1
|
Wang D, Guan H. Cuproptosis: A new mechanism for anti-tumour therapy. Pathol Res Pract 2025; 266:155790. [PMID: 39729956 DOI: 10.1016/j.prp.2024.155790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
As an indispensable trace metal element in the organism, copper acts as a key catalytic cofactor in a wide range of biological processes. Copper homeostasis disorders can be caused by either copper excess or deficiency, and copper homeostasis disorders will affect the normal physiological functions of cells and induce cell death through a variety of mechanisms, such as the emerging cuproptosis model. The imbalance of copper homeostasis will lead to the occurrence of cancer, and copper is a key factor in cell signalling, so copper is involved in the development of cancer by promoting cell proliferation, angiogenesis and metastasis, etc. The therapeutic role of Cuproptosis as a hotspot of research in cancer has also attracted much attention. Therefore, this paper comprehensively searches the literature to review the roles and mechanisms of Cuproptosis in the treatment of malignant tumours, aiming to provide new insights into the role and mechanism of Cuproptosis in anti-malignant tumour therapy and present novel ideas and methods.
Collapse
Affiliation(s)
- Dong Wang
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Haoran Guan
- First Teaching Hospital, Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Graduate School of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
2
|
Behar AE, Maayan G. A cocktail of Cu 2+- and Zn 2+-peptoid-based chelators can stop ROS formation for Alzheimer's disease therapy. Chem Sci 2024:d4sc04313h. [PMID: 39464602 PMCID: PMC11503657 DOI: 10.1039/d4sc04313h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
The formation of reactive oxygen species (ROS) in the brain is a major cause of neuropathologic degradation associated with Alzheimer's Disease (AD). It has been suggested that the copper (Cu)-amyloid-β (Aβ) peptide complex can lead to ROS formation in the brain. An external chelator for Cu that can extract Cu from the CuAβ complex should inhibit the formation of ROS, making Cu chelation an excellent therapeutic approach for AD. Such a chelator should possess high selectivity for Cu over zinc (Zn), which is also present within the synaptic cleft. However, such selectivity is generally hard to achieve in one molecule due to the similarities in the binding preferences of these two metal ions. As an alternative to monotherapy (where Cu extraction is performed using a single chelator), herein we describe a variation of combination therapy - a novel cocktail approach, which is based on the co-administration of two structurally different peptidomimetic chelators, aiming to target both Cu2+ and Zn2+ ions simultaneously but independently from each other. Based on rigorous spectroscopic experiments, we demonstrate that our peptidomimetic cocktail allows, for the first time, the complete and immediate inhibition of ROS production by the CuAβ complex in the presence of Zn2+. In addition, we further demonstrate the high stability of the cocktail under simulated physiological conditions and its resistance to proteolytic degradation by trypsin and report the water/n-octanol partition coefficient, initially assessing the blood-brain barrier (BBB) permeability potential of the chelators.
Collapse
Affiliation(s)
- Anastasia E Behar
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City 3200008 Haifa Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City 3200008 Haifa Israel
| |
Collapse
|
3
|
Bari S, Maity D, Mridha D, Roychowdhury T, Ghosh P, Roy P. Development of a bisphenol A based chemosensor for Al 3+ and its application in cell imaging and plant root imaging. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5642-5651. [PMID: 39113546 DOI: 10.1039/d4ay01058b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Bisphenol A is a fluorophoric platform that is used to develop chemosensors for various species. Herein, we report a bisphenol A based Schiff-base molecule, 4,4'-(propane-2,2-diyl)bis(2-((E)-((2-hydroxy-5-methylphenyl)imino)methyl)phenol) (Me-H4L), as a selective chemosensor for Al3+. Among the several metal ions, it shows a significant increment in its fluorescence intensity (50 fold) at 535 nm in the presence of Al3+ ions. The enhanced fluorescence was attributed to the CHEFF mechanism and inhibition of CN isomerization. The limit of detection value of Me-H4L for Al3+ was determined to be 9.65 μM. Its quantum yield and lifetime increased considerably in the presence of the cation. Some theoretical calculations were performed to explain the interaction between Al3+ and the probe. Furthermore, Me-H4L was applied in cell imaging studies using animal cells and plant roots.
Collapse
Affiliation(s)
- Sibshankar Bari
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| | - Dinesh Maity
- Department of Chemistry, Government General Degree College, Mangalkote, Purba Bardhaman-713132, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Pritam Ghosh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, Berlin 12489, Germany
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
4
|
Pahar S, Maayan G. An intramolecular cobalt-peptoid complex as an efficient electrocatalyst for water oxidation at low overpotential. Chem Sci 2024; 15:12928-12938. [PMID: 39148784 PMCID: PMC11323339 DOI: 10.1039/d4sc01182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Water electrolysis is the simplest way to produce hydrogen, as a clean renewable fuel. However, the high overpotential and slow kinetics hamper its applicability. Designing efficient and stable electrocatalysts for water oxidation (WO), which is the first and limiting step of the water splitting process, can overcome this limitation. However, the development of such catalysts based on non-precious metal ions is still challenging. Herein we describe a bio-inspired Co(iii)-based complex i.e., a stable and efficient molecular electrocatalyst for WO, constructed from a peptidomimetic oligomer called peptoid - N-substituted glycine oligomer - bearing two binding ligands, terpyridine and bipyridine, and one ethanolic group as a proton shuttler. Upon binding of a cobalt ion, this peptoid forms an intramolecular Co(iii) complex, that acts as an efficient electrocatalyst for homogeneous WO in aqueous phosphate buffer at pH 7 with a high faradaic efficiency of up to 92% at an overpotential of about 430 mV, which is the lowest reported for Co-based homogeneous WO electrocatalysts to date. We demonstrated the high stability of the complex during electrocatalytic WO and that the ethanolic side chain plays a key role in the stability and activity of the complex and also in facilitating water binding, thus mimicking an enzymatic second coordination sphere.
Collapse
Affiliation(s)
- Suraj Pahar
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City Haifa 3200008 Israel
| |
Collapse
|
5
|
Ghosh P. Boronic Acid-Linked Cell-Penetrating Peptide for Protein Delivery. ACS OMEGA 2024; 9:19051-19056. [PMID: 38708278 PMCID: PMC11064025 DOI: 10.1021/acsomega.3c09689] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Studying functional protein delivery into live cells is important, ranging from fundamental research to therapeutics. Cell-penetrating peptides (CPPs) are known to deliver proteins with applauded efficacy and have gained importance for applications in protein therapeutics and exploration of versatile cellular mechanisms. The primary aim of the work is to design a CPP as a tool and delivery vehicle for macromolecules, including proteins. In this work, boronic acid-linked cyclic deca arginine (cR10) is reported as an efficient CPP that exhibited 3-fold higher delivery of chemically synthesized ubiquitin (Ub) than pristine cR10-linked Ub, examined with live U2OS cells. As a futuristic plan, an artificial intelligence machine learning-based rationale has been designed and proposed.
Collapse
|
6
|
Ghosh S, Mahato S, Dutta T, Ahamed Z, Ghosh P, Roy P. Highly selective, sensitive and biocompatible rhodamine-based isomers for Al 3+ detection: A comparative study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123455. [PMID: 37813088 DOI: 10.1016/j.saa.2023.123455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Selective detection of a metal ion with high selectivity is of great importance to understand its existence and its role in many chemical and biological processes. We report here the synthesis, characterization and Al3+ sensing properties of two rhodamine-based isomers, (E)-2-((2-(allyloxy)benzylidene)amino)ethyl)-3',6'-bis(ethylamine)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (L-2-oxy) and (E)-2-((4-(allyloxy)benzylidene)amino)ethyl)-3',6'-bis(ethylamine)-2',7'-dimethylspiro[isoindoline-1,9'-xanthen]-3-one (L-4-oxy). L-2-oxyand L-4-oxy show pink coloration, significant enhancement in absorbance at 530 nm and fluorescence intensity at 553 nm in the presence of Al3+ among several cations. Quantum yield and lifetime of the probes increase in the presence of Al3+. LOD values have been determined as low as ∼1.0 nM for both the isomers. DFT study suggests that the cation induces opening of spirolactam ring resulting in the changes of the rhodamine dyes. Additional reason could be Chelation Enhanced Fluorescence (CHEF) effect due to the subsequent chelation of the metal ion. Between two isomers, L-2-oxy displays better sensing ability towards Al3+ in terms of fluorescence enhancement, limit of detection, lifetime enhancement. Both the probes have been utilized in cell imaging studies using rat skeletal myoblast cell line (L6 cell line).
Collapse
Affiliation(s)
- Sneha Ghosh
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Shephali Mahato
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Tiasha Dutta
- Department of Ecological Studies & International Centre for Ecological Engineering (ICEE), University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Zisan Ahamed
- Department of Ecological Studies & International Centre for Ecological Engineering (ICEE), University of Kalyani, Kalyani, Nadia 741235, West Bengal, India
| | - Pritam Ghosh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai Campus, Chennai 600127, Tamil Nadu, India
| | - Partha Roy
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
7
|
D'Amato A, Jiang L, Della Sala G, Kirshenbaum K, Costabile C, Furlan C, Gianolio E, Izzo I, De Riccardis F. Water-Soluble Chiral Cyclic Peptoids and Their Sodium and Gadolinium Complexes: Study of Conformational and Relaxometric Properties. J Org Chem 2023. [PMID: 37155983 DOI: 10.1021/acs.joc.2c02713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cyclic peptoids are macrocyclic oligomers of N-substituted glycines with specific folding abilities and excellent metal binding properties. In this work, we show how strategic positioning of chiral (S)- and (R)-(1-carboxyethyl)glycine units influences the conformational stability of water-soluble macrocyclic peptoids as sodium complexes. The reported results are based on nuclear magnetic resonance spectroscopy, extensive computational studies, and X-ray diffraction analysis using single crystals grown from aqueous solutions. The studies include 1H relaxometric investigations of hexameric cyclic peptoids in the presence of the Gd3+ ion to assess their thermodynamic stabilities and relaxivities.
Collapse
Affiliation(s)
- Assunta D'Amato
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Linhai Jiang
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6688, United States
| | - Giorgio Della Sala
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Kent Kirshenbaum
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6688, United States
| | - Chiara Costabile
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Chiara Furlan
- Department of Molecular Biotechnology and Health Sciences and Molecular Imaging Center, University of Turin, Via Nizza, 52, 10126 Turin, Italy
| | - Eliana Gianolio
- Department of Molecular Biotechnology and Health Sciences and Molecular Imaging Center, University of Turin, Via Nizza, 52, 10126 Turin, Italy
| | - Irene Izzo
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| |
Collapse
|
8
|
Ghosh P, Ruan G, Fridman N, Maayan G. Amide bond hydrolysis of peptoids. Chem Commun (Camb) 2022; 58:9922-9925. [PMID: 35979818 DOI: 10.1039/d2cc02717h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporating a chiral non-coordinating substitution at the N-terminal end within peptoids facilitates regio-selective amide bond hydrolysis mediated by a transition metal ion and/or an acidic buffer as evident by X-ray crystallographic analysis, supported by ESI-MS. This opens up a new direction for peptidomimetic compounds towards future application in chemistry, biology and medicine.
Collapse
Affiliation(s)
- Pritam Ghosh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| | - Guilin Ruan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 3200008, Israel.
| |
Collapse
|
9
|
Herlan CN, Feser D, Schepers U, Bräse S. Bio-instructive materials on-demand - combinatorial chemistry of peptoids, foldamers, and beyond. Chem Commun (Camb) 2021; 57:11131-11152. [PMID: 34611672 DOI: 10.1039/d1cc04237h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combinatorial chemistry allows for the rapid synthesis of large compound libraries for high throughput screenings in biology, medicinal chemistry, or materials science. Especially compounds from a highly modular design are interesting for the proper investigation of structure-to-activity relationships. Permutations of building blocks result in many similar but unique compounds. The influence of certain structural features on the entire structure can then be monitored and serve as a starting point for the rational design of potent molecules for various applications. Peptoids, a highly diverse class of bioinspired oligomers, suit perfectly for combinatorial chemistry. Their straightforward synthesis on a solid support using repetitive reaction steps ensures easy handling and high throughput. Applying this modular approach, peptoids are readily accessible, and their interchangeable side-chains allow for various structures. Thus, peptoids can easily be tuned in their solubility, their spatial structure, and, consequently, their applicability in various fields of research. Since their discovery, peptoids have been applied as antimicrobial agents, artificial membranes, molecular transporters, and much more. Studying their three-dimensional structure, various foldamers with fascinating, unique properties were discovered. This non-comprehensive review will state the most interesting discoveries made over the past years and arouse curiosity about what may come.
Collapse
Affiliation(s)
- Claudine Nicole Herlan
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Dominik Feser
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ute Schepers
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann von Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. .,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz Haber Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|