1
|
Khakina E, Nikovskiy I, Spiridonov K, Novikov V, Antoshkina E, Dzhalilova D, Diatroptova M, Martyanova A, Rodionov A, Nelyubina YV. Hypoxia-activated dissociation of heteroleptic cobalt(III) complexes with functionalized 2,2'-bipyridines and a model anticancer drug esculetin. Dalton Trans 2025; 54:3667-3678. [PMID: 39846889 DOI: 10.1039/d4dt02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
A low oxygen level in solid tumors is behind the modern concept of selective chemotherapy by hypoxia-activated prodrugs, such as heteroleptic complexes of transition metals (cobalt(III), iron(III) or platinum(IV)) with bi- or tetradentate ligands and an anticancer drug molecule as a co-ligand. A series of new cobalt(III) complexes [Co(LR)2(esc)]ClO4 with esculetin (6,7-dihydroxycoumarin) and 2,2'-bipyridines (2,2'-bipy) functionalized by different substituents R were probed in the hypoxia-activated delivery of this model anticancer drug. Their combined study by cyclic voltammetry and in situ NMR spectroscopy allowed identifying linear correlations of the electrochemical reduction potentials and the rate of the hypoxia-activated dissociation of [Co(LR)2(esc)]ClO4 with the Hammett constants of the substituents in 2,2'-bipy ligands. The latter, therefore, should be decorated with the most electron-withdrawing groups (unless they preclude the formation of a heteroleptic complex) to promote the drug release and increase the anticancer activity towards, e.g., human epidermoid carcinoma A431.These correlations can be transferred to other types of bi- or tetradentate ligands, thereby paving the way towards the molecular design of cobalt complexes as prodrugs for hypoxia-activated anticancer drug delivery with high therapeutic efficiency.
Collapse
Affiliation(s)
- Ekaterina Khakina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
- National Research University Higher School of Economics, Faculty of Chemistry, 101000, Vavilova Str., 7, Moscow, Russia
| | - Igor Nikovskiy
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Kirill Spiridonov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Valentin Novikov
- Department de Quimica Inorganica and IN2UB, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | - Evgenia Antoshkina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 1174183, TsyurupyStr., Moscow, Russia
| | - Marina Diatroptova
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", 1174183, TsyurupyStr., Moscow, Russia
| | - Alina Martyanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997, Ostrovityanova Str., 1, Moscow, Russia
| | - Alexey Rodionov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| | - Yulia V Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334, Vavilova Str., 28, bld. 1, Moscow, Russia.
| |
Collapse
|
2
|
Jagathesan K, Roy S. Recent Development of Transition Metal Complexes as Chemotherapeutic Hypoxia Activated Prodrug (HAP). ChemMedChem 2024; 19:e202400127. [PMID: 38634306 DOI: 10.1002/cmdc.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Hypoxia is a state characterized by low concentration of Oxygen. Hypoxic state is often found in the central region of solid tumors. Hypoxia is associated with abnormal neovascularization resulted in poor blood flow in tissues and increased proliferation of tumor cells, imbalance between O2 supply and O2 consumption in tumor cells, high concentration of proton and strong reducibility. And, these abnormalities enhance the survival potency of the hypoxic tumours and increase the resistance towards chemotherapy and radiotherapy. One of the approach for treating hypoxic region of tumour is to use reducing environment of hypoxic tumours for reducing a molecule (hypoxia activated prodrug, HAP) and as a result the active drug will be released in hypoxic region in a controlled manner from the prodrug and kill the hypoxic tumour. Co(III) and Pt(IV) complexes with monodentate active drug molecule in the axial position can be reduced to Co(II) and Pt(II) moieties and as a result, the axial ligands (active drug) could come out from the metal center and could show its anticancer activity. In this review we have highlighted the research articles where transition metal-based complexes are used as chemotherapeutic hypoxia activated prodrug molecules which are reported in last 5 years.
Collapse
Affiliation(s)
- K Jagathesan
- Dept. of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Sovan Roy
- Dept. of Chemistry, School of Advance Sciences, Vellore Institute of Technology, Vellore, 632014, India
| |
Collapse
|
3
|
Palmeira-Mello MV, Costa AR, de Oliveira LP, Blacque O, Gasser G, Batista AA. Exploring the potential of ruthenium(II)-phosphine-mercapto complexes as new anticancer agents. Dalton Trans 2024; 53:10947-10960. [PMID: 38895770 DOI: 10.1039/d4dt01191k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The search for new metal-based anticancer drug candidates is a fundamental task in medicinal inorganic chemistry. In this work, we assessed the potential of two new Ru(II)-phosphine-mercapto complexes as potential anticancer agents. The complexes, with the formula [Ru(bipy)(dppen)(Lx)]PF6 [(1), HL1 = 2-mercapto-pyridine and (2), HL2 = 2-mercapto-pyrimidine, bipy = 2,2'-bipyridine, dppen = cis-1,2-bis(diphenylphosphino)-ethylene] were synthesized and characterized by nuclear magnetic resonance (NMR) [1H, 31P(1H), and 13C], high resolution mass spectrometry (HR-MS), cyclic voltammetry, infrared and UV-Vis spectroscopies. Complex 2 was obtained as a mixture of two isomers, 2a and 2b, respectively. The composition of these metal complexes was confirmed by elemental analysis and liquid chromatography-mass spectrometry (LC-MS). To obtain insights into their lipophilicity, their distribution coefficients between n-octanol/PBS were determined. Both complexes showed affinity mainly for the organic phase, presenting positive log P values. Also, their stability was confirmed over 48 h in different media (i.e., DMSO, PBS and cell culture medium) via HPLC, UV-Vis and 31P{1H} NMR spectroscopies. Since enzymes from the P-450 system play a crucial role in cellular detoxification and metabolism, the microsomal stability of 1, which was found to be the most interesting compound of this study, was investigated using human microsomes to verify its potential oxidation in the liver. The analyses by LC-MS and ESI-MS reveal three main metabolites, obtained by oxidation in the dppen and bipy moieties. Moreover, 1 was able to interact with human serum albumin (HSA). The cytotoxicity of the metal complexes was tested in different cancerous and non-cancerous cell lines. Complex 1 was found to be more selective than cisplatin against MDA-MB-231 breast cancer cells when compared to MCF-10A non-cancerous cells. In addition, complex 1 affects cell morphology and migration, and inhibits colony formation in MDA-MB-231 cells, making it a promising cytotoxic agent against breast cancer.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Analu R Costa
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Leticia P de Oliveira
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Paris, France.
| | - Alzir A Batista
- Departament of Chemistry, Universidade Federal de São Carlos, 13561-901, São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Deka B, Sarkar T, Bhattacharyya A, Butcher RJ, Banerjee S, Deka S, Saikia KK, Hussain A. Synthesis, characterization, and cancer cell-selective cytotoxicity of mixed-ligand cobalt(III) complexes of 8-hydroxyquinolines and phenanthroline bases. Dalton Trans 2024; 53:4952-4961. [PMID: 38275106 DOI: 10.1039/d3dt04045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Transition metal complexes exhibiting selective toxicity towards a broad range of cancer types are highly desirable as potential anticancer agents. Herein, we report the synthesis, characterization, and cytotoxicity studies of six new mixed-ligand cobalt(III) complexes of general formula [Co(B)2(L)](ClO4)2 (1-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 3, 4), and dipyrido[3,2-a:2',3'-c]phenazine (dppz in 5, 6), and L is the monoanion of 8-hydroxyquinoline (HQ in 1, 3, 5) and 5-chloro-7-iodo-8-hydroxyquinoline (CQ in 2, 4, 6). The X-ray single crystal structures of complexes 1 and 2 as PF6- salts revealed a distorted octahedral CoN5O coordination environment. Complexes demonstrated good stability in an aqueous buffer medium and in the presence of ascorbic acid as a reductant. Cytotoxicity studies using a panel of nine cancer cell lines showed that complex 6, with the dppz and CQ ligands, was significantly toxic against most cancer cell types, yielding IC50 values in the range of 2 to 14 μM. Complexes 1, 3, and 5, containing the HQ ligand, displayed lower toxicity compared to their CQ counterparts. The phenanthroline complexes demonstrated marginal toxicity towards the tested cell lines, while the dpq complexes exhibited moderate toxicity. Interestingly, all complexes demonstrated negligible toxicity towards normal HEK-293 kidney cells (IC50 > 100 μM). The observed cytotoxicity of the complexes correlated well with their lipophilicities (dppz > dpq > phen). The cytotoxicity of complex 6 was comparable to that of the clinical drug cisplatin under similar conditions. Notably, neither the HQ nor the CQ ligands alone demonstrated noticeable toxicity against any of the tested cell lines. The Annexin-V-FITC and DCFDA assays revealed that the cell death mechanism induced by the complexes involved apoptosis, which could be attributed to the metal-assisted generation of reactive oxygen species. Overall, the dppz complex 6, with its remarkable cytotoxicity against a broad range of cancer cells and negligible toxicity toward normal cells, holds significant potential for cancer chemotherapeutic applications.
Collapse
Affiliation(s)
- Banashree Deka
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| | - Tukki Sarkar
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| | - Arnab Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, Karnataka, India.
| | - Ray J Butcher
- Department of Chemistry, Howard University, 525 College Street, NW 20059, USA.
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, UP 221005, India.
| | - Sasanka Deka
- Department of Chemistry, University of Delhi, New Delhi 110024, India.
| | - Kandarpa K Saikia
- Department of Bioengineering and Technology, GUIST, Gauhati University, Guwahati 781014, Assam, India.
| | - Akhtar Hussain
- Department of Chemistry, Handique Girls' College, Guwahati 781001, Assam, India.
| |
Collapse
|
5
|
Yuan X, Xie Z, Zou T. Recent advances in hypoxia-activated compounds for cancer diagnosis and treatment. Bioorg Chem 2024; 144:107161. [PMID: 38306826 DOI: 10.1016/j.bioorg.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Hypoxia, as a prevalent feature of solid tumors, is correlated with tumorigenesis, proliferation, and invasion, playing an important role in mediating the drug resistance and affecting the cancer treatment outcomes. Due to the distinct oxygen levels between tumor and normal tissues, hypoxia-targeted therapy has attracted significant attention. The hypoxia-activated compounds mainly depend on reducible organic groups including azo, nitro, N-oxides, quinones and azide as well as some redox-active metal complex that are selectively converted into active species by the increased reduction potential under tumor hypoxia. In this review, we briefly summarized our current understanding on hypoxia-activated compounds with a particular highlight on the recently developed prodrugs and fluorescent probes for tumor treatment and diagnosis. We have also discussed the challenges and perspectives of small molecule-based hypoxia-activatable prodrug for future development.
Collapse
Affiliation(s)
- Xiaoyu Yuan
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhiying Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Taotao Zou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
6
|
Palmeira-Mello MV, Caballero AB, Herrera-Ramírez P, Costa AR, Santana SS, Guedes GP, Caubet A, Batista AA, Gamez P, Lanznaster M. Cobalt(III)-py 2en systems as potential carriers of β-ketoester-based ligands. J Inorg Biochem 2023; 248:112345. [PMID: 37562318 DOI: 10.1016/j.jinorgbio.2023.112345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Two cobalt(III) complexes containing different β-ketoesters, namely [CoIII(L1)(py2en)](ClO4)2·H2O (1) and [CoIII(L2)(py2en)](ClO4)2 (2) (py2en = N,N'-bis(pyridin-2-ylmethyl)ethylenediamine; L1- = methylacetoacetate; L2- = ethyl 4-chloroacetoacetate) have been prepared and investigated as prototypes of bioreductive prodrugs. The presence of β-ketoester and py2en ligands in 1 and 2, as well as the perchlorate counterions, was supported by IR spectroscopy and CHN elemental analysis. The composition molecular structure of both complexes was confirmed by NMR spectroscopy and ESI mass spectrometry. Structural information was also obtained for 2via X-ray diffraction analysis. The redox properties indicate that 1 and 2 are suitable for reduction under biological conditions. Investigation of DNA-interacting suggest that 1 and 2 bind DNA via electrostatic forces. Both complexes may be employed as possible platforms for the delivery of biologically active compounds, since their reaction with ascorbic acid in PBS at pH 6.2 and 7.4 at 37°C results in the release of the β-ketoester ligands upon Co(III)/Co(II) reduction.
Collapse
Affiliation(s)
- Marcos V Palmeira-Mello
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil; Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil.; nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Ana B Caballero
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Piedad Herrera-Ramírez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Analu R Costa
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil
| | - Savyo S Santana
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil
| | - Guilherme P Guedes
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil
| | - Amparo Caubet
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Alzir Azevedo Batista
- Departamento de Química, Universidade Federal de São Carlos (UFSCar), 13561-901 São Carlos, São Paulo, Brazil
| | - Patrick Gamez
- nanoBIC, Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Mauricio Lanznaster
- Instituto de Química, Universidade Federal Fluminense, Outeiro S. João Batista S/N, 24020-141 Niterói, RJ, Brazil..
| |
Collapse
|
7
|
Chatterjee T, Mohammad M, Islam S, Mohammad Wabaidur S, Christy M, Maidul Islam M, Hedayetullah Mir M, Mafiz Alam S. Fabrication of a pyridyl appended linear Co(II) based coordination polymer: Structural insights and molecular docking. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
8
|
Budagumpi S, Keri RS, Nagaraju D, Yhobu Z, Monica V, Geetha B, Kadu RD, Neole N. Progress in the catalytic applications of cobalt N–heterocyclic carbene complexes: Emphasis on their synthesis, structure and mechanism. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Cobalt(II)-disulfide compounds with the unusual PF2O2– anion. ligand-dependent redox conversion to a cobalt(III)-thiolate complex. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120880] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Taherzade SD, Soleimannejad J. Controlled API release in azelaic acid coordination compounds with potential dermatological properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Insights of Tris(2-pyridylmethyl)amine as anti-tumor agent for osteosarcoma: experimental and in silico studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Deokar RG, Barooah N, Barik A. Interaction of esculetin with aluminium ion by spectroscopic studies and isothermal titration calorimetry: a probable molecule for chelation therapy. J Biomol Struct Dyn 2021; 40:6163-6170. [PMID: 33502292 DOI: 10.1080/07391102.2021.1877820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The use of aluminium has made significant impact in our life by virtue of its attractive properties. The lack of essentiality of aluminium in biosphere indicated that its accumulation above certain level is undesirous. Esculetin (6,7-dihydroxy coumarin) is an excellent aluminium ion chelator and the chelation interaction was studied by exploiting the absorption and fluorescence behavior of esculetin. In presence of aluminium ion, the absorption band of esculetin was shifted from 350 to 380 nm suggesting the possibility of complex formation. The fluorescence intensity of esculetin at 466 nm was significantly quenched in presence of aluminium ion. The fluorescence quenching was interpreted in terms of chelation-quenched fluorescence (CHQF) mechanism where the strong Lewis acid character of aluminium ion accepts electrons from the chelating catechol moiety of the excited esculetin. From the absorption and fluorescence changes the association constant was estimated in the order of 105 M-1. The association constant was further evaluated by isothermal titration calorimetry (ITC) and there was close agreement to that of obtained from spectroscopic studies. Form ITC studies, the binding enthalpy and binding entropy were estimated as -20.6 kcal/mol and -46.7 cal/mol/K respectively. The complex was less toxic compared to the individual complexing agents when studied in Chinese hamster ovary cells. Considering the present investigation, esculetin can be a probable molecule for chelation therapy where rapid complex formation ability of esculetin will help to reduce the aluminium accumulation through chelation and water soluble nature of the complex will help for faster elimination from the system.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rupali G Deokar
- Department of Chemistry, Savitribai Phule Pune University, Pune, India.,Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Nilotpal Barooah
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Atanu Barik
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
13
|
Mathuber M, Schueffl H, Dömötör O, Karnthaler C, Enyedy ÉA, Heffeter P, Keppler BK, Kowol CR. Improving the Stability of EGFR Inhibitor Cobalt(III) Prodrugs. Inorg Chem 2020; 59:17794-17810. [PMID: 33222438 PMCID: PMC7724630 DOI: 10.1021/acs.inorgchem.0c03083] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
![]()
Although
tyrosine kinase inhibitors (TKIs) have revolutionized
cancer therapy in the past two decades, severe drawbacks such as strong
adverse effects and drug resistance limit their clinical application.
Prodrugs represent a valuable approach to overcoming these disadvantages
by administration of an inactive drug with tumor-specific activation.
We have recently shown that hypoxic prodrug activation is a promising
strategy for a cobalt(III) complex bearing a TKI of the epidermal
growth factor receptor (EGFR). The aim of this study was the optimization
of the physicochemical properties and enhancement of the stability
of this compound class. Therefore, we synthesized a series of novel
derivatives to investigate the influence of the electron-donating
properties of methyl substituents at the metal-chelating moiety of
the EGFR inhibitor and/or the ancillary acetylacetonate (acac) ligand.
To understand the effect of the different methylations on the redox
properties, the newly synthesized complexes were analyzed by cyclic
voltammetry and their behavior was studied in the presence of natural
low-molecular weight reducing agents. Furthermore, it was proven that
reduction to cobalt(II) resulted in a lower stability of the complexes
and subsequent release of the coordinated TKI ligand. Moreover, the
stability of the cobalt(III) prodrugs was investigated in blood serum
as well as in cell culture by diverse cell and molecular biological
methods. These analyses revealed that the complexes bearing the methylated
acac ligand are characterized by distinctly enhanced stability. Finally,
the cytotoxic activity of all new compounds was tested in cell culture
under normoxic and various hypoxic conditions, and their prodrug nature
could be correlated convincingly with the stability data. In summary,
the performed chemical modifications resulted in new cobalt(III) prodrugs
with strongly improved stabilities together with retained hypoxia-activatable
properties. This study presents the synthesis of
improved EGFR inhibitor
cobalt(III) prodrugs activatable by hypoxia. By modification of the
ancillary ligands, the redox potential could be lowered and the stability
of the complexes could be distinctly increased in blood serum. Their
physico-chemical properties were in detail characterized, the reductive
behavior analyzed by different methods and the biological properties
investigated in cancer cells.
Collapse
Affiliation(s)
- Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Hemma Schueffl
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Orsolya Dömötör
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Claudia Karnthaler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria
| | - Éva A Enyedy
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.,MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria.,Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|