1
|
Loomis CL, Im SC, Scott EE. Adrenodoxin allosterically alters human cytochrome P450 11B enzymes to accelerate substrate binding and decelerate release. RSC Chem Biol 2024:d4cb00015c. [PMID: 39129792 PMCID: PMC11310744 DOI: 10.1039/d4cb00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Two human mitochondrial membrane CYP11B enzymes play a pivotal role in steroidogenesis. CYP11B1 generates the major glucocorticoid cortisol, while CYP11B2 catalysis yields the primary mineralocorticoid aldosterone. Catalysis by both requires electron delivery by a soluble iron-sulfur adrenodoxin redox partner. However recent studies have shown that adrenodoxin/CYP11B interaction alone allosterically increases substrate and inhibitor affinity as exhibited by decreased dissociation constant (K d) values. The current study moves beyond such equilibrium studies, by defining adrenodoxin effects on the rates of P450 ligand binding and release separately. Stopped-flow data clearly demonstrate that adrenodoxin interaction with the P450 proximal surfaces increases ligand binding in both P450 CYP11B active sites by increasing the on rate constant and decreasing the off rate constant. As substrate entry and exit from the sequestered P450 active site requires conformational changes on the distal side of the P450 enzyme, a likely explanation is that adrenodoxin binding allosterically modulates CYP11B conformational changes. The 93% identical CYP11B enzymes can bind and hydroxylate each other's native substrates differing only by a hydroxyl. However, CYP11B1 exhibits monophasic substrate binding and CYP11B2 biphasic substrate binding, even when the substrates are swapped. This indicates that small differences in amino acid sequence between human CYP11B1 and CYP11B2 enzymes are more functionally important in ligand binding and could suggest avenues for more selective inhibition of these drug targets. Both protein/protein interactions and protein/substrate interactions are most likely to act by modulating CYP11B conformational dynamics.
Collapse
Affiliation(s)
- Cara L Loomis
- Department of Biological Chemistry, University of Michigan Ann Arbor MI 48109 USA
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan Ann Arbor MI USA
- Ann Arbor Veterans Affairs Medical Center Ann Arbor MI USA
| | - Emily E Scott
- Department of Biological Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Department of Medicinal Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Department of Pharmacology, University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
2
|
Hackett JC, Krueger S, Urban VS, Zárate-Pérez F. Small angle scattering reveals the orientation of cytochrome P450 19A1 in lipoprotein nanodiscs. J Inorg Biochem 2024; 257:112579. [PMID: 38703512 DOI: 10.1016/j.jinorgbio.2024.112579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Human aromatase (CYP19A1), the cytochrome P450 enzyme responsible for conversion of androgens to estrogens, was incorporated into lipoprotein nanodiscs (NDs) and interrogated by small angle X-ray and neutron scattering (SAXS/SANS). CYP19A1 was associated with the surface and centered at the edge of the long axis of the ND membrane. In the absence of the N-terminal anchor, the amphipathic A'- and G'-helices were predominately buried in the lipid head groups, with the possibly that their hydrophobic side chains protrude into the hydrophobic, aliphatic tails. The prediction is like that for CYP3A4 based on SAXS employing a similar modeling approach. The orientation of CYP19A1 in a ND is consistent with our previous predictions based on molecular dynamics simulations and lends additional credibility to the notion that CYP19A1 captures substrates from the membrane.
Collapse
Affiliation(s)
- John C Hackett
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States.
| | - Susan Krueger
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899, United States; Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, United States
| | - Volker S Urban
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Francisco Zárate-Pérez
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
3
|
Valentín-Goyco J, Im SC, Auchus RJ. Kinetics of Intermediate Release Enhances P450 11B2-Catalyzed Aldosterone Synthesis. Biochemistry 2024; 63:1026-1037. [PMID: 38564530 PMCID: PMC11259377 DOI: 10.1021/acs.biochem.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The mitochondrial enzyme cytochrome P450 11B2 (aldosterone synthase) catalyzes the 3 terminal transformations in the biosynthesis of aldosterone from 11-deoxycorticosterone (DOC): 11β-hydroxylation to corticosterone, 18-hydroxylation, and 18-oxidation. Prior studies have shown that P450 11B2 produces more aldosterone from DOC than from the intermediate corticosterone and that the reaction sequence is processive, with intermediates remaining bound to the active site between oxygenation reactions. In contrast, P450 11B1 (11β-hydroxylase), which catalyzes the terminal step in cortisol biosynthesis, shares a 93% amino acid sequence identity with P450 11B2, converts DOC to corticosterone, but cannot synthesize aldosterone from DOC. The biochemical and biophysical properties of P450 11B2, which enable its unique 18-oxygenation activity and processivity, yet are not also represented in P450 11B1, remain unknown. To understand the mechanism of aldosterone biosynthesis, we introduced point mutations at residue 320, which partially exchange the activities of P450 11B1 and P450 11B2 (V320A and A320V, respectively). We then investigated NADPH coupling efficiencies, binding kinetics and affinities, and product formation of purified P450 11B1 and P450 11B2, wild-type, and residue 320 mutations in phospholipid vesicles and nanodiscs. Coupling efficiencies for the 18-hydroxylase reaction with corticosterone as the substrate failed to correlate with aldosterone synthesis, ruling out uncoupling as a relevant mechanism. Conversely, corticosterone dissociation rates correlated inversely with aldosterone production. We conclude that intermediate dissociation kinetics, not coupling efficiency, enable P450 11B2 to synthesize aldosterone via a processive mechanism. Our kinetic data also suggest that the binding of DOC to P450 11B enzymes occurs in at least two distinct steps, favoring an induced-fit mechanism.
Collapse
Affiliation(s)
- Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- LTC Charles S. Kettles Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, United States
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- LTC Charles S. Kettles Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, United States
| | - Richard J. Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- LTC Charles S. Kettles Veterans Affairs Medical Center, 2215 Fuller Road, Ann Arbor, MI 48105, United States
| |
Collapse
|
4
|
Günther J, Schuler G, Teppa E, Fürbass R. Charged Amino Acids in the Transmembrane Helix Strongly Affect the Enzyme Activity of Aromatase. Int J Mol Sci 2024; 25:1440. [PMID: 38338720 PMCID: PMC10855386 DOI: 10.3390/ijms25031440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Estrogens play critical roles in embryonic development, gonadal sex differentiation, behavior, and reproduction in vertebrates and in several human cancers. Estrogens are synthesized from testosterone and androstenedione by the endoplasmic reticulum membrane-bound P450 aromatase/cytochrome P450 oxidoreductase complex (CYP19/CPR). Here, we report the characterization of novel mammalian CYP19 isoforms encoded by CYP19 gene copies. These CYP19 isoforms are all defined by a combination of mutations in the N-terminal transmembrane helix (E42K, D43N) and in helix C of the catalytic domain (P146T, F147Y). The mutant CYP19 isoforms show increased androgen conversion due to the KN transmembrane helix. In addition, the TY substitutions in helix C result in a substrate preference for androstenedione. Our structural models suggest that CYP19 mutants may interact differently with the membrane (affecting substrate uptake) and with CPR (affecting electron transfer), providing structural clues for the catalytic differences.
Collapse
Affiliation(s)
- Juliane Günther
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Gerhard Schuler
- Veterinary Clinic for Reproductive Medicine and Neonatology, Faculty of Veterinary Medicine, Justus Liebig University, 35392 Giessen, Germany;
| | - Elin Teppa
- Université de Lille, CNRS, UMR 8576–UGDF-Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France;
| | - Rainer Fürbass
- Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| |
Collapse
|
5
|
Sweeney DT, Zárate-Pérez F, Stokowa-Sołtys K, Hackett JC. Induced Fit Describes Ligand Binding to Membrane-Associated Cytochrome P450 3A4. Mol Pharmacol 2023; 104:154-163. [PMID: 37536953 PMCID: PMC10506697 DOI: 10.1124/molpharm.123.000698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) is the dominant P450 involved in human xenobiotic metabolism. Competition for CYP3A4 therefore underlies several adverse drug-drug interactions. Despite its clinical significance, the mechanisms CYP3A4 uses to bind diverse ligands remain poorly understood. Highly monodisperse CYP3A4 embedded in anionic lipoprotein nanodiscs containing an equal mixture of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) were used to determine which of the limiting kinetic schemes that include protein conformational change, conformational selection (CS) or induced fit (IF), best described the binding of four known irreversible inhibitors. Azamulin, retapamulin, pleuromutilin, and mibrefadil binding to CYP3A4 nanodiscs conformed to a single-site binding model. Exponential fits of stopped-flow UV-visible absorption spectroscopy data supported multiple-step binding mechanisms. Trends in the rates of relaxation to equilibrium with increasing ligand concentrations were ambiguous as to whether IF or CS was involved; however, global fitting and consideration of the rate constants favored an IF mechanism. In the case of mibrefadil, a transient complex was observed in the stopped-flow UV-visible experiment, definitively assigning the presence of IF in ligand binding. While these studies only consider a small region of CYP3A4's vast ligand space, they provide kinetic evidence that CYP3A4 can use an IF mechanism. SIGNIFICANCE STATEMENT: CYP3A4 is capable of oxidizing numerous xenobiotics, including many drugs. Such promiscuity could not be achieved without conformational changes to accommodate diverse substrates. It is unknown whether conformational heterogeneity is present before (conformational selection) or after (induced fit) ligand binding. Stopped-flow measurements of suicide inhibitors binding to nanodisc-embedded CYP3A4 combined with sophisticated numerical analyses support that induced fit better describes ligand binding to this important enzyme.
Collapse
Affiliation(s)
- David Tyler Sweeney
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
| | - Francisco Zárate-Pérez
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
| | - Kamila Stokowa-Sołtys
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
| | - John C Hackett
- Department of Chemistry and Biochemistry and Biomolecular Sciences Institute, Florida International University, Miami, Florida (J.C.H., K.S.S., F.Z.P.); Department of Physiology and Biophysics and The Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia (D.T.S.); and Department of Biological and Medicinal Chemistry, Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland (K.S.S.)
| |
Collapse
|
6
|
Sumangala N, Im SC, Valentín-Goyco J, Auchus RJ. Influence of cholesterol on kinetic parameters for human aromatase (P450 19A1) in phospholipid nanodiscs. J Inorg Biochem 2023; 247:112340. [PMID: 37544101 PMCID: PMC11260420 DOI: 10.1016/j.jinorgbio.2023.112340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023]
Abstract
Cholesterol, a significant constituent of the endoplasmic reticulum membrane, exerts a substantial effect on the membrane's biophysical and mechanical properties. Cholesterol, however, is often neglected in model systems used to study membrane-bound proteins. For example, the influence of cholesterol on the enzymatic functions of type 2 cytochromes P450, which require a phospholipid bilayer and the redox partner P450-oxidoreductase (POR) for activity, are rarely investigated. Human aromatase (P450 19A1) catalyzes three sequential oxygenations of 19‑carbon steroids to estrogens and is widely expressed across various tissues, which are characterized by varying cholesterol compositions. Our study examined the impact of cholesterol on the functionality of the P450 19A1 complex with POR. Nanodiscs containing P450 19A1 with 20% cholesterol/80% phospholipid had similar rates and affinity of androstenedione binding as phospholipid-only P450 19A1 nanodiscs, and rates of product formation were indistinguishable among these conditions. In contrast, the rate of the first electron transfer from POR to P450 19A1 was 3-fold faster in cholesterol-containing nanodiscs than in phospholipid-only nanodiscs. These results suggest that cholesterol influences some aspects of POR interaction with P450 19A1 and might serve as an additional regulatory mechanism in this catalytic system.
Collapse
Affiliation(s)
- Nirupama Sumangala
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sang-Choul Im
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48105, United States
| | - Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, Ann Arbor, MI 48109, USA; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA; Veterans Affairs Medical Center, Ann Arbor, MI 48105, United States.
| |
Collapse
|
7
|
Valentín-Goyco J, Liu J, Peng HM, Oommen J, Auchus RJ. Selectivity of osilodrostat as an inhibitor of human steroidogenic cytochromes P450. J Steroid Biochem Mol Biol 2023; 231:106316. [PMID: 37098354 PMCID: PMC10757358 DOI: 10.1016/j.jsbmb.2023.106316] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 04/27/2023]
Abstract
Osilodrostat (LCI699) is a potent inhibitor of the human steroidogenic cytochromes P450 11β-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2). LCI699 is FDA-approved for the treatment of Cushing disease, which is characterized by chronic overproduction of cortisol. While phase II and III clinical studies have proven the clinical efficacy and tolerability of LCI699 for treating Cushing disease, few studies have attempted to fully assess the effects of LCI699 on adrenal steroidogenesis. To this end, we first comprehensively analyzed LCI699-mediated inhibition of steroid synthesis in the NCI-H295R human adrenocortical cancer cell line. We then studied LCI699 inhibition using HEK-293 or V79 cells stably expressing individual human steroidogenic P450 enzymes. Our studies using intact cells confirm the potent inhibition of CYP11B1 and CYP11B2 with negligible inhibition of 17-hydroxylase/17,20-lyase (CYP17A1) and 21-hydroxylase (CYP21A2). Furthermore, partial inhibition of the cholesterol side-chain cleavage enzyme (CYP11A1) was observed. To calculate the dissociation constant (Kd) of LCI699 with the adrenal mitochondrial P450 enzymes, we successfully incorporated P450s into lipid nanodiscs and carried out spectrophotometric equilibrium and competition binding assays. Our binding experiments confirm the high affinity of LCI699 to CYP11B1 and CYP11B2 (Kd ≈ 1 nM or less) and much weaker binding for CYP11A1 (Kd = 18.8 μM). Our results confirm the selectivity of LCI699 for CYP11B1 and CYP11B2 and demonstrate partial inhibition of CYP11A1 but not CYP17A1 and CYP21A2.
Collapse
Affiliation(s)
- Juan Valentín-Goyco
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, United States; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States; Veterans Affairs Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States
| | - Jiayan Liu
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, United States
| | - Hwei-Ming Peng
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, United States
| | - Jerry Oommen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, & Diabetes, Department of Internal Medicine, United States; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States; Veterans Affairs Medical Center, 2215 Fuller Road, Building 31, Room 225, Ann Arbor, MI 48105, United States.
| |
Collapse
|
8
|
Redhair M, Nath A, Hackett JC, Atkins WM. Low molecular weight ligands bind to CYP3A4 via a branched induced fit mechanism: Implications for O 2 binding. Arch Biochem Biophys 2023; 739:109582. [PMID: 36948348 PMCID: PMC10103683 DOI: 10.1016/j.abb.2023.109582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/24/2023]
Affiliation(s)
- Michelle Redhair
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA, 98195-7610, USA
| | - Abhinav Nath
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA, 98195-7610, USA
| | - John C Hackett
- Department of Chemistry & Biochemistry, Florida International University, 11200 SW 8th St., Miami, FL, 33199, USA
| | - William M Atkins
- Department of Medicinal Chemistry, Box 357610, University of Washington, Seattle, WA, 98195-7610, USA.
| |
Collapse
|
9
|
Catucci G, Ciaramella A, Di Nardo G, Zhang C, Castrignanò S, Gilardi G. Molecular Lego of Human Cytochrome P450: The Key Role of Heme Domain Flexibility for the Activity of the Chimeric Proteins. Int J Mol Sci 2022; 23:ijms23073618. [PMID: 35408976 PMCID: PMC8998974 DOI: 10.3390/ijms23073618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
The cytochrome P450 superfamily are heme-thiolate enzymes able to carry out monooxygenase reactions. Several studies have demonstrated the feasibility of using a soluble bacterial reductase from Bacillus megaterium, BMR, as an artificial electron transfer partner fused to the human P450 domain in a single polypeptide chain in an approach known as ‘molecular Lego’. The 3A4-BMR chimera has been deeply characterized biochemically for its activity, coupling efficiency, and flexibility by many different biophysical techniques leading to the conclusion that an extension of five glycines in the loop that connects the two domains improves all the catalytic parameters due to improved flexibility of the system. In this work, we extend the characterization of 3A4-BMR chimeras using differential scanning calorimetry to evaluate stabilizing role of BMR. We apply the ‘molecular Lego’ approach also to CYP19A1 (aromatase) and the data show that the activity of the chimeras is very low (<0.003 min−1) for all the constructs tested with a different linker loop length: ARO-BMR, ARO-BMR-3GLY, and ARO-BMR-5GLY. Nevertheless, the fusion to BMR shows a remarkable effect on thermal stability studied by differential scanning calorimetry as indicated by the increase in Tonset by 10 °C and the presence of a cooperative unfolding process driven by the BMR protein domain. Previously characterized 3A4-BMR constructs show the same behavior of ARO-BMR constructs in terms of thermal stabilization but a higher activity as a function of the loop length. A comparison of the ARO-BMR system to 3A4-BMR indicates that the design of each P450-BMR chimera should be carefully evaluated not only in terms of electron transfer, but also for the biophysical constraints that cannot always be overcome by chimerization.
Collapse
|
10
|
Di Cera E. Mechanisms of ligand binding. BIOPHYSICS REVIEWS 2020; 1:011303. [PMID: 33313600 PMCID: PMC7714259 DOI: 10.1063/5.0020997] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| |
Collapse
|
11
|
Sligar SG, Denisov IG. Nanodiscs: A toolkit for membrane protein science. Protein Sci 2020; 30:297-315. [PMID: 33165998 DOI: 10.1002/pro.3994] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self-assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native-like bilayer environment that maintain a target's functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.
Collapse
Affiliation(s)
- Stephen G Sligar
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ilia G Denisov
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
12
|
Paço L, Zarate-Perez F, Clouser AF, Atkins WM, Hackett JC. Dynamics and Mechanism of Binding of Androstenedione to Membrane-Associated Aromatase. Biochemistry 2020; 59:2999-3009. [DOI: 10.1021/acs.biochem.0c00460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Lorela Paço
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - Francisco Zarate-Perez
- Department of Physiology and Biophysics and Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0035, United States
| | - Amanda F. Clouser
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - William M. Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610, United States
| | - John C. Hackett
- Department of Physiology and Biophysics and Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298-0035, United States
| |
Collapse
|