1
|
Malinski KH, Elizabeth Moore M, Kingsolver JG. Heat stress and host-parasitoid interactions: lessons and opportunities in a changing climate. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101225. [PMID: 38936473 DOI: 10.1016/j.cois.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Ongoing climate change is increasing the frequency and magnitude of high-temperature events (HTEs), causing heat stress in parasitoids and their hosts. We argue that HTEs and heat stress should be viewed in terms of the intersecting life cycles of host and parasitoid. Recent studies illustrate how the biological consequences of a given HTE may vary dramatically depending on its timing within these lifecycles. The temperature sensitivity of host manipulation by parasitoids, and by viral endosymbionts of many parasitoids, can contribute to differing responses of hosts and parasitoids to HTEs. In some cases, these effects can result in reduced parasitoid success and increased host herbivory and may disrupt the ecological interactions between hosts and parasitoids. Because most studies to date involve endoparasitoids of aphid or lepidopteran hosts in agricultural systems, our understanding of heat responses of host-parasitoid interactions in natural systems is quite limited.
Collapse
Affiliation(s)
| | - Megan Elizabeth Moore
- Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center, 538 Tower Road, Ithaca, NY 14850, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
2
|
van Baaren J, Boivin G, Visser B, Le Lann C. Bet-hedging in parasitoids: when optimization is not the best strategy to cope with climatic extremes. CURRENT RESEARCH IN INSECT SCIENCE 2024; 5:100076. [PMID: 39027356 PMCID: PMC11256270 DOI: 10.1016/j.cris.2024.100076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 07/20/2024]
Abstract
Bet-hedging occurs when unreliable environments select for genotypes exhibiting a lower variance in fitness at the cost of a lower mean fitness for each batch of progeny. This means that at the level of the genotype, the production of mostly non-optimal phenotypes may be favored when at least some phenotypes are successful. As extreme unreliable climatic events are increasing because of climate change, it is pertinent to investigate the potential of bet-hedging strategies that allow insects to cope with climate change. Evidence for bet-hedging is scarce in most insects, including parasitoids, but the unique lifestyle and biology of parasitoids leads to the expectation that bet-hedging may occur frequently. Here, we evaluate a range of parasitoid traits for which a bet-hedging strategy could be envisioned even if bet-hedging has not been identified as such yet. Under-identification of bet-hedging in nature could have resulted from a major focus of studies on parasitoid life history evolution and foraging behavior on optimality models, predicting how mean fitness can be maximized. Most environmental factors, however, vary unpredictably. Life history and behavioral adaptations are thus expected to be affected by environmental stochasticity. In this paper, we review different aspects of parasitoid behavior, physiology, and life histories and ask the question whether parasitoid traits could have evolved under selection by environmental stochasticity.
Collapse
Affiliation(s)
- Joan van Baaren
- Université de Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| | - Guy Boivin
- Horticultural Research and Development Centre, Agriculture and Agrifood Canada, 430 Boul. Gouin, St-Jean-sur-Richelieu, Quebec, Canada, J3B 3E6
| | - Bertanne Visser
- Evolution and Ecophysiology Group, Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Cécile Le Lann
- Université de Rennes, CNRS, ECOBIO (écosystèmes, biodiversité, évolution) - UMR 6553, 263 Avenue du Général Leclerc, 35042 Rennes, France
| |
Collapse
|
3
|
McIntyre T, Andaloori L, Hood GR, Feder JL, Hahn DA, Ragland GJ, Toxopeus J. Cold tolerance and diapause within and across trophic levels: Endoparasitic wasps and their fly host have similar phenotypes. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104501. [PMID: 36921838 DOI: 10.1016/j.jinsphys.2023.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Low temperatures associated with winter can limit the survival of organisms, especially ectotherms whose body temperature is similar to their environment. However, there is a gap in understanding how overwintering may vary among groups of species that interact closely, such as multiple parasitoid species that attack the same host insect. Here, we investigate cold tolerance and diapause phenotypes in three endoparasitoid wasps of the apple maggot fly Rhagoletis pomonella (Diptera: Tephritidae): Utetes canaliculatus, Diachasma alloeum, and Diachasmimorpha mellea (Hymenoptera: Braconidae). Using a combination of respirometry and eclosion tracking, we found that all three wasp species exhibited the same three diapause duration phenotypes as the fly host. Weak (short duration) diapause was rare, with <5 % of all three wasp species prematurely terminating diapause at 21 °C. Most D.mellea (93 %) entered a more intense (longer duration) diapause that did not terminate within 100 d at this warm temperature. The majority of U.canaliculatus (92 %) and D. alloeum (72 %) averted diapause (non-diapause) at 21 °C. There was limited interspecific variation in acute cold tolerance among the three wasp species: wasps and flies had similarly high survival (>87 %) following exposure to extreme low temperatures (-20 °C) as long as their body fluids did not freeze. The three wasp species also displayed little interspecific variation in survival following prolonged exposure to mild chilling of 8 or more weeks at 4 °C. Our study thus documents a remarkable conservation of cold tolerance and diapause phenotypes within and across trophic levels.
Collapse
Affiliation(s)
- Trinity McIntyre
- Department of Biology, St. Francis Xavier University, 2321 Notre Dame Ave, Antigonish NS B2G 2W5, Canada
| | - Lalitya Andaloori
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver CO 80204, USA
| | - Glen R Hood
- Department of Biological Sciences, Wayne State University, 4841 Cass Avenue, Detroit MI 48201, USA
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Galvin Life Sciences Center, Notre Dame IN 46556, USA
| | - Daniel A Hahn
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville FL 32611, USA
| | - Gregory J Ragland
- Department of Integrative Biology, University of Colorado Denver, 1151 Arapahoe St., Denver CO 80204, USA
| | - Jantina Toxopeus
- Department of Biology, St. Francis Xavier University, 2321 Notre Dame Ave, Antigonish NS B2G 2W5, Canada.
| |
Collapse
|
4
|
Alford L, Roudine S, Pierre J, Burel F, van Baaren J. Landscape effects on the thermotolerance of carabid beetles and the role of behavioral thermoregulation. INSECT SCIENCE 2023; 30:251-263. [PMID: 35438840 PMCID: PMC10084217 DOI: 10.1111/1744-7917.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/25/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Physiological thermotolerance and behavioral thermoregulation are central to seasonal cold adaptation in ectothermic organisms. For species with enhanced mobility, behavioral responses may be of greater importance in the cold stress response. Employing the carabid beetles as a study organism, the current study compared physiological thermotolerance and behavioral thermoregulation in carabid species inhabiting cereal fields in different landscape contexts, from fine grain heterogeneous "complex" landscapes to homogenous "simple" landscapes. Physiological thermotolerance was determined via measurement of the CTmin and chill coma temperature. Behavioral responses to cold temperature exposure were determined employing a purpose built arena, and thoracic temperature measured to estimate the efficacy of the behavior as a form of behavioral thermoregulation. Results revealed an influence of landscape composition on the cold tolerance of carabid beetles, although species differed in their sensitivity to landscape intensification. A reduced effect of landscape on the thermotolerance of larger carabid beetles was observed, thought to be the consequence of greater mobility preventing local acclimation to microclimatic variation along the landscape intensification gradient. Investigation into behavioral thermoregulation of the 3 largest species revealed burrowing behavior to be the main behavioral response to cold stress, acting to significantly raise carabid body temperature. This finding highlights the importance of behavioral thermoregulation as a strategy to evade cold stress. The use of behavioral thermoregulation may negate the need to invest in physiological thermotolerance, further offering explanation for the lack of landscape effect on the physiological thermotolerance of larger carabids.
Collapse
Affiliation(s)
- Lucy Alford
- UMR 6553 ECOBIO, Université de Rennes IRennes CedexFrance
- School of Biological SciencesUniversity of BristolBristolUK
| | - Sacha Roudine
- UMR 6553 ECOBIO, Université de Rennes IRennes CedexFrance
| | | | | | | |
Collapse
|
5
|
Alford L, Louâpre P, Mougel F, van Baaren J. Measuring the evolutionary potential of a winter-active parasitic wasp to climate change. Oecologia 2020; 194:41-50. [PMID: 32960336 DOI: 10.1007/s00442-020-04761-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
In temperate climates, as a consequence of warming winters, an increasing number of ectothermic species are remaining active throughout winter months instead of diapausing, rendering them increasingly vulnerable to unpredictable cold events. One species displaying a shift in overwintering strategy is the parasitoid wasp and biological control agent Aphidius avenae. The current study aimed to better understand the consequence of a changing overwintering strategy on the evolutionary potential of an insect population to adapt to the cold stress events, set to increase in frequency, even during milder winters. Using a parental half-sibling breeding design, narrow-sense heritability of the cold tolerance, morphology and longevity of A. avenae was estimated. The heritability of cold tolerance was estimated at 0.07 (CI95% = [0.00; 0.25]) for the Critical Thermal Minima (CTmin) and 0.11 (CI95% = [0.00; 0.34]) for chill coma temperature; estimates much lower than those obtained for morphological traits (tibia length 0.20 (CI95% = [0.03; 0.37]); head width 0.23 (CI95% = [0.09; 0.39]); wing surface area 0.28 (CI95% = [0.11; 0.47])), although comparable with the heritability estimate of 0.12 obtained for longevity (CI95% = [0.00; 0.25]). The heritability estimates obtained thus suggest that A. avenae possesses low adaptive potential against cold stress. If such estimates are indicative of the evolutionary potential of A. avenae cold tolerance, more emphasis may be placed on adaptive phenotypic plasticity at the individual level to persist in a changing climate, with potential implications for the biological control function they provide.
Collapse
Affiliation(s)
- Lucy Alford
- UMR 6553, ECOBIO, Université de Rennes I, Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| | - Philippe Louâpre
- Biogéosciences, UMR 6282, CNRS, Université Bourgogne-Franche-Comté, Dijon, France
| | - Florence Mougel
- Laboratoire Evolution, Génome, Comportement et Ecologie (UMR CNRS-Univ. Paris-Sud-IRD, Univ. Paris-Saclay), 1 Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Joan van Baaren
- UMR 6553, ECOBIO, Université de Rennes I, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| |
Collapse
|
6
|
Amiresmaeili N, Romeis J, Collatz J. Cold tolerance of the drosophila pupal parasitoid Trichopria drosophilae. JOURNAL OF INSECT PHYSIOLOGY 2020; 125:104087. [PMID: 32634433 DOI: 10.1016/j.jinsphys.2020.104087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 05/11/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Trichopria drosophilae (Perkins) (Hymenoptera: Diapriidae) is a pupal parasitoid of drosophila flies recorded from several parts of the world. It is currently considered for augmentative biological programs to control the severe agricultural pest Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). Since D. suzukii has invaded regions that experience zero and sub-zero winter temperatures, cold tolerance of the parasitoid is an important aspect to consider. We characterized low temperature tolerance and overwintering capacity of a colony of T. drosophilae collected in Northern Switzerland. We used copper-constantan thermocouples to determine the supercooling point and pre-freeze mortality. Moreover, we subjected honey-fed and unfed adult T. drosophilae as well as developing stages within their drosophila host to short- and long-term acclimation conditions and assessed the duration of their survival at low temperatures. Finally, we exposed adult and sub-adult stages to winter conditions in a semi-field experiment and evaluated their survival. We found that T. drosophilae is chill susceptible like D. suzukii, but adults froze and survived at colder temperatures than those reported for D. suzukii. Adult parasitoids could tolerate several days of exposure to sub-zero temperatures and could reproduce afterwards, whereas sub-adult stages could survive longer periods under these conditions. The provision of honey and water enhanced the survival of adults and long-term acclimation led to longer survival in all stages. The semi-field experiment supported the results of the laboratory tests. Based on these results we suggest that in Central Europe, T. drosophilae survives winters mainly in developing stages but adults are likely able to tolerate short periods of low spring temperatures.
Collapse
Affiliation(s)
- Nasim Amiresmaeili
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland; University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Jörg Romeis
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland; University of Bern, Institute of Ecology and Evolution, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Jana Collatz
- Agroscope, Research Division Agroecology and Environment, Reckenholzstrasse 191, 8046 Zurich, Switzerland.
| |
Collapse
|
7
|
van Baaren J, Candolin U. Plasticity in a changing world: behavioural responses to human perturbations. CURRENT OPINION IN INSECT SCIENCE 2018; 27:21-25. [PMID: 30025630 DOI: 10.1016/j.cois.2018.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Most insect species are affected by Human Induced Rapid Environmental Changes (HIREC). Multiple responses to HIREC are observed in insects, such as modifications of their morphology, physiology, behavioural strategies or phenology. Most of the responses involve phenotypic plasticity rather than genetic evolution. Here, we review the involvement of behavioural plasticity in foraging, reproduction, habitat choice and dispersal; and how behavioural plasticity modifies social behaviour and inter-specific interactions. Although important, behavioural plasticity is rarely sufficient to cope with HIREC. An increasing number of studies find species to respond maladaptively or insufficiently to various anthropogenic disturbances, and less often is large degree of plasticity linked to success.
Collapse
Affiliation(s)
- Joan van Baaren
- UMR-CNRS 6553 ECOBIO, Université de Rennes, Campus de Beaulieu, Avenue du Gal Leclerc, 35042 Rennes cedex, France.
| | - Ulrika Candolin
- Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| |
Collapse
|