1
|
Gagne RB, Crooks KR, Craft ME, Chiu ES, Fountain-Jones NM, Malmberg JL, Carver S, Funk WC, VandeWoude S. Parasites as conservation tools. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13719. [PMID: 33586245 DOI: 10.1111/cobi.13719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Parasite success typically depends on a close relationship with one or more hosts; therefore, attributes of parasitic infection have the potential to provide indirect details of host natural history and are biologically relevant to animal conservation. Characterization of parasite infections has been useful in delineating host populations and has served as a proxy for assessment of environmental quality. In other cases, the utility of parasites is just being explored, for example, as indicators of host connectivity. Innovative studies of parasite biology can provide information to manage major conservation threats by using parasite assemblage, prevalence, or genetic data to provide insights into the host. Overexploitation, habitat loss and fragmentation, invasive species, and climate change are major threats to animal conservation, and all of these can be informed by parasites.
Collapse
Affiliation(s)
- Roderick B Gagne
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Jennifer L Malmberg
- Department of Veterinary Sciences, Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, Wyoming, USA
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - W Chris Funk
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Obbard DJ, Dudas G. The genetics of host-virus coevolution in invertebrates. Curr Opin Virol 2014; 8:73-8. [PMID: 25063907 PMCID: PMC4199324 DOI: 10.1016/j.coviro.2014.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/30/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
Abstract
Although viral infection and antiviral defence are ubiquitous, genetic data are currently unavailable from the vast majority of animal phyla-potentially biasing our overall perspective of the coevolutionary process. Rapid adaptive evolution is seen in some insect antiviral genes, consistent with invertebrate-virus 'arms-race' coevolution, but equivalent signatures of selection are hard to detect in viruses. We find that, despite the large differences in vertebrate, invertebrate, and plant immune responses, comparison of viral evolution fails to identify any difference among these hosts in the impact of positive selection. The best evidence for invertebrate-virus coevolution is currently provided by large-effect polymorphisms for host resistance and/or viral evasion, as these often appear to have arisen and spread recently, and can be favoured by virus-mediated selection.
Collapse
Affiliation(s)
- Darren J Obbard
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh, UK; Centre for Infection Immunity and Evolution, University of Edinburgh, Kings Buildings, Edinburgh, UK.
| | - Gytis Dudas
- Institute of Evolutionary Biology, University of Edinburgh, Kings Buildings, Edinburgh, UK
| |
Collapse
|
3
|
Valles SM, Bextine B. Examination of host genome for the presence of integrated fragments of Solenopsis invicta virus 1. J Invertebr Pathol 2011; 107:212-5. [PMID: 21536046 DOI: 10.1016/j.jip.2011.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/12/2011] [Accepted: 04/12/2011] [Indexed: 11/26/2022]
Abstract
A series of oligonucleotide primer pairs covering the entire genome of Solenopsis invicta virus 1 (SINV-1) were used to probe the genome of its host, S. invicta, for integrated fragments of the viral genome. All of the oligonucleotide primer sets yielded amplicons of anticipated size from cDNA created from an RNA template from SINV-1. However, no corresponding amplification was observed when genomic DNA (from 32 colonies of S. invicta) was used as template for the PCR amplifications. Host DNA integrity was verified by amplification of an ant-specific gene, SiGSTS1. The representation of fire ant colonies included both social forms, monogyne and polygyne, and those infected and uninfected with SINV-1. Furthermore, no amplification was observed from genomic DNA from ant samples collected from Argentina or the US. Thus, it appears that SINV-1 genome integration, or a portion therein, has not likely occurred within the S. invicta host genome.
Collapse
Affiliation(s)
- Steven M Valles
- Imported Fire Ant and Household Insects Research Unit, U.S. Department of Agriculture-Agricultural Research Service, 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | | |
Collapse
|