1
|
Bast EM, Marshall NT, Myers KO, Marsh LW, Hurtado MW, Van Zandt PA, Lehnert MS. Diverse material properties and morphology of moth proboscises relates to the feeding habits of some macromoth and other lepidopteran lineages. Interface Focus 2024; 14:20230051. [PMID: 38618232 PMCID: PMC11008959 DOI: 10.1098/rsfs.2023.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/03/2024] [Indexed: 04/16/2024] Open
Abstract
Insects have evolved unique structures that host a diversity of material and mechanical properties, and the mouthparts (proboscis) of butterflies and moths (Lepidoptera) are no exception. Here, we examined proboscis morphology and material properties from several previously unstudied moth lineages to determine if they relate to flower visiting and non-flower visiting feeding habits. Scanning electron microscopy and three-dimensional imaging were used to study proboscis morphology and assess surface roughness patterns on the galeal surface, respectively. Confocal laser scanning microscopy was used to study patterns of cuticular autofluorescence, which was quantified with colour analysis software. We found that moth proboscises display similar autofluorescent signals and morphological patterns in relation to feeding habits to those previously described for flower and non-flower visiting butterflies. The distal region of proboscises of non-flower visitors is brush-like for augmented capillarity and exhibited blue autofluorescence, indicating the possible presence of resilin and increased flexibility. Flower visitors have smoother proboscises and show red autofluorescence, an indicator of high sclerotization, which is adaptive for floral tube entry. We propose the lepidopteran proboscis as a model structure for understanding how insects have evolved a suite of morphological and material adaptations to overcome the challenges of acquiring fluids from diverse sources.
Collapse
Affiliation(s)
- Elaine M. Bast
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Natalie T. Marshall
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Kendall O. Myers
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | - Lucas W. Marsh
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| | | | | | - Matthew S. Lehnert
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH, USA
| |
Collapse
|
2
|
Oufiero CE. Ontogenetic changes in behavioral and kinematic components of prey capture strikes in a praying mantis. Evol Ecol 2021. [DOI: 10.1007/s10682-021-10135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Filippov AE, Kovalev A, Gorb SN. Numerical simulation of the pattern formation of the springtail cuticle nanostructures. J R Soc Interface 2019; 15:rsif.2018.0217. [PMID: 30089687 DOI: 10.1098/rsif.2018.0217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/13/2018] [Indexed: 11/12/2022] Open
Abstract
Springtails (Collembola) are known to exhibit complex hierarchical nanostructures of their exoskeleton surface that repels water and other fluids with remarkable efficiency. These nanostructures were previously widely studied due to their structure, chemistry and fluid-repelling properties. These ultrastructural and chemical studies revealed the involvement of different components in different parts of the nanopattern, but the overall process of self-assembly into the complex rather regular structures observed remains unclear. Here, we model this process from a theoretical point of view partially using solutions related to the so-called Tammes problem. By using densities of three different reacting substances, we obtained a typical morphology that is highly similar to the ones observed on the cuticle of some springtail species. These results are important not only for our understanding of the formation of hierarchical nanoscale structures in nature, but also for the fabrication of novel surface coatings.
Collapse
Affiliation(s)
- A E Filippov
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten, 1-9, 24118 Kiel, Germany .,Donetsk Institute for Physics and Engineering, NASU, Donetsk, Ukraine
| | - A Kovalev
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten, 1-9, 24118 Kiel, Germany
| | - S N Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten, 1-9, 24118 Kiel, Germany
| |
Collapse
|
4
|
Langowski JKA, Rummenie A, Pieters RPM, Kovalev A, Gorb SN, van Leeuwen JL. Estimating the maximum attachment performance of tree frogs on rough substrates. BIOINSPIRATION & BIOMIMETICS 2019; 14:025001. [PMID: 30706849 DOI: 10.1088/1748-3190/aafc37] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tree frogs can attach to smooth and rough substrates using their adhesive toe pads. We present the results of an experimental investigation of tree frog attachment to rough substrates, and of the role of mechanical interlocking between superficial toe pad structures and substrate asperities in the tree frog species Litoria caerulea and Hyla cinerea. Using a rotation platform setup, we quantified the adhesive and frictional attachment performance of whole frogs clinging to smooth, micro-, and macrorough substrates. The transparent substrates enabled quantification of the instantaneous contact area during detachment by using frustrated total internal reflection. A linear mixed-effects model shows that the adhesive performance of the pads does not differ significantly with roughness (for nominal roughness levels of 0-15 µm) in both species. This indicates that mechanical interlocking does not contribute to the attachment of whole animals. Our results show that the adhesion performance of tree frogs is higher than reported previously, emphasising the biomimetic potential of tree frog attachment. Overall, our findings contribute to a better understanding of the complex interplay of attachment mechanisms in the toe pads of tree frogs, which may promote future designs of tree-frog-inspired adhesives.
Collapse
Affiliation(s)
- Julian K A Langowski
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Schroeder TBH, Houghtaling J, Wilts BD, Mayer M. It's Not a Bug, It's a Feature: Functional Materials in Insects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1705322. [PMID: 29517829 DOI: 10.1002/adma.201705322] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Over the course of their wildly successful proliferation across the earth, the insects as a taxon have evolved enviable adaptations to their diverse habitats, which include adhesives, locomotor systems, hydrophobic surfaces, and sensors and actuators that transduce mechanical, acoustic, optical, thermal, and chemical signals. Insect-inspired designs currently appear in a range of contexts, including antireflective coatings, optical displays, and computing algorithms. However, as over one million distinct and highly specialized species of insects have colonized nearly all habitable regions on the planet, they still provide a largely untapped pool of unique problem-solving strategies. With the intent of providing materials scientists and engineers with a muse for the next generation of bioinspired materials, here, a selection of some of the most spectacular adaptations that insects have evolved is assembled and organized by function. The insects presented display dazzling optical properties as a result of natural photonic crystals, precise hierarchical patterns that span length scales from nanometers to millimeters, and formidable defense mechanisms that deploy an arsenal of chemical weaponry. Successful mimicry of these adaptations may facilitate technological solutions to as wide a range of problems as they solve in the insects that originated them.
Collapse
Affiliation(s)
- Thomas B H Schroeder
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, MI, 48109, USA
| | - Bodo D Wilts
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| |
Collapse
|
6
|
Betz O, Frenzel M, Steiner M, Vogt M, Kleemeier M, Hartwig A, Sampalla B, Rupp F, Boley M, Schmitt C. Adhesion and friction of the smooth attachment system of the cockroach Gromphadorhina portentosa and the influence of the application of fluid adhesives. Biol Open 2017; 6:589-601. [PMID: 28507055 PMCID: PMC5450327 DOI: 10.1242/bio.024620] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/27/2017] [Indexed: 11/20/2022] Open
Abstract
Two different measurement techniques were applied to study the attachment of the smooth foot pads of the Madagascar hissing cockroach Gromphadorhina portentosa The attachment of the non-manipulated adhesive organs was compared with that of manipulated ones (depletion or substitution by artificial secretions). From measurements of the friction on a centrifuge, it can be concluded that on nanorough surfaces, the insect appears to benefit from employing emulsions instead of pure oils to avoid excessive friction. Measurements performed with a nanotribometer on single attachment organs showed that, in the non-manipulated euplantulae, friction was clearly increased in the push direction, whereas the arolium of the fore tarsus showed higher friction in the pull direction. The surface of the euplantulae shows an imbricate appearance, whereupon the ledges face distally, which might contribute to the observed frictional anisotropy in the push direction. Upon depletion of the tarsal adhesion-mediating secretion or its replacement by oily fluids, in several cases, the anisotropic effect of the euplantula disappeared due to the decrease of friction forces in push-direction. In the euplantulae, adhesion was one to two orders of magnitude lower than friction. Whereas the tenacity was slightly decreased with depleted secretion, it was considerably increased after artificial application of oily liquids. In terms of adhesion, it is concluded that the semi-solid consistence of the natural adhesion-mediating secretion facilitates the detachment of the tarsus during locomotion. In terms of friction, on smooth to nanorough surfaces, the insects appear to benefit from employing emulsions instead of pure oils to avoid excessive friction forces, whereas on rougher surfaces the tarsal fluid rather functions in improving surface contact by keeping the cuticle compliable and compensating surface asperities of the substratum.
Collapse
Affiliation(s)
- Oliver Betz
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Melina Frenzel
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Michael Steiner
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Martin Vogt
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Malte Kleemeier
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, Bremen D-28359, Germany
| | - Andreas Hartwig
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, Bremen D-28359, Germany
- Universität Bremen, Fachbereich 2 Biologie/Chemie, Leobener Str., Bremen 28359, Germany
| | - Benjamin Sampalla
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Frank Rupp
- University Hospital Tübingen, Section Medical Materials Science and Technology, Osianderstr. 2-8, Tübingen D-72076, Germany
| | - Moritz Boley
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| | - Christian Schmitt
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, Tübingen D-72076, Germany
| |
Collapse
|
7
|
Koerner L, Garamszegi LZ, Heethoff M, Betz O. Divergent morphologies of adhesive predatory mouthparts of Stenus species (Coleoptera: Staphylinidae) explain differences in adhesive performance and resulting prey-capture success. Zool J Linn Soc 2017. [DOI: 10.1093/zoolinnean/zlx006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Speidel MW, Kleemeier M, Hartwig A, Rischka K, Ellermann A, Daniels R, Betz O. Structural and tribometric characterization of biomimetically inspired synthetic "insect adhesives". BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:45-63. [PMID: 28144564 PMCID: PMC5238622 DOI: 10.3762/bjnano.8.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 12/14/2016] [Indexed: 05/12/2023]
Abstract
Background: Based on previous chemical analyses of insect tarsal adhesives, we prepared 12 heterogeneous synthetic emulsions mimicking the polar/non-polar principle, analysed their microscopical structure and tested their adhesive, frictional, and rheological properties. Results: The prepared emulsions varied in their consistency from solid rubber-like, over soft elastic, to fluid (watery or oily). With droplet sizes >100 nm, all the emulsions belonged to the common type of macroemulsions. The emulsions of the first generation generally showed broader droplet-size ranges compared with the second generation, especially when less defined components such as petrolatum or waxes were present in the lipophilic fraction of the first generation of emulsions. Some of the prepared emulsions showed a yield point and were Bingham fluids. Tribometric adhesion was tested via probe tack tests. Compared with the "second generation" (containing less viscous components), the "first generation" emulsions were much more adhesive (31-93 mN), a finding attributable to their highly viscous components, i.e., wax, petrolatum, gelatin and poly(vinyl alcohol). In the second generation emulsions, we attained much lower adhesivenesses, ranging between 1-18 mN. The adhesive performance was drastically reduced in the emulsions that contained albumin as the protein component or that lacked protein. Tribometric shear tests were performed at moderate normal loads. Our measured friction forces (4-93 mN in the first and 0.1-5.8 mN in the second generation emulsions) were comparatively low. Differences in shear performance were related to the chemical composition and emulsion structure. Conclusion: By varying their chemical composition, synthetic heterogeneous adhesive emulsions can be adjusted to have diverse consistencies and are able to mimic certain rheological and tribological properties of natural tarsal insect adhesives.
Collapse
Affiliation(s)
- Matthias W Speidel
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Malte Kleemeier
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, D-28359 Bremen, Germany
| | - Andreas Hartwig
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, D-28359 Bremen, Germany
- Universität Bremen, Fachbereich 2 Biologie/Chemie, Leobener Str., 28359 Bremen, Germany
| | - Klaus Rischka
- Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, Wiener Str. 12, D-28359 Bremen, Germany
| | - Angelika Ellermann
- Pharmazeutisches Institut, Universität Tübingen, Pharmazeutische Technologie und Biopharmazie, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Rolf Daniels
- Pharmazeutisches Institut, Universität Tübingen, Pharmazeutische Technologie und Biopharmazie, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | - Oliver Betz
- Institut für Evolution und Ökologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
9
|
Michels J, Appel E, Gorb SN. Functional diversity of resilin in Arthropoda. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:1241-1259. [PMID: 27826498 PMCID: PMC5082342 DOI: 10.3762/bjnano.7.115] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/15/2016] [Indexed: 05/12/2023]
Abstract
Resilin is an elastomeric protein typically occurring in exoskeletons of arthropods. It is composed of randomly orientated coiled polypeptide chains that are covalently cross-linked together at regular intervals by the two unusual amino acids dityrosine and trityrosine forming a stable network with a high degree of flexibility and mobility. As a result of its molecular prerequisites, resilin features exceptional rubber-like properties including a relatively low stiffness, a rather pronounced long-range deformability and a nearly perfect elastic recovery. Within the exoskeleton structures, resilin commonly forms composites together with other proteins and/or chitin fibres. In the last decades, numerous exoskeleton structures with large proportions of resilin and various resilin functions have been described. Today, resilin is known to be responsible for the generation of deformability and flexibility in membrane and joint systems, the storage of elastic energy in jumping and catapulting systems, the enhancement of adaptability to uneven surfaces in attachment and prey catching systems, the reduction of fatigue and damage in reproductive, folding and feeding systems and the sealing of wounds in a traumatic reproductive system. In addition, resilin is present in many compound eye lenses and is suggested to be a very suitable material for optical elements because of its transparency and amorphousness. The evolution of this remarkable functional diversity can be assumed to have only been possible because resilin exhibits a unique combination of different outstanding properties.
Collapse
Affiliation(s)
- Jan Michels
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
| | - Esther Appel
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Institute of Zoology, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, D-24118 Kiel, Germany
| |
Collapse
|
10
|
Wolff JO, Schönhofer AL, Schaber CF, Gorb SN. Gluing the ‘unwettable’: soil-dwelling harvestmen use viscoelastic fluids for capturing springtails. J Exp Biol 2014; 217:3535-44. [DOI: 10.1242/jeb.108852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gluing can be a highly efficient mechanism of prey capture, as it should require less complex sensory–muscular feedback. Whereas it is well known in insects, this mechanism is much less studied in arachnids, except spiders. Soil-dwelling harvestmen (Opiliones, Nemastomatidae) bear drumstick-like glandular hairs (clavate setae) at their pedipalps, which were previously hypothesized to be sticky and used in prey capture. However, clear evidence for this was lacking to date. Using high-speed videography, we found that the harvestman Mitostoma chrysomelas was able to capture fast-moving springtails (Collembola) just by a slight touch of the pedipalp. Adhesion of single clavate setae increased proportionally with pull-off velocity, from 1 μN at 1 μm s−1 up to 7 μN at 1 mm s−1, which corresponds to the typical weight of springtails. Stretched glue droplets exhibited characteristics of a viscoelastic fluid forming beads-on-a-string morphology over time, similar to spider capture threads and the sticky tentacles of carnivorous plants. These analogies indicate that viscoelasticity is a highly efficient mechanism for prey capture, as it holds stronger the faster the struggling prey moves. Cryo-scanning electron microscopy of snap-frozen harvestmen with glued springtails revealed that the gluey secretions have a high affinity to wet the microstructured cuticle of collembolans, which was previously reported to be barely wettable for both polar and non-polar liquids. Glue droplets can be contaminated with the detached scaly setae of collembolans, which may represent a counter-adaptation against entrapment by the glue, similar to the scaly surfaces of Lepidoptera and Trichoptera (Insecta) facilitating escape from spider webs.
Collapse
Affiliation(s)
- Jonas O. Wolff
- Department of Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| | - Axel L. Schönhofer
- Department of Evolutionary Biology, Institute of Zoology, Johannes Gutenberg University Mainz, Joh.-von-Müller-Weg 6, D-55128 Mainz, Germany
| | - Clemens F. Schaber
- Department of Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| | - Stanislav N. Gorb
- Department of Functional Morphology and Biomechanics, University of Kiel, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| |
Collapse
|
11
|
Kleinteich T, Gorb SN. Tongue adhesion in the horned frog Ceratophrys sp. Sci Rep 2014; 4:5225. [PMID: 24921415 PMCID: PMC5381498 DOI: 10.1038/srep05225] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/21/2014] [Indexed: 11/09/2022] Open
Abstract
Frogs are well-known to capture elusive prey with their protrusible and adhesive tongues. However, the adhesive performance of frog tongues and the mechanism of the contact formation with the prey item remain unknown. Here we measured for the first time adhesive forces and tongue contact areas in living individuals of a horned frog (Ceratophrys sp.) against glass. We found that Ceratophrys sp. generates adhesive forces well beyond its own body weight. Surprisingly, we found that the tongues adhered stronger in feeding trials in which the coverage of the tongue contact area with mucus was relatively low. Thus, besides the presence of mucus, other features of the frog tongue (surface profile, material properties) are important to generate sufficient adhesive forces. Overall, the experimental data shows that frog tongues can be best compared to pressure sensitive adhesives (PSAs) that are of common technical use as adhesive tapes or labels.
Collapse
Affiliation(s)
- Thomas Kleinteich
- Christian-Albrechts-Universität Kiel, Functional Morphology and Biomechanics, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Christian-Albrechts-Universität Kiel, Functional Morphology and Biomechanics, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| |
Collapse
|
12
|
Koerner L, Laumann M, Betz O, Heethoff M. Loss of the sticky harpoon – COI sequences indicate paraphyly of Stenus with respect to Dianous (Staphylinidae, Steninae). ZOOL ANZ 2013. [DOI: 10.1016/j.jcz.2012.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Pulver S. ROVE BEETLE LIPS STICK TO THE SUBJECT. J Exp Biol 2012. [DOI: 10.1242/jeb.064113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Functional morphology and adhesive performance of the stick-capture apparatus of the rove beetles Stenus spp. (Coleoptera, Staphylinidae). ZOOLOGY 2012; 115:117-27. [PMID: 22445573 DOI: 10.1016/j.zool.2011.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/15/2011] [Accepted: 09/18/2011] [Indexed: 11/22/2022]
Abstract
The adhesive prey-capture apparatus of the representatives of the rove beetle genus Stenus (Coleoptera, Staphylinidae) is an outstanding example of biological adhesive systems. This unique prey-capture device is used for catching elusive prey by combining (i) hierarchically structured adhesive outgrowths, (ii) an adhesive secretion, and (iii) a network of cuticular fibres within the pad. The outgrowths arise from a pad-like cuticle and are completely immersed within the secretion. To date, the forces generated during the predatory strike of these beetles have only been estimated theoretically. In the present study, we used force transducers to measure both the compressive and adhesive forces during the predatory strike of two Stenus species. The experiments revealed that the compressive forces are low, ranging from 0.10 mN (Stenus bimaculatus) to 0.18 mN (Stenus juno), whereas the corresponding adhesive forces attain up to 1.0 mN in S. juno and 1.08 mN in S. bimaculatus. The tenacity or adhesive strength (adhesive force per apparent unit area) amounts to 51.9 kPa (S. bimaculatus) and 69.7 kPa (S. juno). S. juno beetles possess significantly smaller pad surface areas than S. bimaculatus but seem to compensate for this disadvantage by generating higher compressive forces. Consequently, S. juno beetles reach almost identical adhesive properties and an equal prey-capture success in attacks on larger prey. The possible functions of the various parts of the adhesive system during the adhesive prey-capture process are discussed in detail.
Collapse
|