds of available treatments. Phytochemicals are considered a vital source of cancer-inhibiting drugs and utilize specific mechanisms including carcinogen inactivation, the induction of cell cycle arrest, anti-oxidant stress, apoptosis, and regulation of the immune system. Family Fabaceae is the second most diverse family in the plant kingdom, and species of the family are widely distributed across the world. The species of the Fabaceae family are rich in phytochemicals (flavonoids, lectins, saponins, alkaloids, carotenoids, and phenolic acids), which exhibit a variety of health benefits, especially anti-cancer properties; therefore, exploration of the phytochemicals present in various members of this family is crucial. These phytochemicals of the Fabaceae family have not been explored in a better way yet; therefore, this review is an effort to summarize all the possible information related to the phytochemical status of the Fabaceae family and their anti-cancer properties. Moreover, various research gaps have been identified with directions for future research.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Botany, Government College University Lahore, Katchery Road, Lahore 54000, Pakistan; (M.U.); (N.Y.)
| | - Waseem Razzaq Khan
- Institut Ekosains Borneo, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Nousheen Yousaf
- Department of Botany, Government College University Lahore, Katchery Road, Lahore 54000, Pakistan; (M.U.); (N.Y.)
| | - Seemab Akram
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China;
| | - Kamziah Abdul Kudus
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Upper Dir 18000, Pakistan
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
- Correspondence: or (A.D.); (M.N.)
| | - Zamri Rosli
- Department of Forestry Science, Faculty of Agriculture and Forestry Sciences, Universiti Putra Malaysia Kampus Bintulu, Bintulu 97008, Malaysia;
| | - Muhammad Nawaz Rajpar
- Department of Forestry, Faculty of Life Sciences, SBBU Sheringal, Dir Upper 18000, Pakistan;
| | - Mohd Nazre
- Department of Forestry Science and Biodiversity, Faculty of Forestry and Environment, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Correspondence: or (A.D.); (M.N.)
| |
Collapse
|
14
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
15
|
Lectins applied to diagnosis and treatment of prostate cancer and benign hyperplasia: A review. Int J Biol Macromol 2021; 190:543-553. [PMID: 34508719 DOI: 10.1016/j.ijbiomac.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 11/20/2022]
Abstract
Environmental factors, as well as genetic factors, contribute to the increase in prostate cancer cases (PCa), the second leading cause of cancer death in men. This fact calls for the development of more reliable, quick and low-cost early detection tests to distinguish between malignant and benign cases. Abnormal cell glycosylation pattern is a promising PCa marker for this purpose. Proteins, such as lectins can decode the information contained in the glycosylation patterns. Several studies have reported on applications of plant lectins as diagnostic tools for PCa considering the ability to differentiate it from benign cases. In addition, they can be used to detect, separate and differentiate the glycosylation patterns of cells or proteins present in serum, urine and semen. Herein, we present an overview of these studies, showing the lectins that map glycans differentially expressed in PCa, as well as benign hyperplasia (BPH). We further review their applications in biosensors, histochemical tests, immunoassays, chromatography, arrays and, finally, their therapeutic potential. This is the first study to review vegetable lectins applied specifically to PCa.
Collapse
|
16
|
Liu Z, Li L, Xue B, Zhao D, Zhang Y, Yan X. A New Lectin from Auricularia auricula Inhibited the Proliferation of Lung Cancer Cells and Improved Pulmonary Flora. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5597135. [PMID: 34337031 PMCID: PMC8289579 DOI: 10.1155/2021/5597135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/29/2021] [Accepted: 06/23/2021] [Indexed: 12/24/2022]
Abstract
Lectins are widely distributed in the natural world and are usually involved in antitumor activities. Auricularia auricula (A. auricula) is a medicinal and edible homologous fungus. A. auricula contains many active ingredients, such as polysaccharides, melanin, flavonoids, adenosine, sterols, alkaloids, and terpenes. In this study, we expected to isolate and purify lectin from A. auricula, determine the glycoside bond type and sugar-specific protein of A. auricula lectin (AAL), and finally, determine its antitumor activities. We used ammonium sulfate fractionation, ion exchange chromatography, and affinity chromatography to separate and purify lectin from A. auricula. The result was a 25 kDa AAL with a relative molecular mass of 18913.22. Protein identification results suggested that this lectin contained four peptide chains by comparing with the UniProt database. The FT-IR and β-elimination reaction demonstrated that the connection between the oligosaccharide and polypeptide of AAL was an N-glucoside bond. Analyses of its physical and chemical properties showed that AAL was a temperature-sensitive and acidic/alkaline-dependent glycoprotein. Additionally, the anticancer experiment manifested that AAL inhibited the proliferation of A549, and the IC50 value was 28.19 ± 1.92 μg/mL. RNA sequencing dataset analyses detected that AAL may regulate the expression of JUN, TLR4, and MYD88 to suppress tumor proliferation. Through the pulmonary flora analysis, the bacterial structure of each phylum in the lectin treatment group was more reasonable, and the colonization ability of the normal microflora was improved, indicating that lectin treatment could significantly improve the bacterial diversity characteristics.
Collapse
Affiliation(s)
- ZhenDong Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Liang Li
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - Bei Xue
- Food Science College, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China
| | - DanDan Zhao
- Sino-Russian Joint Laboratory of Bioactive Substance, College of Life Science, Heilongjiang University, 150080, China
| | - YanLong Zhang
- Sino-Russian Joint Laboratory of Bioactive Substance, College of Life Science, Heilongjiang University, 150080, China
| | - XiuFeng Yan
- College of Life and Environmental Science, Wenzhou University, Chashan University Town, Wenzhou 325035, China
| |
Collapse
|
17
|
Wani SS, Dar PA, Zargar SM, Dar TA. Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives. Curr Protein Pept Sci 2021; 21:443-487. [PMID: 31746291 DOI: 10.2174/1389203720666191119095624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.
Collapse
Affiliation(s)
- Snober Shabeer Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, S. K. University of Agricultural Sciences and Technology of Srinagar, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| |
Collapse
|
18
|
Ramos DDBM, Araújo MTDMF, Araújo TCDL, Silva YA, Dos Santos ACLA, E Silva MG, Paiva PMG, Mendes RL, Napoleão TH. Antinociceptive activity of Schinus terebinthifolia leaf lectin (SteLL) in sarcoma 180-bearing mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 259:112952. [PMID: 32416247 DOI: 10.1016/j.jep.2020.112952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Schinus terebinthifolia Raddi leaves have been used in folk medicine due to several properties, including antitumor and analgesic effects. The variable efficacy and adverse effects of analgesic drugs have motivated the search for novel antinociceptive agents. It has been reported that the S. terebinthifolia leaf lectin (SteLL) has antitumor activity against sarcoma 180 in mice. AIM OF THE STUDY This work aimed to evaluate whether SteLL would reduce cancer pain using an orthotopic tumor model. MATERIALS AND METHODS A sarcoma 180 cell suspension was inoculated into the right hind paws of mice, and the treatments (150 mM NaCl, negative control; 10 mg/kg morphine, positive control; or SteLL at 1 and 2 mg/kg) were administered intraperitoneally 24 h after cell inoculation up to 14 days. Spontaneous nociception, mechanical hyperalgesia, and hot-plate tests were performed. Further, the volume and weight of the tumor-bearing paws were measured. RESULTS SteLL (2 mg/kg) improved limb use during ambulation. The lectin (1 and 2 mg/kg) also inhibited mechanical hyperalgesia and increased the latency time during the hot-plate test. Naloxone was found to reverse this effect, indicating the involvement of opioid receptors. The tumor-bearing paws of mice treated with SteLL exhibited lower volume and weight. CONCLUSION SteLL reduced hyperalgesia due to sarcoma 180 in the paws of mice, and this effect can be related to its antitumor action.
Collapse
Affiliation(s)
- Dalila de Brito Marques Ramos
- Campus Amilcar Ferreira Sobral, Universidade Federal do Piauí, Floriano, Piauí, Brazil; Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | - Yasmym Araújo Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | | | - Mariana Gama E Silva
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Rosemairy Luciane Mendes
- Laboratório de Oncologia Experimental, Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
19
|
Mazalovska M, Kouokam JC. Transiently Expressed Mistletoe Lectin II in Nicotiana benthamiana Demonstrates Anticancer Activity In Vitro. Molecules 2020; 25:E2562. [PMID: 32486427 PMCID: PMC7321061 DOI: 10.3390/molecules25112562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/24/2022] Open
Abstract
Mistletoe (Viscum album) extracts have been used as alternative and complementary therapeutic preparations in multiple cancers for decades. Mistletoe lectins (ML-I, ML-II, and ML-III) are considered to be the main anticancer components of such preparations. In the present study, ML-II was transiently expressed in Nicotiana benthamiana using the pEAQ-HT expression system. Expression levels of up to 60 mg/kg of the infiltrated plant tissue were obtained, and a three-fold increase was achieved by adding the endoplasmic reticulum (ER) retention signal KDEL to the native ML-II sequence. The native protein containing His-tag and KDEL was purified by immobilized metal affinity chromatography (IMAC) and gel filtration. We found that the recombinant ML-II lectin was glycosylated and retained its carbohydrate-binding activity. In addition, we demonstrated that plant produced ML-II displayed anticancer activity in vitro, inhibiting non-small cell lung cancer H460 and A549 cells with EC50 values of 4 and 3.5 µg/mL, respectively. Annexin V-448A and PI double staining revealed that cell cytotoxicity occurred via apoptosis induction. These results indicate that ML-II transiently expressed in N. benthamiana plants is a promising candidate as an anticancer agent, although further optimization of production and purification methods is required to enable further in vitro testing, as well as in vivo assays.
Collapse
Affiliation(s)
- Milena Mazalovska
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - J. Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
20
|
Plant-Derived Lectins as Potential Cancer Therapeutics and Diagnostic Tools. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1631394. [PMID: 32509848 PMCID: PMC7245692 DOI: 10.1155/2020/1631394] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/27/2020] [Indexed: 12/19/2022]
Abstract
Cancer remains a global health challenge, with high morbidity and mortality, despite the recent advances in diagnosis and treatment. Multiple compounds assessed as novel potential anticancer drugs derive from natural sources, including microorganisms, plants, and animals. Lectins, a group of highly diverse proteins of nonimmune origin with carbohydrate-binding abilities, have been detected in virtually all kingdoms of life. These proteins can interact with free and/or cell surface oligosaccharides and might differentially bind cancer cells, since malignant transformation is tightly associated with altered cell surface glycans. Therefore, lectins could represent a valuable tool for cancer diagnosis and be developed as anticancer therapeutics. Indeed, several plant lectins exert cytotoxic effects mainly by inducing apoptotic and autophagic pathways in malignant cells. This review summarizes the current knowledge regarding the basis for the use of lectins in cancer diagnosis and therapy, providing a few examples of plant-derived carbohydrate-binding proteins with demonstrated antitumor effects.
Collapse
|
21
|
Gautam AK, Sharma D, Sharma J, Saini KC. Legume lectins: Potential use as a diagnostics and therapeutics against the cancer. Int J Biol Macromol 2020; 142:474-483. [PMID: 31593731 DOI: 10.1016/j.ijbiomac.2019.09.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
Abstract
Legume lectins are carbohydrate-binding protein and widely distributed in a variety of species of leguminous plants and have drawn increased attention toward cancer. Nowadays, the lectins have been studied for the screening of potential biomarkers which increased its importance in cancer research. Few plant lectins have been shown to destroy cancer cells, suggesting that lectins may have biological potential in cancer treatments. In this review, we present a focused outline of legume lectins in descriptive their complex anti-cancer mechanisms on the bases of their properties of recognition and interacting specifically with carbohydrates binding sites. Existing reports suggested the binding of lectins to cancerous cells with their cell surface markers speculated by histochemistry in vitro and in vivo. In this review, we illuminate the use of legume lectins as a natural source for diagnostics and therapeutics purpose against cancer.
Collapse
Affiliation(s)
- Ajay Kumar Gautam
- Department of Plant Sciences, Central University of Punjab, Bathinda 151001, India
| | - Divakar Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra 282004, India.
| | | | - Khem Chand Saini
- Centre for Biosciences, Central University of Punjab, Bathinda, Punjab 151001, India
| |
Collapse
|
22
|
dos Santos Silva PM, de Oliveira WF, Albuquerque PBS, dos Santos Correia MT, Coelho LCBB. Insights into anti-pathogenic activities of mannose lectins. Int J Biol Macromol 2019; 140:234-244. [DOI: 10.1016/j.ijbiomac.2019.08.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/14/2019] [Accepted: 08/07/2019] [Indexed: 02/07/2023]
|
23
|
Salehi B, Fokou PVT, Yamthe LRT, Tali BT, Adetunji CO, Rahavian A, Mudau FN, Martorell M, Setzer WN, Rodrigues CF, Martins N, Cho WC, Sharifi-Rad J. Phytochemicals in Prostate Cancer: From Bioactive Molecules to Upcoming Therapeutic Agents. Nutrients 2019; 11:1483. [PMID: 31261861 PMCID: PMC6683070 DOI: 10.3390/nu11071483] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/22/2019] [Accepted: 06/27/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is a heterogeneous disease, the second deadliest malignancy in men and the most commonly diagnosed cancer among men. Traditional plants have been applied to handle various diseases and to develop new drugs. Medicinal plants are potential sources of natural bioactive compounds that include alkaloids, phenolic compounds, terpenes, and steroids. Many of these naturally-occurring bioactive constituents possess promising chemopreventive properties. In this sense, the aim of the present review is to provide a detailed overview of the role of plant-derived phytochemicals in prostate cancers, including the contribution of plant extracts and its corresponding isolated compounds.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde I, Ngoa Ekelle, Annex Fac. Sci, Yaounde 812, Cameroon
| | | | - Brice Tchatat Tali
- Antimicrobial Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Department of Biochemistry, Faculty of Science, University of Yaoundé I, Messa-Yaoundé 812, Cameroon
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University, Iyamho, Edo State 300271, Nigeria
| | - Amirhossein Rahavian
- Department of Urology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1989934148, Iran
| | - Fhatuwani Nixwell Mudau
- Department of Agriculture and Animal Health, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Célia F Rodrigues
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|
24
|
Maraming P, Klaynongsruang S, Boonsiri P, Peng S, Daduang S, Leelayuwat C, Pientong C, Chung J, Daduang J. The cationic cell‐penetrating KT2 peptide promotes cell membrane defects and apoptosis with autophagy inhibition in human HCT 116 colon cancer cells. J Cell Physiol 2019; 234:22116-22129. [DOI: 10.1002/jcp.28774] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/12/2019] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Pornsuda Maraming
- Biomedical Sciences Program, Graduate School Khon Kaen University Khon Kaen Thailand
| | - Sompong Klaynongsruang
- Department of Biochemistry, Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science Khon Kaen University Khon Kaen Thailand
| | - Patcharee Boonsiri
- Department of Biochemistry, Faculty of Medicine Khon Kaen University Khon Kaen Thailand
| | - Shu‐Fen Peng
- Department of Biological Science and Technology China Medical University Taichung Taiwan
- Department of Medical Research China Medical University Hospital Taichung Taiwan
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Science Khon Kaen University Khon Kaen Thailand
| | - Chanvit Leelayuwat
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences Khon Kaen University Khon Kaen Thailand
| | - Chamsai Pientong
- HPV & EBV and Carcinogenesis Research Group Khon Kaen University Khon Kaen Thailand
| | - Jing‐Gung Chung
- Department of Biological Science and Technology China Medical University Taichung Taiwan
| | - Jureerut Daduang
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences Khon Kaen University Khon Kaen Thailand
| |
Collapse
|
25
|
Gondim ACS, Roberta da Silva S, Mathys L, Noppen S, Liekens S, Holanda Sampaio A, Nagano CS, Renata Costa Rocha C, Nascimento KS, Cavada BS, Sadler PJ, Balzarini J. Potent antiviral activity of carbohydrate-specific algal and leguminous lectins from the Brazilian biodiversity. MEDCHEMCOMM 2019; 10:390-398. [PMID: 30996857 PMCID: PMC6430086 DOI: 10.1039/c8md00508g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/11/2018] [Indexed: 01/27/2023]
Abstract
Brazil has one of the largest biodiversities in the world. The search for new natural products extracted from the Brazilian flora may lead to the discovery of novel drugs with potential to treat infectious and other diseases. Here, we have investigated 9 lectins extracted and purified from the Northeastern Brazilian flora, from both leguminous species: Canavalia brasiliensis (ConBr), C. maritima (ConM), Dioclea lasiocarpa (DLasiL) and D. sclerocarpa (DSclerL), and algae Amansia multifida (AML), Bryothamniom seaforthii (BSL), Hypnea musciformis (HML), Meristiella echinocarpa (MEL) and Solieria filiformis (SfL). They were exposed to a panel of 18 different viruses, including HIV and influenza viruses. Several lectins showed highly potent antiviral activity, often within the low nanomolar range. DSclerL and DLasiL exhibited EC50 values (effective concentration of lectin required to inhibit virus-induced cytopathicity by 50%) of 9 nM to 46 nM for HIV-1 and respiratory syncytial virus (RSV), respectively, DLasiL also inhibited feline corona virus at an EC50 of 5 nM, and DSclerL, ConBr and ConM showed remarkably low EC50 values ranging from 0.4 to 6 nM against influenza A virus strain H3N2 and influenza B virus. For HIV, evidence pointed to the blockage of entry of the virus into its target cells as the underlying mechanism of antiviral action of these lectins. Overall, the most promising lectins based on their EC50 values were DLasiL, DSclerL, ConBr, ConM, SfL and HML. These novel findings indicate that lectins from the Brazilian flora may provide novel antiviral compounds with therapeutic potential.
Collapse
Affiliation(s)
- Ana C S Gondim
- Department of Biochemistry and Molecular Biology , Federal University of Ceará , 60455-760 , Fortaleza , Ceará , Brazil .
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
- Department of Organic and Inorganic Chemistry , Federal University of Ceará , 60455-900 , Fortaleza , Ceará , Brazil
| | - Suzete Roberta da Silva
- Department of Fishing and Engineering , Federal University of Ceará , 60455-900 , Fortaleza , Ceará , Brazil
- Para West Federal University , 68220-000 , Monte Alegre , Brazil
| | - Leen Mathys
- Rega Institute for Medical Research , Department of Microbiology and Immunology , KU Leuven , 3000 Leuven , Belgium .
| | - Sam Noppen
- Rega Institute for Medical Research , Department of Microbiology and Immunology , KU Leuven , 3000 Leuven , Belgium .
| | - Sandra Liekens
- Rega Institute for Medical Research , Department of Microbiology and Immunology , KU Leuven , 3000 Leuven , Belgium .
| | - Alexandre Holanda Sampaio
- Department of Fishing and Engineering , Federal University of Ceará , 60455-900 , Fortaleza , Ceará , Brazil
| | - Celso S Nagano
- Department of Fishing and Engineering , Federal University of Ceará , 60455-900 , Fortaleza , Ceará , Brazil
| | | | - Kyria S Nascimento
- Department of Biochemistry and Molecular Biology , Federal University of Ceará , 60455-760 , Fortaleza , Ceará , Brazil .
| | - Benildo S Cavada
- Department of Biochemistry and Molecular Biology , Federal University of Ceará , 60455-760 , Fortaleza , Ceará , Brazil .
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Jan Balzarini
- Rega Institute for Medical Research , Department of Microbiology and Immunology , KU Leuven , 3000 Leuven , Belgium .
| |
Collapse
|
26
|
Barre A, Bourne Y, Van Damme EJM, Rougé P. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Int J Mol Sci 2019; 20:E254. [PMID: 30634645 PMCID: PMC6359319 DOI: 10.3390/ijms20020254] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/29/2018] [Accepted: 12/31/2018] [Indexed: 01/05/2023] Open
Abstract
To date, a number of mannose-binding lectins have been isolated and characterized from plants and fungi. These proteins are composed of different structural scaffold structures which harbor a single or multiple carbohydrate-binding sites involved in the specific recognition of mannose-containing glycans. Generally, the mannose-binding site consists of a small, central, carbohydrate-binding pocket responsible for the "broad sugar-binding specificity" toward a single mannose molecule, surrounded by a more extended binding area responsible for the specific recognition of larger mannose-containing N-glycan chains. Accordingly, the mannose-binding specificity of the so-called mannose-binding lectins towards complex mannose-containing N-glycans depends largely on the topography of their mannose-binding site(s). This structure⁻function relationship introduces a high degree of specificity in the apparently homogeneous group of mannose-binding lectins, with respect to the specific recognition of high-mannose and complex N-glycans. Because of the high specificity towards mannose these lectins are valuable tools for deciphering and characterizing the complex mannose-containing glycans that decorate both normal and transformed cells, e.g., the altered high-mannose N-glycans that often occur at the surface of various cancer cells.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | - Yves Bourne
- Centre National de la Recherche Scientifique, Aix-Marseille Univ, Architecture et Fonction des Macromolécules Biologiques, 163 Avenue de Luminy, 13288 Marseille, France.
| | - Els J M Van Damme
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| |
Collapse
|
27
|
Cavada BS, Pinto-Junior VR, Osterne VJS, Nascimento KS. ConA-Like Lectins: High Similarity Proteins as Models to Study Structure/Biological Activities Relationships. Int J Mol Sci 2018; 20:ijms20010030. [PMID: 30577614 PMCID: PMC6337138 DOI: 10.3390/ijms20010030] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023] Open
Abstract
Lectins are a widely studied group of proteins capable of specific and reversible binding to carbohydrates. Undoubtedly, the best characterized are those extracted from plants of the Leguminosae family. Inside this group of proteins, those from the Diocleinae subtribe have attracted attention, in particular Concanavalin A (ConA), the best-studied lectin of the group. Diocleinae lectins, also called ConA-like lectins, present a high similarity of sequence and three-dimensional structure and are known to present inflammatory, vasoactive, antibiotic, immunomodulatory and antitumor activities, among others. This high similarity of lectins inside the ConA-like group makes it possible to use them to study structure/biological activity relationships by the variability of both carbohydrate specificity and biological activities results. It is in this context the following review aims to summarize the most recent data on the biochemical and structural properties, as well as biological activities, of ConA-like lectins and the use of these lectins as models to study structure/biological activity relationships.
Collapse
Affiliation(s)
- Benildo S Cavada
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Vanir R Pinto-Junior
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Vinicius J S Osterne
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| | - Kyria S Nascimento
- BioMol-Lab, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza-CE 60440-970, Brazil.
| |
Collapse
|
28
|
Anti-glioma properties of DVL, a lectin purified from Dioclea violacea. Int J Biol Macromol 2018; 120:566-577. [DOI: 10.1016/j.ijbiomac.2018.08.106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/17/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
|
29
|
|
30
|
Nascimento KS, Santiago MQ, Pinto-Junior VR, Osterne VJS, Martins FWV, Nascimento APM, Wolin IAV, Heinrich IA, Martins MGQ, Silva MTL, Lossio CF, Rocha CRC, Leal RB, Cavada BS. Structural analysis of Dioclea lasiocarpa lectin: A C6 cells apoptosis-inducing protein. Int J Biochem Cell Biol 2017; 92:79-89. [DOI: 10.1016/j.biocel.2017.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
|