1
|
Chen G, Ge X, Sun Y, Sui W, Jin Y, Geng J, Zhang M, Wu T. Identification of two novel α-amylase inhibitory activity peptide from Russian sea cucumber body wallprotein hydrolysate. Int J Biol Macromol 2025; 295:139499. [PMID: 39756766 DOI: 10.1016/j.ijbiomac.2025.139499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
This study aimed to identify novel α-amylase inhibitory peptides from Russian sea cucumbers and elucidate their inhibitory mechanisms. Among the 52 identified sea cucumber peptide (SCP), two peptides with potential α-amylase inhibitory activity, FPSPPLVA (SCP1) and GPPMPPPPLP (SCP2), were selected from the sequences researched. The results showed that both SCP1 and SCP2 exhibited α-amylase inhibitory activity with IC50 of 0.92 ± 0.03 mg/mL (SCP1) and 2.01 ± 0.02 mg/mL (SCP2), respectively. Molecular docking studies revealed the potential interaction mechanism between these inhibitors and α-amylase. Two peptides interacted with Gln63, Tyr151, Thr163, Lys200, His201, His305, and Ala307 within the α-amylase active site. The formation of hydrogen bonds and hydrophobic interactions between the inhibitors and α-amylase impedes the formation of enzyme-substrate complexes and subsequent glycosylation. Lineweaver-Burk plot indicated that both SCP1 and SCP2 act as reversible mixed inhibitors of α-amylase. Furthermore, the results of infrared and circular dichroism spectroscopy confirmed the formation of non-covalent binding complexes between SCP and amylase, leading to alterations in the secondary structure of the enzyme.
Collapse
Affiliation(s)
- GuoXing Chen
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaofan Ge
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuting Sun
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jieting Geng
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo 108-8477, Japan
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, China.
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Engineering Research Center of Food Biotechnology, Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Sajjad M, Malik MZ, Awan ABU, Shah HS, Sarfraz M, Usman F, Chohan TA, Wani TA, Zargar S, Jawad Z. Nanosponge-Encapsulated Polyoxometalates: Unveiling the Multi-Faceted Potential Against Cancers and Metastases Through Comprehensive Preparation, Characterization, and Computational Exploration. Pharmaceuticals (Basel) 2025; 18:347. [PMID: 40143125 PMCID: PMC11944626 DOI: 10.3390/ph18030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: This study examined the fabrication and characterization of nanosponges (NS) laden with polyoxometalates (TiW11Co) with the intention of targeting malignancy. Methods: By employing the emulsion solvent diffusion technique, TiW11Co-NS were generated by combining polyvinyl alcohol (PVA) and ethyl cellulose (EC) in different concentrations. Results: A significant numerical results encompassed a hydrodynamic particle diameter of 109.5 nm, loading efficiencies reaching 85.9%, and zeta potentials varying from -24.91 to -27.08 (mV). Scanning and transmission electron microscopy were employed to validate the TiW11Co-NS porous structure and surface morphology. The results of the stability investigation indicated that TiW11Co-NS exhibited prolonged sturdiness. Investigation examining the inhibition of enzymes revealed that TiW11Co-NS exhibited enhanced effectiveness against TNAP. Pharmacological evaluations of TiW11Co-NS demonstrated improved cytotoxicity and apoptotic effects in comparison to pure TiW11Co, thereby indicating their potential utility in targeted cancer therapy. In vivo investigations involving mice revealed that TiW11Co-NS caused a more substantial reduction in tumor weight and increased survival rates in comparison to pure TiW11Co. The resemblance of TiW11Co for crucial proteins associated with cancer proliferation was featured through molecular docking, thereby supporting its therapeutic potential. Conclusions: The TiW11Co-laden nanosponges demonstrated superior stability, enzyme inhibition, cytotoxicity, and in vivo anticancer efficacy, underscoring their potential for targeted cancer therapy.
Collapse
Affiliation(s)
- Muhammad Sajjad
- Faculty of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan;
| | | | | | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Faisal Usman
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Zobia Jawad
- Lady Willingdon Hospital, King Edward Medical University, Lahore 54000, Pakistan;
| |
Collapse
|
3
|
Djeribi M, Nagazi I, Cocetta V, Dege N, Issaoui N, Zanetti L, Carraro M, Ayed B. Synthesis of novel supramolecular selenomolybdate as anticancer agents: An experimental and DFT computational analysis. J Mol Struct 2024; 1306:137880. [DOI: 10.1016/j.molstruc.2024.137880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
4
|
Qin G, Jia R, Xue J, Chen L, Li Y, Luo W, Wu X, An T, Fang Z. New Perspectives on the Risks of Hydroxylated Polychlorinated Biphenyl (OH-PCB) Exposure: Intestinal Flora α-Glucosidase Inhibition. TOXICS 2024; 12:237. [PMID: 38668460 PMCID: PMC11053903 DOI: 10.3390/toxics12040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Polychlorinated biphenyls (PCBs) are a group of colorless and odorless environmental pollutants with a wide range of toxic effects. Some PCBs, especially less chlorinated ones, will rapidly undergo phase I metabolism after entering the body, and hydroxylated polychlorinated biphenyls (OH-PCBs) are the main metabolites of PCBs. Intestinal flora α-glucosidase is a common carbohydrate-active enzyme which is ubiquitous in human intestinal flora. It can convert complex dietary polysaccharides into monosaccharides, assisting the body in degrading complex carbohydrates and providing energy for the survival and growth of bacterial flora. The present study aims to investigate the inhibition of the activity of intestinal flora α-glucosidase by OH-PCBs. 4-Nitrophenyl-α-D-glucopyranoside (PNPG) was used as a probe substrate for α-glucosidase, and in vitro incubation experiments were conducted to study the inhibition of 26 representative OH-PCBs on α-glucosidase. Preliminary screening of in vitro incubation was performed with 100 μM of OH-PCBs. The results showed that 26 OH-PCBs generally exhibited strong inhibition of α-glucosidase. The concentration-dependent inhibition and half inhibition concentrations (IC50s) of OH-PCBs on α-glucosidase were determined. 4'-OH-PCB 86 and 4'-OH-PCB 106 were chosen as representative OH-PCBs, and the inhibition kinetic parameters (Kis) of inhibitors for α-glucosidase were determined. The inhibition kinetic parameters (Kis) of 4'-OH-PCB 86 and 4'-OH-PCB 106 for α-glucosidase are 1.007 μM and 0.538 μM, respectively. The silico docking method was used to further analyze the interaction mechanism between OH-PCBs and α-glucosidase. All these results will help us to understand the risks of OH-PCB exposure from a new perspective.
Collapse
Affiliation(s)
- Guoqiang Qin
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Ruoyong Jia
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Juntang Xue
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Li Chen
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yang Li
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Weiming Luo
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaomin Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Tianfeng An
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhongze Fang
- Department of Toxicology and Health Inspection and Quarantine, School of Public Health, Tianjin Medical University, Tianjin 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China
- National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin 300070, China
- Tianjin Center for International Collaborative Research in Environment, Nutrition and Public Health, Tianjin 300070, China
| |
Collapse
|
5
|
Chi G, Shuai D, Li J, Chen X, Yang H, Zhao M, Jiang Z, Wang L, Chen B. Mechanism of melanogenesis inhibition by Keggin-type polyoxometalates. NANOSCALE 2023; 15:14543-14550. [PMID: 37609952 DOI: 10.1039/d3nr02303f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Abnormal melanin overproduction can result in hyperpigmentation syndrome in human skin diseases and enzymatic browning of fruits and vegetables. Recently, our group found that Keggin-type polyoxometalates (POMs) can efficiently inhibit tyrosinase activity. However, it remains unclear whether Keggin-type POMs exhibit optimal effects in vivo. Additionally, the inhibitory effect and mechanism of action of POMs on cellular tyrosinase activity and melanogenesis have been rarely reported. Here we demonstrate that our screened and synthesised PMo11Zn and GaMo12 show superior inhibitory effects on melanin formation as well as inhibition of cellular tyrosinase activity compared to other Keggin-type POMs. Intriguingly, we reveal that Keggin-type POMs competitively bind to tyrosinase mainly through more interactions with Cu2+ ions and the amino acid residue is capable of forming van der Waals, cation-π and hydrogen bonds, resulting in a reversible non-covalent complex formation. Our findings provide valuable insights into the design, synthesis and screening of polyoxometalates as multifunctional metallodrugs and food preservatives against hyperpigmentation.
Collapse
Affiliation(s)
- Guoxiang Chi
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Die Shuai
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Jiaxin Li
- School of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Xiangsong Chen
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Han Yang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Meijuan Zhao
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Zedong Jiang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Li Wang
- College of Ocean Food and Bioengineering, Jimei University, Xiamen 361021, PR China.
| | - Bingnian Chen
- Xiang'an Hospital of Xiamen University, Xiamen 361021, PR China.
| |
Collapse
|
6
|
Zhang C, Liu R, Kong X, Li H, Yu D, Fang X, Wu L, Wu Y. Adaptive Responses of a Peroxidase-like Polyoxometalate-Based Tri-Assembly to Bacterial Microenvironment (BME) Significantly Improved the Anti-Bacterial Effects. Int J Mol Sci 2023; 24:ijms24108858. [PMID: 37240203 DOI: 10.3390/ijms24108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The present study presents the tertiary assembly of a POM, peptide, and biogenic amine, which is a concept to construct new hybrid bio-inorganic materials for antibacterial applications and will help to promote the development of antivirus agents in the future. To achieve this, a Eu-containing polyoxometalate (EuW10) was first co-assembled with a biogenic amine of spermine (Spm), which improved both the luminescence and antibacterial effect of EuW10. Further introduction of a basic peptide from HPV E6, GL-22, induced more extensive enhancements, both of them being attributed to the cooperation and synergistic effects between the constituents, particularly the adaptive responses of assembly to the bacterial microenvironment (BME). Further intrinsic mechanism investigations revealed in detail that the encapsulation of EuW10 in Spm and further GL-22 enhanced the uptake abilities of EuW10 in bacteria, which further improved the ROS generation in BME via the abundant H2O2 involved there and significantly promoted the antibacterial effects.
Collapse
Affiliation(s)
- Chunxia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Rongrong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Xueping Kong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, China
| | - Hongwei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, China
| | - Dahai Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Xuexun Fang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Science, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, China
| |
Collapse
|
7
|
Aureliano M, Fraqueza G, Berrocal M, Cordoba-Granados JJ, Gumerova NI, Rompel A, Gutierrez-Merino C, Mata AM. Inhibition of SERCA and PMCA Ca 2+-ATPase activities by polyoxotungstates. J Inorg Biochem 2022; 236:111952. [PMID: 36049257 DOI: 10.1016/j.jinorgbio.2022.111952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022]
Abstract
Plasma membrane calcium ATPases (PMCA) and sarco(endo) reticulum calcium ATPases (SERCA) are key proteins in the maintenance of calcium homeostasis. Herein, we compare for the first time the inhibition of SERCA and PMCA calcium pumps by several polyoxotungstates (POTs), namely by Wells-Dawson phosphotungstate anions [P2W18O62]6- (intact, {P2W18}), [P2W17O61]10- (monolacunary, {P2W17}), [P2W15O56]12- (trilacunary, {P2W15}), [H2P2W12O48]12- (hexalacunary, {P2W12}), [H3P2W15V3O62]6- (trivanadium-substituted, {P2W15V3}) and by Preyssler-type anion [NaP5W30O110]14- ({P5W30}). The speciation in the solutions of tested POTs was investigated by 31P and 51V NMR spectroscopy. The tested POTs inhibited SERCA Ca2+-ATPase activity, whereby the Preyssler POT showed the strongest effect, with an IC50 value of 0.37 μM. For {P2W17} and {P2W15V3} higher IC50 values were determined: 0.72 and 0.95 μM, respectively. The studied POTs showed to be more potent inhibitors of PMCA Ca2+-ATPase activity, with lower IC50 values for {P2W17}, {P5W30} and {P2W15V3}.
Collapse
Affiliation(s)
- Manuel Aureliano
- FCT, Universidade do Algarve, 8005-139 Faro, Portugal; CCMar, Universidade do Algarve, 8005-139 Faro, Portugal.
| | - Gil Fraqueza
- CCMar, Universidade do Algarve, 8005-139 Faro, Portugal; ISE, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Maria Berrocal
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura,06006 Badajoz, Spain
| | - Juan J Cordoba-Granados
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Nadiia I Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria.
| | - Carlos Gutierrez-Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura,06006 Badajoz, Spain
| | - Ana M Mata
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain; Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura,06006 Badajoz, Spain.
| |
Collapse
|
8
|
Aureliano M, Gumerova NI, Sciortino G, Garribba E, McLauchlan CC, Rompel A, Crans DC. Polyoxidovanadates' interactions with proteins: An overview. Coord Chem Rev 2022; 454:214344. [DOI: 10.1016/j.ccr.2021.214344] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Deng XY, Ke JJ, Zheng YY, Li DL, Zhang K, Zheng X, Wu JY, Xiong Z, Wu PP, Xu XT. Synthesis and bioactivities evaluation of oleanolic acid oxime ester derivatives as α-glucosidase and α-amylase inhibitors. J Enzyme Inhib Med Chem 2022; 37:451-461. [PMID: 35012401 PMCID: PMC8757604 DOI: 10.1080/14756366.2021.2018682] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Different oleanolic acid (OA) oxime ester derivatives (3a-3t) were designed and synthesised to develop inhibitors against α-glucosidase and α-amylase. All the synthesised OA derivatives were evaluated against α-glucosidase and α-amylase in vitro. Among them, compound 3a showed the highest α-glucosidase inhibition with an IC50 of 0.35 µM, which was ∼1900 times stronger than that of acarbose, meanwhile compound 3f exhibited the highest α-amylase inhibitory with an IC50 of 3.80 µM that was ∼26 times higher than that of acarbose. The inhibition kinetic studies showed that the inhibitory mechanism of compounds 3a and 3f were reversible and mixed types towards α-glucosidase and α-amylase, respectively. Molecular docking studies analysed the interaction between compound and two enzymes, respectively. Furthermore, cytotoxicity evaluation assay demonstrated a high level of safety profile of compounds 3a and 3f against 3T3-L1 and HepG2 cells.Highlights Oleanolic acid oxime ester derivatives (3a–3t) were synthesised and screened against α-glucosidase and α-amylase. Compound 3a showed the highest α-glucosidase inhibitory with IC50 of 0.35 µM. Compound 3f presented the highest α-amylase inhibitory with IC50 of 3.80 µM. Kinetic studies and in silico studies analysed the binding between compounds and α-glucosidase or α-amylase.
Collapse
Affiliation(s)
- Xu-Yang Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China
| | - Jun-Jie Ke
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China
| | - Ying-Ying Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jing-Ying Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China
| | - Zhuang Xiong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China
| | - Pan-Pan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, P.R. China
| |
Collapse
|
10
|
Effective detection of tyrosinase by Keggin-type polyoxometalate-based electrochemical sensor. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05085-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Boye A, Barku VYA, Acheampong DO, Ofori EG. Abrus precatorius Leaf Extract Reverses Alloxan/Nicotinamide-Induced Diabetes Mellitus in Rats through Hormonal (Insulin, GLP-1, and Glucagon) and Enzymatic ( α-Amylase/ α-Glucosidase) Modulation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9920826. [PMID: 34341763 PMCID: PMC8325591 DOI: 10.1155/2021/9920826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/14/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Abrus precatorius is used in folk medicine across Afro-Asian regions of the world. Earlier, glucose lowering and pancreato-protective effects of Abrus precatorius leaf extract (APLE) was confirmed experimentally in STZ/nicotinamide-induced diabetic rats; however, the underlying mechanism of antidiabetic effect and pancreato-protection remained unknown. OBJECTIVE This study elucidated antidiabetic mechanisms and pancreato-protective effects of APLE in diabetic rats. MATERIALS AND METHODS APLE was prepared by ethanol/Soxhlet extraction method. Total phenols and flavonoids were quantified calorimetrically after initial phytochemical screening. Diabetes mellitus (DM) was established in adult Sprague-Dawley rats (weighing 120-180 g) of both sexes by daily sequential injection of nicotinamide (48 mg/kg; ip) and Alloxan (120 mg/kg; ip) over a period of 7 days. Except control rats which had fasting blood glucose (FBG) of 4.60 mmol/L, rats having stable FBG (16-21 mmol/L) 7 days post-nicotinamide/Alloxan injection were considered diabetic and were randomly reassigned to one of the following groups (model, APLE (100, 200, and 400 mg/kg, respectively; po) and metformin (300 mg/kg; po)) and treated daily for 18 days. Bodyweight and FBG were measured every 72 hours for 18 days. On day 18, rats were sacrificed under deep anesthesia; organs (kidney, liver, pancreas, and spleen) were isolated and weighed. Blood was collected for estimation of serum insulin, glucagon, and GLP-1 using a rat-specific ELISA kit. The pancreas was processed, sectioned, and H&E-stained for histological examination. Effect of APLE on enzymatic activity of alpha (α)-amylase and α-glucosidase was assessed. Antioxidant and free radical scavenging properties of APLE were assessed using standard methods. RESULTS APLE dose-dependently decreased the initial FBG by 68.67%, 31.07%, and 4.39% compared to model (4.34%) and metformin (43.63%). APLE (100 mg/kg) treatment restored weight loss relative to model. APLE increased serum insulin and GLP-1 but decreased serum glucagon relative to model. APLE increased both the number and median crosssectional area (×106 μm2) of pancreatic islets compared to that of model. APLE produced concentration-dependent inhibition of α-amylase and α-glucosidase relative to acarbose. APLE concentration dependently scavenged DPPH and nitric oxide (NO) radicals and demonstrated increased ferric reducing antioxidant capacity (FRAC) relative to standards. CONCLUSION Antidiabetic effect of APLE is mediated through modulation of insulin and GLP-1 inversely with glucagon, noncompetitive inhibition of α-amylase and α-glucosidase, free radical scavenging, and recovery of damaged/necro-apoptosized pancreatic β-cells.
Collapse
Affiliation(s)
- Alex Boye
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Victor Yao Atsu Barku
- Department of Chemistry, School of Physical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Desmond Omane Acheampong
- Department of Biomedical Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Eric Gyamerah Ofori
- Department of Biochemistry, School of Biological Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
12
|
Wu P, He H, Ma H, Tu B, Li J, Guo S, Chen S, Cao N, Zheng W, Tang X, Li D, Xu X, Zheng X, Sheng Z, David Hong W, Zhang K. Oleanolic acid indole derivatives as novel α-glucosidase inhibitors: Synthesis, biological evaluation, and mechanistic analysis. Bioorg Chem 2020; 107:104580. [PMID: 33418317 DOI: 10.1016/j.bioorg.2020.104580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022]
Abstract
Research efforts have been directed to the development of oleanolic acid (OA) based α-glucosidase inhibitors and various OA derivatives showed improved anti-α-glucosidase activity. However, the inhibitory effects of indole infused OA derivatives on α-glucosidase is unknown. Herein, we synthesized a series of indole-OA (2a-2o) and -OA methyl ester (3a-3 l) derivatives with various electron withdrawing groups inducted to indole benzene ring and evaluated their anti-α-glucosidase activity. Indole OA derivatives (2a-2o) exhibited superior α-glucosidase inhibitory effects as compared to OA methyl ester derivatives (3a-3l) and OA (with IC50 values of 4.02 μM-5.30 μM v.s. over 10 μM and 5.52 µM, respectively). In addition, mechanistic studies using biochemical (kinetic assay), biophysical (circular dichroism), and computational (docking) methods revealed that OA-indole derivatives (2a and 2f) are mixed type of α-glucosidase inhibitors and their inhibitory effects were attributed to their capacity of forming the ligand-enzyme complex with α-glucosidase enzyme. Findings from this study support that OA indole derivatives are promising α-glucosidase inhibitors as a potential management of diabetes mellitus.
Collapse
Affiliation(s)
- Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China; Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Hao He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China; Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Borong Tu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Jiahao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Shengzhu Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Silin Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Nana Cao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Wende Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Xiaowen Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China.
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China; Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom.
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China.
| |
Collapse
|
13
|
Li J, Chi G, Wang L, Wang F, He S. Isolation, identification, and inhibitory enzyme activity of phenolic substances present in Spirulina. J Food Biochem 2020; 44:e13356. [PMID: 32627220 DOI: 10.1111/jfbc.13356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 11/28/2022]
Abstract
Spirulina species are edible with high nutritional as well as potential therapeutic values. In this work, we show that phenolic extracts from Spirulina (p-Coumaric acid) possessed inhibitory potential on α-glucosidase (IC50 = 1.67 ± 0.02 mM) and tyrosinase (IC50 = 52.71 ± 3.01 mM). Moreover, p-Coumaric acid inhibited α-glucosidase and tyrosinase in a reversible mixed-type manner. Interestingly, molecular docking demonstrated that p-Coumaric acid penetrated in depth of the active-site of tyrosinase and α-glucosidase by the noncovalent force or interaction. Among them, making polar interactions with Cu2+ ions and the amino acid residue capable of forming cation-π significantly contribute to the strong binding of p-Coumaric acid on tyrosinase. p-Coumaric acid was isolated and identified from Spirulina for the first time, which can be used as a lead compound for the design of functional food additives and skin-lightening active ingredient in cosmetics, and pharmaceuticals against type 2 diabetes. PRACTICAL APPLICATIONS: A natural, food-derived compound possessing the potential for the development of an anti-hyperglycaemic and skin-lightening supplement is very promising in cosmetics, functional food, and pharmaceuticals against type 2 diabetes. Herein, the present study is the first to present high levels of p-Coumaric acid from Spirulina, which simultaneously possessed inhibition potential on α-glucosidase and tyrosinase. Importantly, we gained initial information about the polypeptide-inhibitor interactions and underlying mechanisms for Spirulina's therapeutic effects, which will provide the bases for developing new drugs for preventing or treating type 2 diabetes and enzyme inhibitors. Moreover, this work also demonstrates the potential of the extraction of high-value chemicals from Spirulina waste.
Collapse
Affiliation(s)
- Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen, P.R. China
| | - Guoxiang Chi
- College of Food and Biological Engineering, Jimei University, Xiamen, P.R. China
| | - Li Wang
- College of Food and Biological Engineering, Jimei University, Xiamen, P.R. China
| | - Fang Wang
- College of Chemistry and Life Science, Quanzhou Normal College, Quanzhou, P.R. China
| | - Shansheng He
- College of Food and Biological Engineering, Jimei University, Xiamen, P.R. China
| |
Collapse
|
14
|
Chi G, Xie L, Zhao M, Wang L, Wang F, Li J, Zheng A. Biological evaluation of Keggin-type polyoxometalates on tyrosinase: Kinetics and molecular modeling. Chem Biol Drug Des 2020; 96:1255-1261. [PMID: 32473601 DOI: 10.1111/cbdd.13734] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Abnormal overexpression of tyrosinase activity can lead to the production of hyperpigmentation in human skin and enzymatic browning in fruits and vegetables. Herein, the inhibition and mechanism of the H3 PMo12 O40 and two transition metal-substituted Keggin-type polyoxometalates (Na7 PMo11 CoO40 and Na7 PMo11 ZnO40 ) on tyrosinase were studied by kinetics and molecular modeling. Kinetic studies indicated that all compounds had more potent inhibitory activities than standard arbutin, and H3 PMo12 O40 (IC50 = 0.443 ± 0.006 mm) is ~15-fold stronger inhibition than arbutin. Additionally, all compounds inhibited tyrosinase in a reversible competitive manner. Intriguingly, molecular modeling elucidated that three compounds competitively bind to tyrosinase mainly through more interactions with Cu2+ ions and the amino acid residue capable of forming cation-π and hydrogen bonding, forming a reversible non-covalent complex. Molecular simulation study correlated well with the biological activity of three compounds in vitro. This work provided new insights into design and synthesis of polyoxometalates as tyrosinase inhibitors in the field of medicine, cosmetic, and food.
Collapse
Affiliation(s)
- Guoxiang Chi
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Lefang Xie
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Meijuan Zhao
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Li Wang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Fang Wang
- College of Chemistry and Life Science, Quanzhou Normal College, Quanzhou, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Aping Zheng
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
15
|
Pimpão C, da Silva IV, Mósca AF, Pinho JO, Gaspar MM, Gumerova NI, Rompel A, Aureliano M, Soveral G. The Aquaporin-3-Inhibiting Potential of Polyoxotungstates. Int J Mol Sci 2020; 21:2467. [PMID: 32252345 PMCID: PMC7177757 DOI: 10.3390/ijms21072467] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Polyoxometalates (POMs) are of increasing interest due to their proven anticancer activities. Aquaporins (AQPs) were found to be overexpressed in tumors bringing particular attention to their inhibitors as anticancer drugs. Herein, we report for the first time the ability of polyoxotungstates (POTs), such as of Wells-Dawson P2W18, P2W12, and P2W15, and Preyssler P5W30 structures, to affect aquaporin-3 (AQP3) activity and impair melanoma cell migration. The tested POTs were revealed to inhibit AQP3 function with different effects, with P2W18, P2W12, and P5W30 being the most potent (50% inhibitory concentration (IC50) = 0.8, 2.8, and 3.2 µM), and P2W15 being the weakest (IC50 > 100 µM). The selectivity of P2W18 toward AQP3 was confirmed in yeast cells transformed with human aquaglyceroporins. The effect of P2W12 and P2W18 on melanoma cells that highly express AQP3 revealed an impairment of cell migration between 55% and 65% after 24 h, indicating that the anticancer properties of these compounds may in part be due to the blockage of AQP3-mediated permeability. Altogether, our data revealed that P2W18 strongly affects AQP3 activity and cancer cell growth, unveiling its potential as an anticancer drug against tumors where AQP3 is highly expressed.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Andreia F. Mósca
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Jacinta O. Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Nadiia I. Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria; (N.I.G.); (A.R.)
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria; (N.I.G.); (A.R.)
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), CCMar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (C.P.); (I.V.d.S.); (A.F.M.); (J.O.P.); (M.M.G.)
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
16
|
Matějíček P. Erratic ions: self-assembly and coassembly of ions of nanometer size and of irregular structure. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Zhao M, Chen X, Chi G, Shuai D, Wang L, Chen B, Li J. Research progress on the inhibition of enzymes by polyoxometalates. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00860e] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyoxometalates (POMs) are a kind of inorganic cluster metal complex with various biological activities, such as anti-Alzheimer's disease, antibacterial, anti-cancer, anti-diabetes, anti-virus and so on.
Collapse
Affiliation(s)
- Meijuan Zhao
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| | - Xiangsong Chen
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| | - Guoxiang Chi
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| | - Die Shuai
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| | - Li Wang
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| | | | - Jian Li
- College of Food and Biological Engineering
- Jimei University
- Xiamen
- P.R. China
| |
Collapse
|
18
|
Molecular docking of polyoxometalates as potential α-glucosidase inhibitors. J Inorg Biochem 2019; 203:110914. [PMID: 31751818 DOI: 10.1016/j.jinorgbio.2019.110914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 01/16/2023]
Abstract
α-Glucosidase is an important target enzyme for the treatment of type 2 diabetes in humans. In our previous studies, it was found that polyoxometalates exhibited an effective inhibitory effect on the activity of α-glucosidase, while polyoxometalates have the characteristics of structural diversity and unique properties. Herein, we investigated the inhibition of two different series of polyoxometalates on α-glucosidases by enzyme kinetics and molecular docking. The results demonstrated that all of the studied compounds had a significant inhibitory ability on α-glucosidase as compared with the positive control acarbose. H8[P2Mo17Cr(OH2)O61] reversibly inhibited α-glucosidase in a competitive manner with IC50 of 115.50 ± 1.64 μM and KI value of 44.31 μM. All other compounds reversibly inhibited enzymatic activity in a mixed manner. H6PMo9V3O40 and H8[P2Mo17Cu(OH2)O61] were the best inhibitors in the Keggin and Dawson series, respectively, with IC50 of 9.63 ± 0.43 and 40.13 ± 0.61 μM, respectively. We conducted molecular docking study and found that the compound and α-glucosidase were mainly non-covalently interacting with hydrogen bonds and van der Waals forces. This result further confirmed the inhibition mechanism of enzyme kinetic experiments.
Collapse
|