1
|
Moronuki Y, Kasahara R, Naka H, Suzuki MG. Identification and functional analysis of sex-determining genes in the spongy moth, Lymantria dispar (lepidoptera: Erebidae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104219. [PMID: 39579798 DOI: 10.1016/j.ibmb.2024.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
The spongy moth (Lymantria dispar) employs a female heterogametic sex-determination system, where the female sex-determining factor (F factor) is located on the W chromosome, and the male sex-determining factor (M factor) is located on the Z chromosome. The sex-determining capabilities of the F factor and M factor vary among subspecies. Consequently, L. dispar serves as an excellent model for studying the mechanisms underlying the evolution and diversity of sex-determining genes. However, the genes encoding the F and M factors, as well as the molecular functions of their translation products, remain unidentified. In this study, we identified a L. dispar Masculinizer ortholog (LdMasc) and found that this gene is highly expressed in male embryos during the sex-determination stage. When LdMasc expression was silenced using embryonic RNA interference (RNAi), the expression pattern of L. dispar doublesex (Lddsx), the master regulatory gene for sex differentiation, shifted from the male-specific form to the female-specific form in male embryos. To identify potential F factors, we screened for genes that were exclusively expressed in females across multiple tissues and located only within the female genome. This screening yielded four unigenes with sequences displaying high homology to each other. These unigenes formed a tandem repeat, comprising approximately 100 copies within a 200 kbp region of the W chromosome-derived contig. We designated these unigenes as Fet-W (female-specifically expressed transcript from the W chromosome). RT-PCR analysis revealed that Fet-W was expressed in a female-specific manner during the sex-determination stage. Suppression of Fet-W expression by embryonic RNAi led to an increase in LdMasc expression in females and a corresponding shift in dsx expression patterns from the female-specific to the male-specific form. These findings strongly suggest that the F factor in L. dispar is Fet-W, whereas the M factor is LdMasc.
Collapse
Affiliation(s)
- Yuto Moronuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 277-8562, Chiba, Japan
| | - Ryota Kasahara
- Department of Research for Parkinson's Disease & Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 113-8421, Tokyo, Japan
| | - Hideshi Naka
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, 680-8550, Tottori, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 277-8562, Chiba, Japan.
| |
Collapse
|
2
|
Du XX, Cao SK, Xiao HY, Yang CJ, Zeng AP, Chen G, Yu H. Feeding Spodoptera exigua larvae with gut-derived Escherichia sp. increases larval juvenile hormone levels inhibiting cannibalism. Commun Biol 2023; 6:1086. [PMID: 37884600 PMCID: PMC10603045 DOI: 10.1038/s42003-023-05466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Feed quality influences insect cannibalistic behavior and gut microbial communities. In the present study, Spodoptera exigua larvae were fed six different artificial diets, and one of these diets (Diet 3) delayed larval cannibalistic behavior and reduced the cannibalism ratio after ingestion. Diet 3-fed larvae had the highest gut bacterial load (1.396 ± 0.556 × 1014 bacteria/mg gut), whereas Diet 2-fed larvae had the lowest gut bacterial load (3.076 ± 1.368 × 1012 bacteria/mg gut). The gut bacterial composition and diversity of different diet-fed S. exigua larvae varied according to the 16S rRNA gene sequence analysis. Enterobacteriaceae was specific to the Diet 3-fed larval gut. Fifteen culturable bacterial isolates were obtained from the midgut of Diet 3-fed larvae. Of these, ten belonged to Escherichia sp. After administration with Diet 1- or 2-fed S. exigua larvae, two bacterial isolates (SePC-12 and -37) delayed cannibalistic behavior in both tested larval groups. Diet 2-fed larvae had the lowest Juvenile hormone (JH) concentration and were more aggressive against intraspecific predation. However, SePC-12 loading increased the JH hormone levels in Diet 2-fed larvae and inhibited their cannibalism. Bacteria in the larval midgut are involved in the stabilization of JH levels, thereby regulating host larval cannibalistic behavior.
Collapse
Affiliation(s)
- Xing-Xing Du
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Sheng-Kai Cao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Hua-Yan Xiao
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Ai-Ping Zeng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Gong Chen
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, 410128, Hunan, China.
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
3
|
Belousova I, Pavlushin S, Subbotina A, Rudneva N, Martemyanov V. Sex Specificity in Innate Immunity of Insect Larvae. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:6449196. [PMID: 34865031 PMCID: PMC8644026 DOI: 10.1093/jisesa/ieab097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 06/13/2023]
Abstract
The innate immunity of insects has been widely studied. Although the effect of sex on insect immunity has been extensively discussed, differences in immunity between the sexes of larvae insects remain largely unstudied. Studying larval sex differences in immunity may provide valuable information about the mechanisms underlying the insect immune system, which, in turn, can be valuable for the development and improvement of pest management. Here we compared the antibacterial activity in both the midgut tissue and cell-free hemolymph of Lymantria dispar L. (Lepidoptera: Erebidae) females and males at the larval stage without and after a challenge by entomopathogenic bacterium Bacillus thuringiensis Berliner. We also evaluated the sex-specific mortality of L. dispar induced by B. thuringiensis infection. We find that antibacterial activity in the midgut is activated by infection, but only in females. Thus, sex differences in immunity can have important effects even before sexual differentiation at adulthood.
Collapse
Affiliation(s)
- Irina Belousova
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
| | - Sergey Pavlushin
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
- Biological Institute, National Research Tomsk State University, Lenin Ave. 36, Tomsk, 634050, Russia
| | - Anna Subbotina
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
| | - Natalya Rudneva
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
| | - Vyacheslav Martemyanov
- Institute of Systematics and Ecology of Animals SB RAS, Frunze str. 11, Novosibirsk 630091, Russia
- Reshetnev Siberian State University of Science and Technology, Krasnoyarsky Rabochy Ave. 31, Krasnoyarsk 660037, Russia
| |
Collapse
|
4
|
McNichol BH, Sullivan BT, Munro HL, Montes CR, Nowak JT, Villari C, Gandhi KJK. Density‐dependent variability in an eruptive bark beetle and its value in predicting outbreaks. Ecosphere 2021. [DOI: 10.1002/ecs2.3336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Bailey H. McNichol
- D.B. Warnell School of Forestry and Natural Resources University of Georgia 180 East Green Street Athens Georgia 30602 USA
| | - Brian T. Sullivan
- Alexandria Forestry Center USDA Forest Service, Southern Research Station 2500 Shreveport Highway Pineville Louisiana 71360 USA
| | - Holly L. Munro
- D.B. Warnell School of Forestry and Natural Resources University of Georgia 180 East Green Street Athens Georgia 30602 USA
| | - Cristián R. Montes
- D.B. Warnell School of Forestry and Natural Resources University of Georgia 180 East Green Street Athens Georgia 30602 USA
| | - John T. Nowak
- Forest Health Protection USDA Forest Service 200 W.T. Weaver Boulevard Asheville North Carolina 28804 USA
| | - Caterina Villari
- D.B. Warnell School of Forestry and Natural Resources University of Georgia 180 East Green Street Athens Georgia 30602 USA
| | - Kamal J. K. Gandhi
- D.B. Warnell School of Forestry and Natural Resources University of Georgia 180 East Green Street Athens Georgia 30602 USA
| |
Collapse
|
5
|
Aguirre C, Olivares N, Hinrichsen P. An Efficient Duplex PCR Method for Sex Identification of the European Grapevine Moth Lobesia botrana (Lepidoptera: Tortricidae) at Any Developmental Stage. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2505-2510. [PMID: 32676656 DOI: 10.1093/jee/toaa155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 06/11/2023]
Abstract
Many genetic studies in insects require sex identification of individuals in all developmental stages. The most common sex chromosome system in lepidopterans is WZ/ZZ; the W chromosome is present only in females. Based on two W chromosome-specific short sequences (CpW2 and CpW5) described in Cydia pomonella (L.) (Lepidoptera: Tortricidae), we identified homologous female-specific sequences in Lobesia botrana Den. & Schiff, a polyphagous and very harmful species present in Chile since 2008. From this starting point, we extended the sequence information using the inverse PCR method, identifying the first W-specific sequences described up to now for the moth. Finally, we developed a duplex PCR method for rapid and sensitive determination of sex in L. botrana from larva to adult. The method showed a detection limit of 1 pg of genomic DNA; a blind panel of samples exhibited exact correspondence with the morphological identification. These results will be very useful for studies requiring sex-specific analyses at any developmental stage, contributing also to the understanding of gene expression in the insect, as well as to the eventual development of control protocols against the moth, such as the development of genetic sexing strains for the implementation of the sterile insect technique.
Collapse
Affiliation(s)
- Carlos Aguirre
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santiago, Chile
| | - Natalia Olivares
- Instituto de Investigaciones Agropecuarias, INIA-La Cruz, La Cruz, Quillota, Chile
| | - Patricio Hinrichsen
- Instituto de Investigaciones Agropecuarias, INIA-La Platina, Santiago, Chile
| |
Collapse
|
6
|
Deng Z, Zhang Y, Zhang M, Huang J, Li C, Ni X, Li X. Characterization of the First W-Specific Protein-Coding Gene for Sex Identification in Helicoverpa armigera. Front Genet 2020; 11:649. [PMID: 32636875 PMCID: PMC7317607 DOI: 10.3389/fgene.2020.00649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Helicoverpa armigera is a globally-important crop pest with a WZ (female)/ZZ (male) sex chromosome system. The absence of discernible sexual dimorphism in its egg and larval stages makes it impossible to address any sex-related theoretical and applied questions before pupation unless a W-specific sequence marker is available for sex diagnosis. To this end, we used one pair of morphologically pre-sexed pupae to PCR-screen 17 non-transposon transcripts selected from 4855 W-linked candidate reads identified by mapping a publicly available egg transcriptome of both sexes to the male genome of this species and detected the read SRR1015458.67499 only in the female pupa. Subsequent PCR screenings of this read and the previously reported female-specific RAPD (random amplified polymorphic DNA) marker AF18 with ten more pairs of pre-sexed pupae and different annealing positions and/or temperatures as well as its co-occurrence with the female-specific transcript splicing isoforms of doublesex gene of H. armigera (Hadsx) and amplification and sequencing of their 5′ unknown flanking sequences in three additional pairs of pre-sexed pupae verified that SRR1015458.67499 is a single copy protein-coding gene unique to W chromosome (named GUW1) while AF18 is a multicopy MITE transposon located on various chromosomes. Test application of GUW1 as a marker to sex 30 neonates of H. armigera yielded a female/male ratio of 1.14: 1.00. Both GUW1 and Hadsx splicing isoforms assays revealed that the H. armigera embryo cell line QB-Ha-E-1 is a male cell line. Taken together, GUW1 is not only a reliable DNA marker for sexing all stages of H. armigera and its cell lines, but also represents the first W-specific protein-coding gene in lepidopterans.
Collapse
Affiliation(s)
- Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yakun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Changyou Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Xinzhi Ni
- Agricultural Research Service, U.S. Department of Agriculture, Crop Genetics and Breeding Research Unit, University of Georgia - Tifton Campus, Tifton, GA, United States
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
7
|
Martínez-Solís M, Collado MC, Herrero S. Influence of Diet, Sex, and Viral Infections on the Gut Microbiota Composition of Spodoptera exigua Caterpillars. Front Microbiol 2020; 11:753. [PMID: 32435237 PMCID: PMC7218101 DOI: 10.3389/fmicb.2020.00753] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
The gut microbiota plays essential roles in processes related with metabolism, physiology, and immunity in all organisms, including insects. In the present work, we performed a broad analysis of the Spodoptera exigua gut microbiota, a major agricultural pest. We analyzed the influence of multiple parameters such as diet, geographic location, sex, or viral infections on S. exigua caterpillar gut microbiota composition. Our study revealed a high variability in bacterial composition among individuals, and a major influence of environmental bacteria (including those acquired through diet) on the gut microbiota composition, supporting previous studies that claim resident microbiota are lacking in caterpillars. Previous studies with laboratory-reared insects showed that changes in caterpillar gut bacterial composition affect the insecticidal properties of entomopathogenic viruses and bacteria. Our study revealed different microbiota composition in field insects carrying a natural viral infection with Spodoptera exigua nucleopolyhedrovirus (SeMNPV) and/or Spodoptera exigua iflavirus 1 (SeIV1). Few taxa can be specifically associated with the infection, suggesting microbiota influence the infective process of these natural pathogens, and providing new strategies for insect pest management.
Collapse
Affiliation(s)
- María Martínez-Solís
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Departamento de Genética, Universitat de València, Valencia, Spain
| | - María Carmen Collado
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Salvador Herrero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Departamento de Genética, Universitat de València, Valencia, Spain
| |
Collapse
|
8
|
Kurenshchikov DK, Martemyanov VV, Imranova EL. Features of the Far Eastern Gypsy Moth (Lymantria dispar L.) Population Outbreak. CONTEMP PROBL ECOL+ 2020. [DOI: 10.1134/s1995425520020067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Harvey‐Samuel T, Norman VC, Carter R, Lovett E, Alphey L. Identification and characterization of a Masculinizer homologue in the diamondback moth, Plutella xylostella. INSECT MOLECULAR BIOLOGY 2020; 29:231-240. [PMID: 31793118 PMCID: PMC7079136 DOI: 10.1111/imb.12628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/02/2019] [Accepted: 11/27/2019] [Indexed: 05/19/2023]
Abstract
Recently, a novel sex-determination system was identified in the silkworm (Bombyx mori) in which a piwi-interacting RNA (piRNA) encoded on the female-specific W chromosome silences a Z-linked gene (Masculinizer) that would otherwise initiate male sex-determination and dosage compensation. Masculinizer provides various opportunities for developing improved genetic pest management tools. A pest lepidopteran in which a genetic pest management system has been developed, but which would benefit greatly from such improved designs, is the diamondback moth, Plutella xylostella. However, Masculinizer has not yet been identified in this species. Here, focusing on the previously described 'masculinizing' domain of B. mori Masculinizer, we identify P. xylostella Masculinizer (PxyMasc). We show that PxyMasc is Z-linked, regulates sex-specific alternative splicing of doublesex and is necessary for male survival. Similar results in B. mori suggest this survival effect is possibly through failure to initiate male dosage compensation. The highly conserved function and location of this gene between these two distantly related lepidopterans suggests a deep role for Masculinizer in the sex-determination systems of the Lepidoptera.
Collapse
|