1
|
Balusamy SR, Balamurugan M, Purushothaman S, Somasundaram S, Elsadek MF, Sohn D, Almutairi SM, Mijakovic I, Rahimi S, Perumalsamy H. Apoptotic cell death of stomach cancer lines (AGS) induced by Co-NTB complex through cellular organelles and DNA damage. RSC Adv 2025; 15:739-747. [PMID: 39802467 PMCID: PMC11711993 DOI: 10.1039/d4ra06377e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Given that stomach cancer is the fourth leading cause of cancer-related death, there is a need to develop new drugs. Among various methods, metal-based coordination compounds are considered as an efficient strategy against this type of cancer. Similarly, the benzimidazole moiety plays a crucial role in biology; thus, various benzimidazole-based compounds have been found to be active as potential anticancer drugs and are currently used in clinical trials. In this study, we explored the benzimidazole-based cobalt(ii) complex as an anticancer agent against AGS stomach cancer cell lines. Interestingly, the MTT assay of the Co-NTB complex shows a lower IC50 value of 4.25 μg mL-1 compared to cisplatin, which has an IC50 of 7.5 μg mL-1 against AGS cell lines. Light microscopy and Hoechst/propidium iodide dye staining clearly indicate that the complex damages DNA, leading to cell death through an apoptotic pathway. The apoptotic cell death pathway was further complemented by Lysotracker and Mitotracker staining, as well as transmission electron microscopy (TEM) imaging. Overall, the Co-NTB complex acts as an effective anticancer agent against AGS stomach cancer cell lines, with apoptotic cell death induced by targeting cellular organelles and DNA.
Collapse
Affiliation(s)
- Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University Gwangjin-gu Seoul Republic of Korea
| | - Mani Balamurugan
- Department of Materials Science and Engineering, Seoul National University (SNU) 1 Gwanak ro Seoul 08826 Republic of Korea
| | - Sumitha Purushothaman
- Department of Microbiology, Bioprocess Engineering Division, Smykon Biotech Kanniyakumari India
| | - Sivaraman Somasundaram
- Department of Chemistry, Saveetha School of Engineering, SIMATS Chennai Tamil Nadu 600124 India
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Science, King Saud University P.O. 2455 Riyadh 11451 Saudi Arabia
| | - Daewon Sohn
- Department of Chemistry, College of Natural Sciences, Hanyang University Seoul 04763 Republic of Korea
| | - Saeedah Musaed Almutairi
- Department of Botany and Microbiology, College of Science, King Saud University P.O. 2455 Riyadh 11451 Saudi Arabia
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology Gothenburg SE-412 96 Sweden
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark Kongens Lyngby DK-2800 Denmark
| | - Shadi Rahimi
- Systems and Synthetic Biology Division, Department of Life Sciences, Chalmers University of Technology Gothenburg SE-412 96 Sweden
| | - Haribalan Perumalsamy
- Research Institute for Convergence of Basic Science, Hanyang University Seoul 04763 Republic of Korea
- Center for Creative Convergence Education, Hanyang University Seoul 04763 Republic of Korea
| |
Collapse
|
2
|
Perontsis S, Hatzidimitriou AG, Psomas G. Coordination compounds of cobalt(II) with carboxylate non-steroidal anti-inflammatory drugs: structure and biological profile. Dalton Trans 2024; 53:15215-15235. [PMID: 39221624 DOI: 10.1039/d4dt01846j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fourteen cobalt(II) complexes with the non-steroidal anti-inflammatory drugs sodium meclofenamate, tolfenamic acid, mefenamic acid, naproxen, sodium diclofenac, and diflunisal were prepared in the presence or absence of a series of nitrogen-donors (namely imidazole, pyridine, 3-aminopyridine, neocuproine, 2,2'-bipyridine, 1,10-phenanthroline and 2,2'-bipyridylamine) as co-ligands and were characterised by spectroscopic and physicochemical techniques. Single-crystal X-ray crystallography was employed to determine the crystal structure of eight complexes. The biological profile of the complexes was investigated regarding their interaction with serum albumins and DNA, and their antioxidant potency. The interaction of the compounds with calf-thymus DNA takes place via intercalation. The ability of the complexes to cleave pBR322 plasmid DNA at the concentration of 500 μM is rather low. The complexes demonstrated tight and reversible binding to human and bovine serum albumins and the binding site of bovine serum albumin was also examined. In order to assess the antioxidant activity of the compounds, the in vitro scavenging activity towards free radicals, namely 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), and their ability to reduce H2O2 were studied.
Collapse
Affiliation(s)
- Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
3
|
Joksimović N, Petronijević J, Ćoćić D, Ristić M, Mihajlović K, Janković N, Milović E, Klisurić O, Petrović N, Kosanić M. Synthesis, characterization, and biological evaluation of novel cobalt(II) complexes with β-diketonates: crystal structure determination, BSA binding properties and molecular docking study. J Biol Inorg Chem 2024; 29:541-553. [PMID: 39120695 DOI: 10.1007/s00775-024-02069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
In order to discover a new antibiotic drug with better or similar activity of the already existing drugs, a series of novel cobalt(II) complexes with β-diketonate as ligands is synthesized and tested on four strains of bacteria and four species of fungi. All compounds showed notable antimicrobial activity against all tested strains. More importantly, some cobalt(II) complexes displayed greater activity than ketoconazole. It is important to notice that on the tested strains Mucor mucedo and Penicillium italicum complex 2B showed five times better activity compared to ketoconazole, while complex 2D had two times better activity on Penicillium italicum strain compared to ketoconazole. Moreover, investigations with bovine serum albumin were performed. Investigations showed that the tested complexes have an appropriate affinity for binding to bovine serum albumin. In addition, the molecular docking study was performed to investigate more specifically the sites and binding mode of the tested cobalt(II) complexes with β-diketonate as ligands to bovine serum albumin, tyrosyl-tRNA synthetase, topoisomerase II DNA gyrase, and cytochrome P450 14 alpha-sterol demethylase. In conclusion, all the results indicated the great prospective of the novel cobalt complexes for some potential clinical applications in the future.
Collapse
Affiliation(s)
- Nenad Joksimović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia.
| | - Jelena Petronijević
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Dušan Ćoćić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marija Ristić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Kristina Mihajlović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Nenad Janković
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Emilija Milović
- Department of Sciences, Institute for Information Technologies Kragujevac, University of Kragujevac, Jovana Cvijića bb, 34000, Kragujevac, Serbia
| | - Olivera Klisurić
- Department of Physics, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 4, 21000, Novi Sad, Serbia
| | - Nevena Petrović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| | - Marijana Kosanić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000, Kragujevac, Serbia
| |
Collapse
|
4
|
Khatun R, Modak R, Islam ASM, Moni D, Sepay N, Mukherjee R, Das G, Murmu N, Ali M. Small Molecule Interactions with Biomacromolecules: DNA Binding Interactions of a Manganese(III) Schiff Base Complex with Potential Anticancer Activities. ACS APPLIED BIO MATERIALS 2023; 6:3176-3188. [PMID: 37548990 DOI: 10.1021/acsabm.3c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A manganese(III) complex, [MnIII(L)(SCN)(enH)](NO3)·H2O (1•H2O) (H2L = 2-((E)-(2-((E)-2-hydroxy-3-methoxybenzylidene-amino)-ethyl-imino)methyl)-6-methoxyphenol), has been synthesized and characterized by single-crystal X-ray diffraction analysis. The interaction of 1•H2O with DNA was studied by monitoring the decrease in absorbance of the complex at λ = 324 nm with the increase in DNA concentration, providing an opportunity to determine the binding constant of the 1•H2O-ct-DNA complex as 5.63 × 103 M-1. Similarly, fluorescence titration was carried out by adding ct-DNA gradually and monitoring the increase in emission intensity at 453 nm on excitation at λex = 324 nm. A linear form of the Benesi-Hildebrand equation yields a binding constant of 4.40 × 103 M-1 at 25 °C, establishing the self-consistency of our results obtained from absorption and fluorescence titrations. The competitive displacement reactions of dyes like ethidium bromide, Hoechst, and DAPI (4',6-diamidine-2'-phenylindole dihydrochloride) from dye-ct-DNA conjugates by 1•H2O were analyzed, and the corresponding KSV values are 1.05 × 104, 1.25 × 104, and 1.35 × 104 M-1 and the Kapp values are 2.16 × 103, 8.34 × 103, and 9.0 × 103 M-1, from which it is difficult to infer the preference of groove binding over intercalation by these DNA trackers. However, the molecular docking experiments and viscosity measurement clearly indicate the preference for minor groove binding over intercalation, involving a change in Gibbs free energy of -8.56 kcal/mol. The 1•H2O complex was then evaluated for its anticancer potential in breast cancer MCF-7 cells, which severely abrogates the growth of the cells in both 2D and 3D mammospheres, indicating its promising application as an anticancer drug through a minor groove binding interaction with ct-DNA.
Collapse
Affiliation(s)
- Rousunara Khatun
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
- Aliah University, ll-A/27, Action Area II, Newtown, Action Area II, Kolkata, West Bengal 700160, India
| | - Ritwik Modak
- Department of Chemistry, Manipal Academy of Higher Education, Manipal Institute of Technology Bengaluru, Manipal 560064, India
| | - Abu Saleh Musha Islam
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2B, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Dolan Moni
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, Kolkata, West Bengal 700 017, India
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittanranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal 700 026, India
| | - Mahammad Ali
- Department of Chemistry, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal 700 032, India
| |
Collapse
|
5
|
Kumar B, Devi J, Manuja A. Synthesis, structure elucidation, antioxidant, antimicrobial, anti-inflammatory and molecular docking studies of transition metal(II) complexes derived from heterocyclic Schiff base ligands. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Wang YF, Tang JX, Mo ZY, Li J, Liang FP, Zou HH. The strong in vitro and vivo cytotoxicity of three new cobalt(II) complexes with 8-methoxyquinoline. Dalton Trans 2022; 51:8840-8847. [PMID: 35621165 DOI: 10.1039/d2dt01310j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three new cobalt(II) complexes, [Co(MQL)2Cl2] (CoCl), [Co(MQL)2Br2] (CoBr), and [Co(MQL)2I2] (CoI), bearing 8-methoxyquinoline (MQL) have been designed for the first time. MTT assays showed that CoCl, CoBr, and CoI exhibit much better antiproliferative activities than cisplatin toward cisplatin-resistant SK-OV-3/DDP and SK-OV-3 ovarian cancer cells, with IC50 values of as low as 0.32-5.49 μM. Further, CoCl and CoI can regulate autophagy-related proteins in SK-OV-3/DDP cells and, therefore, they can induce primarily autophagy-mediated cell apoptosis in the following order: CoCl > CoI. The different antiproliferative activities of the MQL complexes CoCl, CoBr, and CoI could be correlated with the lengths of their Co-X bonds, which adopted the following order: CoI > CoBr > CoCl. The 8-HOMQ complexes CoCl (ca. 60.1%) and CoI (ca. 48.8%) also showed potent in vivo anticancer effects after 15 days of treatment. In summary, the MQL ligand highly enhances the antiproliferative activities of cobalt(II) complexes in comparison to other previously reported 8-hydroxyquinoline metal complexes.
Collapse
Affiliation(s)
- Yu-Feng Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| | - Ji-Xia Tang
- School of Foreign Language and International Business, Guilin University of Aerospace Technology, Guilin, 541004, P. R. China
| | - Zai-Yong Mo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Juan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fu-Pei Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China. .,Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy of Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
7
|
Synthesis, Characterization and Anticancer Efficacy Evaluation of Benzoxanthone Compounds toward Gastric Cancer SGC-7901. Molecules 2022; 27:molecules27061970. [PMID: 35335332 PMCID: PMC8949258 DOI: 10.3390/molecules27061970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Three benzoxanthone derivatives were synthesized through a new photochemical strategy. The in vitro cytotoxic activity of these compounds was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and their partition coefficients (logP) were measured by shake flask method. The pKa values of the compounds were detected by potentionmetric titration. The interaction of the compounds with calf thymus DNA (CT-DNA) was investigated by electronic absorption, luminescence spectra and viscosity. A molecular docking analysis was performed. The antitumor efficacy of the compounds was evaluated by cell apoptosis, cell cycle arrest, intracellular Ca2+ concentrations and reactive oxygen species (ROS) levels. The mitochondrial membrane potential was assayed using JC-1 (5,5′,6,6′-tetrachloro-1,1,3′,3′-tetraethyl-imidacarbocyanine iodide) as the fluorescence probe. The expression of Bcl-2 family protein, caspase 3 and poly ADP-ribose polymerase (PARP) was explored by western blot. The results showed that the compounds induced apoptosis through a ROS-mediated mitochondrial dysfunction pathway. This work provides an efficient approach to synthesize benzoxanthone derivatives, and is helpful for understanding the apoptotic mechanism.
Collapse
|
8
|
Bera P, Aher A, Brandao P, Debnath U, Dewaker V, Manna SK, Jana A, Pramanik C, Mandal B, Bera P. Instigating the In Vitro Anticancer Activity of New Pyridine–Thiazole-Based Co(III), Mn(II), and Ni(II) Complexes: Synthesis, Structure, DFT, Docking, and MD Simulation Studies. J Chem Inf Model 2022; 62:1437-1457. [DOI: 10.1021/acs.jcim.1c01280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pradip Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura R.S, Midnapore (East), West Bengal 721152, India
- Department of Chemistry, Kandi Raj College, Murshidabad, West Bengal 742137, India
| | - Abhishek Aher
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, Telangana 500 039, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Paula Brandao
- Department of Chemistry, CICECO, University of Aveiro, Aveiro 3810-193, Portugal
| | - Utsab Debnath
- School of Health Science, University of Petroleum and Energy Studies, Dehradun 246007, India
| | - Varun Dewaker
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sunil Kr. Manna
- Centre for DNA Fingerprinting & Diagnostics (CDFD), Hyderabad, Telangana 500 039, India
- Adjunct Faculty, Regional Centre for Biotechnology, Faridabad, Haryana 121001, India
| | - Abhimanyu Jana
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura R.S, Midnapore (East), West Bengal 721152, India
- Department of Chemistry, Indian Institute of Engineering Sciences and Technology, Shibpur, Howrah 711103, India
| | - Chandana Pramanik
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura R.S, Midnapore (East), West Bengal 721152, India
- Department of Chemistry, Dinabandhu Andrews College, 54 Raja S. C. Mallik Road, South 24-Parganas, Kolkata, West Bengal 700 084, India
| | - Basudev Mandal
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura R.S, Midnapore (East), West Bengal 721152, India
- Department of Chemistry, Shahid Matangini Hazra Govt. College for Women, Tamluk, Midnapore (East), West Bengal 721 649, India
| | - Pulakesh Bera
- Post Graduate Department of Chemistry, Panskura Banamali College (Vidyasagar University), Panskura R.S, Midnapore (East), West Bengal 721152, India
| |
Collapse
|
9
|
Fouad R, Shebl M, Saif M, Gamal S. Novel copper nano-complex based on tetraazamacrocyclic backbone: Template synthesis, structural elucidation, cytotoxic, DNA binding and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Optoelectronic, Photocatalytic, and DNA interaction studies of synthesised Cu(II), Co(II), and Ni(II) complexes containing schiff base ligand. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Kirthan B, Prabhakara M, Bhojya naik H, Viswanath R, Amith Nayak P. Optoelectronic, photocatalytic and biological studies of mixed ligand Cd(II) complex and its fabricated CdO nanoparticles. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Hernández-Romero D, Rosete-Luna S, López-Monteon A, Chávez-Piña A, Pérez-Hernández N, Marroquín-Flores J, Cruz-Navarro A, Pesado-Gómez G, Morales-Morales D, Colorado-Peralta R. First-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumor activity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Usman M, Khan RA, Khan MR, Abul Farah M, BinSharfan II, Alharbi W, Shaik JP, Parine NR, Alsalme A, Tabassum S. A novel biocompatible formate bridged 1D-Cu(ii) coordination polymer induces apoptosis selectively in human lung adenocarcinoma (A549) cells. Dalton Trans 2021; 50:2253-2267. [PMID: 33506238 DOI: 10.1039/d0dt03782f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Copper compounds are promising candidates for next-generation metal anticancer drugs. Therefore, we synthesized and characterized a formate bridged 1D coordination polymer [Cu(L)(HCOO)2]n, (L = 2-methoxy-6-methyl-3-((quinolin-8-ylimino)methyl)chroman-4-ol), PCU1, wherein the Cu(ii) center adopts a square pyramidal coordination environment with adjacent CuCu distances of 5.28 Å. Primarily, in vitro DNA interaction studies revealed a metallopolymer which possesses high DNA binding propensity and cleaves DNA via the oxidative pathway. We further analysed its potential on cancerous cells MCF-7, HeLa, A549, and two non-tumorigenic cells HEK293 and HBE. The selective cytotoxicity potential of PCU1 against A549 cells driven us to examine the mechanistic pathways comprehensively by carrying out various assays viz, cell cycle arrest, Annexin V-FTIC/PI assay, autophagy, intercellular localization, mitochondrial membrane potential 'MMP', antiproliferative assay, and gene expression of TGF-β and MMP-2.
Collapse
Affiliation(s)
- Mohammad Usman
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cai DH, Zhang CL, Liu QY, He L, Liu YJ, Xiong YH, Le XY. Synthesis, DNA binding, antibacterial and anticancer properties of two novel water-soluble copper(II) complexes containing gluconate. Eur J Med Chem 2021; 213:113182. [PMID: 33486198 DOI: 10.1016/j.ejmech.2021.113182] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 12/20/2022]
Abstract
In this paper, two new Cu(II) complexes, [Cu(Gluc)(HPB)(H2O)]Gluc (CuG1) and [Cu(Gluc)(HPBC)(H2O)]Gluc (CuG2) (where HPB = 2-(2'-pyridyl)benzimidazole, HPBC = 5-chloro-2-(2'-pyridyl)benzimidazole, Gluc = d-Gluconic acid), with good water solubility were synthesized and characterized. These complexes exhibited a five-coordinated tetragonal pyramidal geometry. The DNA binding and cleavage properties of the complexes were investigated using multi-spectroscopy, viscosity measurement, molecular docking and gel electrophoresis analysis methods. The results showed that the complexes could interact with DNA by insertion and groove binding, and cleave CT-DNA through a singlet oxygen-dependent pathway in the presence of ascorbic acid. The studies on antibacterial and anticancer activities in vitro demonstrated that both complexes had good inhibitory activity against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes) and one Gram-negative bacterium (Escherichia coli) and good cytotoxic activity toward the tested cancer cells (A549, HeLa and SGC-7901). CuG2 showed higher antimicrobial and cytotoxic activities than CuG1, which was consistent with their binding strength and cleavage ability to DNA, indicating that their antimicrobial and cytotoxic activities may be related to the DNA interaction. Moreover, the cell-based mechanism studies have indicated that CuG1 and CuG2 could arrest the cell cycle at G2/M phase, elevate the levels of intracellular reactive oxygen species (ROS) and decrease the mitochondrial membrane potential (MMP). The results showed that the complexes could induce apoptosis through DNA-damaged and ROS-mediated mitochondrial dysfunction pathways. Finally, the in vivo antitumor study revealed that CuG2 inhibited tumor growth by 50.44%, which is better than that of cisplatin (40.94%).
Collapse
Affiliation(s)
- Dai-Hong Cai
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China
| | - Chun-Lian Zhang
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China
| | - Qi-Yan Liu
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China
| | - Liang He
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China.
| | - Yun-Jun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Ya-Hong Xiong
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China
| | - Xue-Yi Le
- Department of Applied Chemistry, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
15
|
Saha U, Mabhai S, Das B, Kumar GS, Brandão P, Dolai M. Combined theoretical and experimental investigation of a DNA interactive poly-hydroxyl enamine tautomer exhibiting “turn on” sensing for Zn 2+ in pseudo-aqueous medium. NEW J CHEM 2021. [DOI: 10.1039/d1nj03510j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystallographically established (solid state structure at 150 K temperature) synthesized enamine ligand (H4L) showed interconvertible equilibrium (ΔE = 7.37 kcal) of its tautomers, displayed zinc sensing and also found to exhibit DNA binding activity at the minor groove of double-stranded (ds) DNA.
Collapse
Affiliation(s)
- Urmila Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| | - Subhabrata Mabhai
- Department of Chemistry, Mahishadal Raj College, Purba Medinipur 721628, W.B., India
| | - Bhriguram Das
- Department of Chemistry, Vidyasagar University, Paschim Medinipur 721102, W. B., India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur 721404, W.B., India
| |
Collapse
|
16
|
Synthesis, structure elucidation and dft study of a new thiazole–pyridine anchored nnn donor and it's cobalt(II) complex: In-vitro antitumor activity against U937 cancer cells, dna binding property and molecular docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Bera P, Aher A, Brandao P, Manna SK, Bhattacharyya I, Mondal G, Jana A, Santra A, Bera P. Anticancer activity, DNA binding and docking study of M( ii)-complexes (M = Zn, Cu and Ni) derived from a new pyrazine–thiazole ligand: synthesis, structure and DFT. NEW J CHEM 2021. [DOI: 10.1039/d0nj05883a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of structurally related Zn(ii), Cu(ii) and Ni(ii) complexes of 4-(2-(2-(1-(pyrazin-2-yl)ethylidene)hydrazinyl)-thiazol-4-yl)-benzonitrile (PyztbH) have been synthesized and characterized by spectroscopy, single crystal X-ray crystallography and density functional theory (DFT).
Collapse
Affiliation(s)
- Pradip Bera
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Abhishek Aher
- Centre for DNA Fingerprinting & Diagnostics (CDFD)
- Hyderabad
- India
- Graduate Studies
- Regional Centre for Biotechnology
| | - Paula Brandao
- Department of Chemistry
- CICECO
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Sunil Kumar Manna
- Centre for DNA Fingerprinting & Diagnostics (CDFD)
- Hyderabad
- India
- Adjunct Faculty
- Regional Centre for Biotechnology
| | - Indranil Bhattacharyya
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Gopinath Mondal
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Abhimanyu Jana
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Ananyakumari Santra
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| | - Pulakesh Bera
- Post Graduate Department of Chemistry
- Panskura Banamali College (Vidyasagar University)
- Panskura R. S
- Midnapore (East)
- India
| |
Collapse
|
18
|
Pursuwani BH, Bhatt BS, Vaidya FU, Pathak C, Patel MN. Synthesis, Characterization, and Biological Evaluation of Osmium(IV) Pyrazole Carbothioamide Complexes. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1852581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Bharat H. Pursuwani
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Bhupesh S. Bhatt
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Foram U. Vaidya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Chandramani Pathak
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| | - Mohan N. Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
| |
Collapse
|
19
|
Saha U, Chatterjee S, Dolai M, Suresh Kumar G. Biophysical and Thermodynamic Investigations on the Differentiation of Fluorescence Response towards Interaction of DNA: A Pyrene-Based Receptor versus Its Fe(III) Complex. ACS APPLIED BIO MATERIALS 2020; 3:7810-7820. [DOI: 10.1021/acsabm.0c00983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Urmila Saha
- Organic and Medicinal Chemistry Division, CSIR—Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| | - Sabyasachi Chatterjee
- Organic and Medicinal Chemistry Division, CSIR—Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Purba Medinipur 721404, W.B., India
| | - Gopinatha Suresh Kumar
- Organic and Medicinal Chemistry Division, CSIR—Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, W.B., India
| |
Collapse
|
20
|
Perontsis S, Geromichalou E, Perdih F, Hatzidimitriou AG, Geromichalos GD, Turel I, Psomas G. Synthesis, structural determination, in vitro and in silico biological evaluation of divalent or trivalent cobalt complexes with indomethacin. J Inorg Biochem 2020; 212:111213. [PMID: 32889129 PMCID: PMC7416082 DOI: 10.1016/j.jinorgbio.2020.111213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 01/02/2023]
Abstract
The interaction of cobalt chloride with the non-steroidal anti-inflammatory drug indomethacin (Hindo) led to the formation of the polymeric complex [Co(indo-O)2(H2O)2(μ-Cl)]n·n(MeOH·H2O) bearing one chlorido bridge between the cobalt atoms. The presence of the nitrogen-donor co-ligands 2,2'-bipyridine (bipy), 2,2'-bipyridylamine (bipyam), 1,10-phenanthroline (phen) or 1H-imidazole (Himi) resulted in the isolation of complexes [Co2(μ-indo-O,O')2(indo-O)2(bipy)2(μ-H2O)]·3.3MeOH, [Co(indo-O,O')2(bipyam)]·0.9MeOH·0.2H2O, [Co(indo-O,O')2(phen)] (4) and [Co(indo-O)2(Himi)2] (5), respectively, where the indomethacin ligands were coordinated in diverse manners. The study of the affinity of the complexes for calf-thymus DNA revealed their intercalation between the DNA-bases. The binding of the complexes to albumins was also examined and the corresponding binding constants and binding subdomain were determined. The free radical scavenging activity of the compounds was evaluated towards 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). Molecular modeling calculations may usually provide a molecular basis for the understanding of both the impairment of DNA by its binding with the studied complexes and the ability of these compounds to transportation through serum albumin proteins. This study can provide information for the elucidation of the mechanism of action of the compounds in a molecular level.
Collapse
Affiliation(s)
- Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George D Geromichalos
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
21
|
Shah R, Habeebullah TM, Saad F, Althagafi I, Al‐dawood AY, Al‐Solimy AM, Al‐Ahmed ZA, Al‐Zahrani F, Farghaly TA, El‐Metwaly N. Characterization of new Co(II) complexes and photographic monitoring for their toxic impact on breast cancer cells according to simulation study. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Reem Shah
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Turki M. Habeebullah
- Department of Environment and Health Research, Custodian of Two Holy Mosques Institute for Hajj and Umrah Research Umm Al‐Qura University Makkah Saudi Arabia
| | - Fawaz Saad
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Ismail Althagafi
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Aisha Y. Al‐dawood
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Amerah M. Al‐Solimy
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
| | - Zehba A. Al‐Ahmed
- College of Art and Science, Dhahran Aljounb King Khalid University Saudi Arabia
| | - Fatimah Al‐Zahrani
- Chemistry Department, Faculty of Science King Khalid University Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | - Nashwa El‐Metwaly
- Department of Chemistry, Faculty of Applied Science Umm Al‐Qura University Makkah Saudi Arabia
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
22
|
Bera P, Aher A, Brandao P, Manna SK, Mondal G, Jana A, Santra A, Jana H, Bera P. Induced apoptosis against U937 cancer cells by Fe(II), Co(III) and Ni(II) complexes with a pyrazine-thiazole ligand: Synthesis, structure and biological evaluation. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114503] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Chen X, Wu X, He Z, Zhang J, Cao Y, Mao D, Feng C, Tian B, Chen G. Molecular docking-assisted design and synthesis of an anti-tumor quercetin–Se( iv) complex. NEW J CHEM 2020. [DOI: 10.1039/c9nj06136c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Design and synthesis of an anti-tumor quercetin–Se(iv) complex under the guidance of molecular docking and visualized DNA binding activity.
Collapse
Affiliation(s)
- Xu Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Xianyong Wu
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Ziyu He
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Bo Tian
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| |
Collapse
|