1
|
Lai S, Wang W, Shen T, Li X, Kong D, Hou X, Chen G, Gao L, Xia T, Jiang X. Crucial Role of Aluminium-Regulated Flavonol Glycosides (F2-Type) Biosynthesis in Lateral Root Formation of Camellia sinensis. PLANT, CELL & ENVIRONMENT 2025; 48:3573-3589. [PMID: 39789692 DOI: 10.1111/pce.15372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025]
Abstract
In acidic soil conditions, aluminium (Al) limits crop growth and yields but benefits the growth of tea plants. Flavonols are suggested to form complexes with Al, enhancing Al accumulation in tea plants. The role of flavonols in promoting lateral root formation under Al stress remains unclear. Here, we identified a 7-rhamnosylated type of flavonol glycosides (F2-type) crucial for this process in tea roots. Al treatment significantly stimulated lateral root initiation and bud germination in tea plants, enhancing flavonol glycoside accumulation, particularly the F2-type. Most genes in the flavonol biosynthetic pathway were upregulated post-Al treatment, including CsUGT89AC2/3 genes, which catalyze F2-type flavonol glycosides synthesis in vitro and in vivo. Overexpression of CsUGT89AC2/3 increased lateral root occurrence, flavonol glycoside accumulation and expression of biosynthetic pathway genes in tea roots. Kaempferol treatment activated flavonol pathway genes and stimulated lateral root growth. Al treatment, kaempferol treatment and CsUGT89AC3 overexpression accelerated auxin accumulation and expression of auxin-related genes. Therefore, Al stimulates flavonol biosynthetic pathway gene expression, regulates F2-type flavonol biosynthesis, and influences auxin homoeostasis, promoting lateral root formation in tea plants. These findings lay the foundation for further investigation into the mechanisms underlying the Al-mediated promotion of lateral root initiation in tea plants.
Collapse
Affiliation(s)
- Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Wenzhuo Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Tianlin Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiu Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Dexu Kong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaohan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Gao Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Radeva-Ilieva M, Stoeva S, Hvarchanova N, Georgiev KD. Green Tea: Current Knowledge and Issues. Foods 2025; 14:745. [PMID: 40077449 PMCID: PMC11899301 DOI: 10.3390/foods14050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Green tea possesses antioxidant, anti-inflammatory, anticancer, and antimicrobial activities, reduces body weight, and slows down aging. These effects are primarily attributed to catechins contained in green tea leaves, particularly epigallocatechin-3-gallate. However, in humans, the realization of green tea's beneficial effects is limited. In order to summarize and critically analyze the available scientific information about green tea's health benefits and issues related to its use, we conducted an in-depth literature review in scientific databases. A number of in vitro studies reported that green tea catechins modulate various signaling pathways in cells, which is thought to underlie their beneficial effects. However, data on the effects of catechins in humans are scarce, which is partly due to their low stability and oral bioavailability. Furthermore, catechins may also participate in pharmacokinetic interactions when co-administered with certain drugs such as anticancer agents, drugs for cardiovascular diseases, immunosuppressors, etc. As a result, adverse drug reactions or therapy failure may occur. In conclusion, over the years, various approaches have been investigated to optimize catechin intake and to achieve beneficial effects in humans, but to date, the use of catechins for prophylaxis or disease treatment remains limited. Therefore, future studies regarding the possibilities of catechins administration are needed.
Collapse
Affiliation(s)
- Maya Radeva-Ilieva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University—Varna, 9002 Varna, Bulgaria; (S.S.); (N.H.); (K.D.G.)
| | | | | | | |
Collapse
|
3
|
Wang Q, Yu J, Lin W, Ahammed GJ, Wang W, Ma R, Shi M, Ge S, Mohamed AS, Wang L, Li Q, Li X. L-Theanine Metabolism in Tea Plants: Biological Functions and Stress Tolerance Mechanisms. PLANTS (BASEL, SWITZERLAND) 2025; 14:492. [PMID: 39943054 PMCID: PMC11820798 DOI: 10.3390/plants14030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
L-theanine, a unique non-protein amino acid predominantly found in tea plants (Camellia sinensis), plays a pivotal role in plant responses to abiotic stress and significantly influences tea quality. In this review, the metabolism and transport mechanisms of L-theanine are comprehensively discussed, highlighting its spatial distribution in tea plants, where it is most abundant in young leaves and less so in roots, stems, and older leaves. The biosynthesis of L-theanine occurs through the enzymatic conversion of glutamate and ethylamine, catalyzed by theanine synthase, primarily in the roots, from where it is transported to aerial parts of the plant for further catabolism. Environmental factors such as temperature, light, drought, elevated CO2, nutrient unavailability, and heavy metals significantly affect theanine biosynthesis and hydrolysis, with plant hormones and transcription factors playing crucial regulatory roles. Furthermore, it has been demonstrated that applying L-theanine exogenously improves other crops' resistance to a range of abiotic stresses, suggesting its potential utility in improving crop resilience amid climate change. This review aims to elucidate the physiological mechanisms and biological functions of L-theanine metabolism under stress conditions, providing a theoretical foundation for enhancing tea quality and stress resistance in tea cultivation.
Collapse
Affiliation(s)
- Qianying Wang
- College of Horticulture, Hebei Agricultural University, Baoding 310007, China; (Q.W.); (M.S.)
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Jingbo Yu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Wenchao Lin
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
- Nanping Agriculture and Rural Bureau, Nanping 353199, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenli Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Ruihong Ma
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Mengyao Shi
- College of Horticulture, Hebei Agricultural University, Baoding 310007, China; (Q.W.); (M.S.)
| | - Shibei Ge
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Ahmed S. Mohamed
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
- Horticultural Crops Technology Department, Agricultural and Biological Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Liyuan Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Baoding 310007, China; (Q.W.); (M.S.)
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| |
Collapse
|
4
|
Ke JP, Lai G, Han Z, Cheng Y, Zhu M, Zhang L. Formation and characterization of theanine-flavonol glycoside adduct and its quantitative analysis during the processing of green tea. Food Res Int 2025; 202:115734. [PMID: 39967181 DOI: 10.1016/j.foodres.2025.115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025]
Abstract
In addition to forming N-ethyl-2-pyrrolidinone-substituted flavan-3-ols (EPSFs) with catechins, the Strecker degradation products of theanine can also combine with flavonol glycosides (FGs) to form EPSFGs during tea processing. In the present study, a novel adduct of theanine and rutin was identified and named as EPS-rutin. The effects of reaction temperature, time, initial reactant ratio, and water content on the generation of EPS-rutin in thermal reaction models were also analyzed. When the initial mass ratio of rutin to theanine was 1:5 and heating under 140 °C for 60 min, the content of EPS-rutin was the highest. Meanwhile, the content of EPS-rutin in green tea during processing was determined. Results showed EPS-rutin was formed during the first drying stage, and its level significantly increased after final drying. Furthermore, the bitterness and astringency thresholds of EPS-rutin were determined to be higher than those of rutin. This study further improved the understanding of the transformation pathways of theanine and polyphenols during tea processing, as well as contributed to exploring the flavor characteristics and health benefits of EPS-rutin.
Collapse
Affiliation(s)
- Jia-Ping Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036 China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036 China
| | - Zisheng Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036 China.
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313000 China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036 China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036 China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036 China.
| |
Collapse
|
5
|
Yang B, Jiang J, Zhang H, Han Z, Lei X, Chen X, Xiao Y, Njeri Ndombi S, Zhu X, Fang W. Tea quality estimation based on multi-source information from leaf and soil using machine learning algorithm. Food Chem X 2023; 20:100975. [PMID: 38144839 PMCID: PMC10739752 DOI: 10.1016/j.fochx.2023.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/08/2023] [Accepted: 10/29/2023] [Indexed: 12/26/2023] Open
Abstract
Mineral nutrients play a significant role in influencing the quality of tea. In order to detect the quantitative relationships between tea quality and mineral elements from the soil and tea plant, samples of soil and tea leaves from 'Baiyeyihao' and 'Huangjinya' cultivars were collected from 160 tea plantations, and these were used to determine 16 types of soil mineral elements, 16 leaf nutrient elements, and 10 key tea quality compositions. Three predictive models including linear regression, multiple linear regression (MLR) and random forest (RF) were applied to predict the main constituents of tea quality. The usage of mineral elements in the soil and tea leaves improved the estimation accuracy of tea quality compositions, the RF performed best for EGCG (R2 = 0.67-0.77), amino acid (R2 = 0.61-0.88), tea polyphenols (R2 = 0.68-0.77) and caffeine (R2 = 0.59-0.68), while the MLR performed well for predicting the soluble sugars (R2 = 0.54-0.84). The multi-source information demonstrated a superior accuracy in predicting the biochemical components of tea when compared to individual mineral elements.
Collapse
Affiliation(s)
- Bin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaogang Lei
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuejin Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Salome Njeri Ndombi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Rural Revitalization, Jiangsu Open University, China
| |
Collapse
|
6
|
Wen M, Zhu M, Han Z, Ho CT, Granato D, Zhang L. Comprehensive applications of metabolomics on tea science and technology: Opportunities, hurdles, and perspectives. Compr Rev Food Sci Food Saf 2023; 22:4890-4924. [PMID: 37786329 DOI: 10.1111/1541-4337.13246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/04/2023]
Abstract
With the development of metabolomics analytical techniques, relevant studies have increased in recent decades. The procedures of metabolomics analysis mainly include sample preparation, data acquisition and pre-processing, multivariate statistical analysis, as well as maker compounds' identification. In the present review, we summarized the published articles of tea metabolomics regarding different analytical tools, such as mass spectrometry, nuclear magnetic resonance, ultraviolet-visible spectrometry, and Fourier transform infrared spectrometry. The metabolite variation of fresh tea leaves with different treatments, such as biotic/abiotic stress, horticultural measures, and nutritional supplies was reviewed. Furthermore, the changes of chemical composition of processed tea samples under different processing technologies were also profiled. Since the identification of critical or marker metabolites is a complicated task, we also discussed the procedure of metabolite identification to clarify the importance of omics data analysis. The present review provides a workflow diagram for tea metabolomics research and also the perspectives of related studies in the future.
Collapse
Affiliation(s)
- Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Mengting Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Daniel Granato
- Department of Biological Sciences, School of Natural Sciences Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| |
Collapse
|
7
|
Dippong T, Cadar O, Kovacs MH, Dan M, Senila L. Chemical Analysis of Various Tea Samples Concerning Volatile Compounds, Fatty Acids, Minerals and Assessment of Their Thermal Behavior. Foods 2023; 12:3063. [PMID: 37628061 PMCID: PMC10453188 DOI: 10.3390/foods12163063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Tea is the most consumed drink worldwide due to its pleasant taste and various beneficial effects on human health. This paper assesses the physicochemical analysis of different varieties of tea (leaves, flowers, and instant) after prior drying and fine grinding. The thermal decomposition behavior of the tea components shows that the tea has three stages of decomposition, depending on temperature. The first stage was attributed to the volatilization of water, while the second stage involved the degradation of volatiles, polyphenols, and fatty acids. The degradation of cellulose, hemicellulose, and lignin content occurs at the highest temperature of 400 °C in the third stage. A total of 66 volatile compounds, divided into eight classes, were identified in the tea samples. The volatile compounds were classified into nine odor classes: floral, fruity, green, sweet, chemical, woody, citrus, roasted, and alcohol. In all flower and leaf tea samples, monounsaturated (MUFAs), polyunsaturated (PUFAs), and saturated fatty acids (SFAs) were identified. A high content of omega-6 was quantified in acacia, Saint John's Wort, rose, and yarrow, while omega-3 was found in mint, Saint John's Wort, green, blueberry, and lavender samples. The flower and leaf tea samples studied could be a good dietary source of polyphenolic compounds, essential elements. In instant tea samples, a low quantity of polyphenols and major elements were identified. The physicochemical analysis demonstrated that both flower and leaf teas have high-quality properties when compared to instant tea.
Collapse
Affiliation(s)
- Thomas Dippong
- Department of Chemistry and Biology, Technical University of Cluj-Napoca, 76 Victoriei Street, 430122 Baia Mare, Romania;
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| | - Melinda Haydee Kovacs
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| | - Monica Dan
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Lacrimioara Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania; (O.C.); (M.H.K.)
| |
Collapse
|
8
|
Hajiboland R, Panda CK, Lastochkina O, Gavassi MA, Habermann G, Pereira JF. Aluminum Toxicity in Plants: Present and Future. JOURNAL OF PLANT GROWTH REGULATION 2023; 42:3967-3999. [DOI: 10.1007/s00344-022-10866-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/26/2022] [Indexed: 06/23/2023]
|
9
|
Nkrumah PN, van der Ent A. Possible accumulation of critical metals in plants that hyperaccumulate their chemical analogues? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162791. [PMID: 36907425 DOI: 10.1016/j.scitotenv.2023.162791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 05/13/2023]
Abstract
Lithium (Li), gallium (Ga) and indium (In) are industry-critical metals, with no known plant species that (hyper)accumulate these metals to any substantial degree. We hypothesised that sodium (Na) hyperaccumulators (i.e., halophytes) may accumulate Li, whilst aluminium (Al) hyperaccumulators may accumulate Ga and In, based on the chemical similarities of these elements. Experiments were conducted in hydroponics at various molar ratios for six weeks to determine accumulation in roots and shoots of the target elements. For the Li experiment, the halophytes Atriplex amnicola, Salsola australis and Tecticornia pergranulata were subjected to Na and Li treatments, whilst for the Ga and In experiment, Camellia sinensis was exposed to Al, Ga, and In. The halophytes were able to accumulate high shoot Li and Na concentrations reaching up to ~10 g Li kg-1 and 80 g Na kg-1, respectively. The translocation factors for Li were higher than for Na (about two-fold) in A. amnicola and S. australis. The results from the Ga and In experiment show that C. sinensis is capable of accumulating high concentrations of Ga (mean 150 mg Ga kg-1), comparable with Al (mean 300 mg Al kg-1), but virtually no In (<20 mg In kg-1) in its leaves. Competition between Al and Ga suggests that Ga might be taken up via Al pathways in C. sinensis. The findings suggest that there are opportunities to explore Li and Ga phytomining on respective Li- and Ga-enriched mine water/soil/mine waste materials using halophytes and Al hyperaccumulators to complement the global supply of these critical metals.
Collapse
Affiliation(s)
- Philip Nti Nkrumah
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, Australia.
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Queensland, Australia; Laboratoire Sols et Environnement, INRAE, Université de Lorraine, France; Laboratory of Genetics, Wageningen University and Research, The Netherlands
| |
Collapse
|
10
|
Peng A, Yu K, Yu S, Li Y, Zuo H, Li P, Li J, Huang J, Liu Z, Zhao J. Aluminum and Fluoride Stresses Altered Organic Acid and Secondary Metabolism in Tea ( Camellia sinensis) Plants: Influences on Plant Tolerance, Tea Quality and Safety. Int J Mol Sci 2023; 24:4640. [PMID: 36902071 PMCID: PMC10003434 DOI: 10.3390/ijms24054640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Tea plants have adapted to grow in tropical acidic soils containing high concentrations of aluminum (Al) and fluoride (F) (as Al/F hyperaccumulators) and use secret organic acids (OAs) to acidify the rhizosphere for acquiring phosphorous and element nutrients. The self-enhanced rhizosphere acidification under Al/F stress and acid rain also render tea plants prone to accumulate more heavy metals and F, which raises significant food safety and health concerns. However, the mechanism behind this is not fully understood. Here, we report that tea plants responded to Al and F stresses by synthesizing and secreting OAs and altering profiles of amino acids, catechins, and caffeine in their roots. These organic compounds could form tea-plant mechanisms to tolerate lower pH and higher Al and F concentrations. Furthermore, high concentrations of Al and F stresses negatively affected the accumulation of tea secondary metabolites in young leaves, and thereby tea nutrient value. The young leaves of tea seedlings under Al and F stresses also tended to increase Al and F accumulation in young leaves but lower essential tea secondary metabolites, which challenged tea quality and safety. Comparisons of transcriptome data combined with metabolite profiling revealed that the corresponding metabolic gene expression supported and explained the metabolism changes in tea roots and young leaves via stresses from high concentrations of Al and F. The study provides new insight into Al- and F-stressed tea plants with regard to responsive metabolism changes and tolerance strategy establishment in tea plants and the impacts of Al/F stresses on metabolite compositions in young leaves used for making teas, which could influence tea nutritional value and food safety.
Collapse
Affiliation(s)
- Anqi Peng
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Keke Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shuwei Yu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Yingying Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Hao Zuo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ping Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410011, China
| |
Collapse
|
11
|
Aluminum accumulation in Amaranthus species and mechanisms of Al tolerance. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
12
|
Su L, Lv A, Wen W, Fan N, Li J, Gao L, Zhou P, An Y. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:756-771. [PMID: 36097968 DOI: 10.1111/tpj.15977] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) toxicity severely restricts plant growth in acidic soils (pH < 5.0). In this study, an R2R3-MYB transcription factor (TF) gene, MsMYB741, was cloned from alfalfa. Its function and gene regulatory pathways were studied via overexpression and RNA interference of MsMYB741 in alfalfa seedlings. Results showed that root elongation increased as a result of MsMYB741 overexpression (MsMYB741-OE) and decreased with MsMYB741 RNA interference (MsMYB741-RNAi) in alfalfa seedlings compared with the wild-type under Al stress. These were attributed to the reduced Al content in MsMYB741-OE lines, and increased Al content in MsMYB741-RNAi lines. MsMYB741 positively activated the expression of phenylalanine ammonia-lyase 1 (MsPAL1) and chalcone isomerase (MsCHI) by binding to MYB and ABRE elements in their promoters, respectively, which directly affected flavonoid accumulation in roots and secretion from root tips in plants under Al stress, eventually affecting Al accumulation in alfalfa. Additionally, MsABF2 TF directly activated the expression of MsMYB741 by binding to the ABRE element in its promoter. Taken together, our results indicate that MsMYB741 transcriptionally activates MsPAL1 and MsCHI expression to increase flavonoid accumulation in roots and secretion from root tips, leading to increased resistance of alfalfa to Al stress.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaojiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| |
Collapse
|
13
|
Zhao S, Cheng H, Xu P, Wang Y. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant ( Camellia sinensis): A review. Crit Rev Food Sci Nutr 2022; 63:10520-10535. [PMID: 35608014 DOI: 10.1080/10408398.2022.2078787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the process of adapting to the environment, tea plants (Camellia sinensis) endow tea with unique flavor and health functions, which should be attributed to secondary metabolites, including catechins, L-theanine, caffeine and terpene volatiles. Since the content of these flavor-contributing metabolites are mainly determined by the growth of tea plant, it is very important to understand their alteration and regulation mechanisms. In the present work, we first summarize the distribution, change characteristics of the main flavor-contributing metabolites in different cultivars, organs and under environmental stresses of tea plant. Subsequently, we discuss the regulating mechanisms involved in the biosynthesis of these metabolites based on the existing evidence. Finally, we propose the remarks and perspectives on the future study relating flavor-contributing metabolites. This review would contribute to the acceleration of research on the characteristic secondary metabolites and the breeding programs in tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Haiyan Cheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Mariz-Ponte N, Dias CM, Silva AMS, Santos C, Silva S. Low levels of TiO 2-nanoparticles interact antagonistically with Al and Pb alleviating their toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1-10. [PMID: 34315106 DOI: 10.1016/j.plaphy.2021.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The contamination and bioavailability of deleterious metals in arable soils significantly limits crop development and yield. Aiming at mitigating Pb- and Al-induced phytotoxicity, this work explores the use of P25 titanium dioxide nanoparticles (nTiO2) in soil amendments. For that, Lactuca sativa L. plants were germinated and grown in the presence of 10 ppm Pb or 50 ppm Al, combined or not with 5 ppm nTiO2. Growth parameters, as well as endpoints of the redox state [cell relative membrane permeability (RMP), thiobarbituric acid reactive substances content, total phenolic content and photosynthesis (sugars and pigments levels, chlorophyll a fluorescence and gas exchange), were evaluated. Concerning Al, nTiO2 treatment alleviated the impairments induced in germination rate, seedling length, water content, RMP, stomatal conductance (gs), intercellular CO2 (Ci), and net CO2 assimilation rate (PN). It increased anthocyanins contents and effective efficiency of photosystem II (ΦPSII). In Pb-exposed plants, nTiO2 amendment mitigated the effects in RMP, PN, gs, and Ci. It also increased the pigment contents and the transpiration rate (E) comparatively to the control without nTiO2. These results clearly highlight the high potential of low doses of nTiO2 in alleviating metal phytotoxicity, particularly the one of Pb. Additionally, further research should explore the use of these nanoparticles in agricultural soil amendments.
Collapse
Affiliation(s)
- Nuno Mariz-Ponte
- Department of Biology, Faculty of Sciences, LAQV-REQUIMTE, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Celeste M Dias
- Department of Life Sciences & CFE, Faculty of Sciences and Technologies, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, LAQV-REQUIMTE, University of Porto, Rua Do Campo Alegre, 4169-007, Porto, Portugal.
| | - Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
15
|
Cheng L, Liu H, Zhao J, Dong Y, Xu Q, Yu Y. Hormone Orchestrates a Hierarchical Transcriptional Cascade That Regulates Al-Induced De Novo Root Regeneration in Tea Nodal Cutting. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5858-5870. [PMID: 34018729 DOI: 10.1021/acs.jafc.1c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The aluminum in acid soils is very rhizotoxic to most plant species, but it is essential for root growth and development in Camellia sinensis. However, the molecular basis of Al-mediated signaling pathways in root regeneration of tea plants is largely unclear. In this study, we profiled the physiological phenotype, transcriptome, and phytohormones in the process using stems treated with Al (0.3 mM) and control (0.02 mM). The anatomical analysis showed that the 0.3 mM Al-treated stem began to develop adventitious root (AR) primordia within 7 days, ARs occurred after 21 days, while the control showed a significant delay. We further found that the expression patterns of many genes involved in the biosynthesis of ZT, ACC, and JA were stimulated by Al on day 3; also, the expression profiles of auxin transporter-related genes were markedly increased under Al during the whole rooting process. Moreover, the expression of these genes was strongly correlated with the accumulation of ZT, ACC, JA, and IAA. CsERFs, CsMYBs, and CsWRKYs transcription factor genes with possible crucial roles in regulating AR regeneration were also uncovered. Our findings suggest that multiple phytohormones and genes related to their biosynthesis form a hierarchical transcriptional cascade during Al-induced de novo root regeneration in tea nodal cuttings.
Collapse
Affiliation(s)
- Long Cheng
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Huan Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Jing Zhao
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuan Dong
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Qingshan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
16
|
Mahmud K, Burslem DFRP. Contrasting growth responses to aluminium addition among populations of the aluminium accumulator Melastoma malabathricum. AOB PLANTS 2020; 12:plaa049. [PMID: 33376588 PMCID: PMC7750992 DOI: 10.1093/aobpla/plaa049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Aluminium (Al) hyper-accumulation is a common trait expressed by tropical woody plants growing on acidic soils. Studies on Al accumulators have suggested that Al addition may enhance plant growth rates, but the functional significance of this trait and the mechanistic basis of the growth response are uncertain. This study aimed to test the hypothesis that differential growth responses to Al among populations of an Al accumulator species are associated with variation in biomass allocation and nutrient uptake. We conducted two experiments to test differential responses to the presence of Al in the growth medium for seedlings of the Al accumulator shrub Melastoma malabathricum collected from 18 populations across Peninsular Malaysia. Total dry mass and relative growth rate of dry mass were significantly greater for seedlings that had received Al in the growth medium than for control plants that did not receive Al, but growth declined in response to 5.0 mM Al addition. The increase in growth rate in response to Al addition was greater for a fast-growing than a slow-growing population. The increase in growth rate in response to Al addition occurred despite a reduction in dry mass allocation to leaves, at the expense of higher allocation to roots and stems, for plants grown with Al. Foliar concentrations of P, K, Mg and Ca increased in response to Al addition and the first axis of a PCA summarizing foliar nutrient concentrations among populations was correlated positively with seedling relative growth rates. Some populations of the Al hyper-accumulator M. malabathricum express a physiological response to Al addition which leads to a stimulation of growth up to an optimum value of Al in the growth medium, beyond which growth declines. This was associated with enhanced nutrient concentrations in leaves, which suggests that Al accumulation functions to optimize elemental stoichiometry and growth rate.
Collapse
Affiliation(s)
- Khairil Mahmud
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Seri Kembangan, Selangor, Malaysia
- School of Biological Sciences, University of Aberdeen, AB242UU Aberdeen, Scotland, UK
- School of Agricultural Science, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, Besut, Terengganu, Malaysia
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, AB242UU Aberdeen, Scotland, UK
| |
Collapse
|
17
|
Fu Z, Jiang X, Li WW, Shi Y, Lai S, Zhuang J, Yao S, Liu Y, Hu J, Gao L, Xia T. Proanthocyanidin-Aluminum Complexes Improve Aluminum Resistance and Detoxification of Camellia sinensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7861-7869. [PMID: 32680420 DOI: 10.1021/acs.jafc.0c01689] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aluminum (Al) influences crop yield in acidic soil. The tea plant (Camellia sinensis) has high Al tolerance with abundant monomeric catechins in its leaves, especially epigallocatechin gallate (EGCG), and polymeric proanthocyanidins in its roots (rPA). The role of these polyphenols in the Al resistance of tea plants is unclear. In this study, we observed that these polyphenols could form complexes with Al in vitro, and complexation capacity was positively influenced by high solution pH (pH 5.8), polyphenol type (rPA and EGCG), and high Al concentration. In the 27Al nuclear magnetic resonance (NMR) experiment, rPA-Al and EGCG-Al complex signals could be detected both in vitro and in vivo. The rPA-Al and EGCG-Al complexes were detected in roots and old leaves, respectively, of both greenhouse seedlings and tea garden plants. Furthermore, in seedlings, Al accumulated in roots and old leaves and mostly existed in the apoplast in binding form. These results indicate that the formation of complexes with tea polyphenols in vivo plays a vital role in Al resistance in the tea plant.
Collapse
Affiliation(s)
- Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Wei-Wei Li
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Juhua Zhuang
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Shengbo Yao
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Jingwei Hu
- Biotechnology Center, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, and International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, Anhui CN 230036, China
| |
Collapse
|