1
|
Inan C, Muratoglu H, Arif BM, Demirbag Z. Transcriptional analysis of the putative glycosyltransferase gene (amv248) of the Amsacta moorei entomopoxvirus. Virus Res 2017; 243:25-30. [PMID: 29020603 DOI: 10.1016/j.virusres.2017.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/05/2017] [Accepted: 10/07/2017] [Indexed: 11/17/2022]
Abstract
Amsacta moorei entomopoxvirus (AMEV), the most studied member of the genus Betaentomopoxvirus, was initially isolated from Red Hairy caterpillar larvae, Amsacta moorei. According to genome sequence and previous studies it was shown that amv248 encodes a putative glycosyltransferase that is the only conserved attachment protein in betaentomopoxviruses. Transcriptional analysis of the amv248 gene by RT-PCR and qPCR showed that transcription starts at 6h post infection (hpi). Also, transcription was not affected by a DNA replication inhibitor but was severely curtailed by a protein synthesis inhibitor. These results indicate that amv248 belongs to the intermediate class of gene expression. 5' and 3' untranslated regions analysis revealed that transcription initiates at position -126 relative to the translational start site, and ends between 50 and 83 bases after the stop codon. To narrow down the size and location of the gene's promoter, the upstream region as well as several different sized deletions thereof were generated and cloned upstream of a luciferase reporter gene. The constructs were used to measure the Firefly and Renilla luciferase activities in dual assays. The results showed that luciferase activity decreased when bases -198 to -235 of amv248 upstream region were missing. Sequence analysis among the intermediate gene promoters of AMEV showed that TTTAT(T/A)TT(T/A)2TTA is possibly a common motif, however, further investigations are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Cihan Inan
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey; Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Hacer Muratoglu
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Basil M Arif
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Zihni Demirbag
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey.
| |
Collapse
|
2
|
Photoreceptors mapping from past history till date. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:223-231. [PMID: 27387671 DOI: 10.1016/j.jphotobiol.2016.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022]
Abstract
The critical source of information in plants is light, which is perceived by receptors present in plants and animals. Receptors present in plant and animal system regulate important processes, and knowing the chromophores and signalling domains for each receptor could pave a way to trace out links between these receptors. The signalling mechanism for each receptor will give insight knowledge. This review has focussed on the photoreceptors from past history till date, that have evolved in the plant as well as in the animal system (to lesser extent). We have also focussed our attention on finding the links between the receptors by showing the commonalities as well as the differences between them, and also tried to trace out the links with the help of chromophores and signalling domain. Several photoreceptors have been traced out, which share similarity in the chromophore as well as in the signalling domain, which indicate towards the evolution of photoreceptors from one another. For instance, cryptochrome has been found to evolve three times from CPD photolyase as well as evolution of different types of phytochrome is a result of duplication and divergence. In addition, similarity between the photoreceptors suggested towards evolution from one another. This review has also discussed possible mechanism for each receptor i.e. how they regulate developmental processes and involve what kinds of regulators and also gives an insight on signalling mechanisms by these receptors. This review could also be a new initiative in the study of UVR8 associated studies.
Collapse
|
3
|
Muratoglu H, Nalcacioglu R, Arif BM, Demirbag Z. Genome-wide analysis of differential mRNA expression of Amsacta moorei entomopoxvirus, mediated by the gene encoding a viral protein kinase (AMV197). Virus Res 2016; 215:25-36. [PMID: 26820433 DOI: 10.1016/j.virusres.2016.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 01/19/2016] [Accepted: 01/19/2016] [Indexed: 11/16/2022]
Abstract
Insect-born entomopoxviruses (Fam: Poxviridae) are potentially important bio-pesticide against insect pests and expression vectors as well as vectors for transient human gene therapies including recombinant viral vaccines. For these reasons, it is necessary to understand the regulatory genes functions to improve its biotechnological potential. Here, we focused on the characterization of serine/threonine (Ser/Thr; ORF AMV197) protein kinase gene from the Amsacta moorei entomopoxvirus (AMEV), the type species of the genus Betaentomopoxvirus. Transcription of the parental and an amv197-null recombinant AMEV was compared by whole-genome gene expression microarray analysis. Blast2GO analysis reflected a broad diversity of upregulated and downregulated genes. Results showed that expression levels of 102 genes (45%) out of 226 tested genes changed significantly in the recombinant AMEV infected cells. Of these transcripts, 72 (70.58%) were upregulated and 30 (29.41%) were downregulated throughout the infection period. Genes involved in DNA repair, replication and nucleotide metabolism, transcription and RNA modification, and protein modification were mostly upregulated at different times in cells infected with the recombinant virus. Furthermore, transcription of all studied cellular genes including metabolism of apoptosis (Nedd2-like caspase, hemolin and elongation factor-1 alpha (ef1a) gene) was downregulated in the absence of amv197. Quantitative real time reverse transcription-PCR confirmed viral transcriptional changes obtained by microarray. The results of this study indicated that the product of amv197 appears to affect the transcriptional regulation of most viral and many cellular genes. Further investigations are, however, needed to narrow down the role of AMV197 throughout the infection process.
Collapse
Affiliation(s)
- Hacer Muratoglu
- Karadeniz Technical University, Faculty of Sciences, Department of Molecular Biology and Genetic, 61080 Trabzon, Turkey
| | - Remziye Nalcacioglu
- Karadeniz Technical University, Faculty of Sciences, Department of Biology, 61080 Trabzon, Turkey
| | - Basil M Arif
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Zihni Demirbag
- Karadeniz Technical University, Faculty of Sciences, Department of Biology, 61080 Trabzon, Turkey.
| |
Collapse
|
4
|
Özşahin E, Sezen K, Demirbağ Z. Amsacta moorei entomopoxvirus encodes a functional esterase (amv133) with protease activity. Intervirology 2015; 58:41-8. [PMID: 25591507 DOI: 10.1159/000369018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Lipolytic genes have been investigated in several viral genomes, and some of them show enzyme activity which can be used for various functions including the production of DNA replication metabolites, rescue from endosomes, and membrane fusion. Amsacta moorei entomopoxvirus (AMEV) replicates in nearly the entire insect body, especially in the adipose tissue. One of the open reading frames (ORFs) in the AMEV genome, amv133, encodes a putative lipase enzyme. In this study, we therefore investigate the enzyme activity of amv133. METHODS amv133 was aligned with known lipase genes and their homologs in entomopoxviruses. Expressed proteins were partially purified and assayed for lipase, esterase and protease. RESULTS We found that amv133 contains all the domains required for a functional lipase enzyme and that it shows a significant similarity with homologs in other entomopoxviruses. Since there is a similarity of the catalytic triad between lipases and serine proteases, we also investigated the protease activity of amv133. Lipase, esterase and protease assays showed that amv133 encodes a functional esterase enzyme with protease activity. CONCLUSION The current data show that amv133 is a conserved gene in all entomopoxvirus genomes sequenced so far and might contribute greatly to degrading the lipids or proteins and hence improve the virus infection.
Collapse
Affiliation(s)
- Emine Özşahin
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | | | | |
Collapse
|
5
|
Ozsahin E, Sezen K, Demirbag Z. Transcriptional analysis of ORF amv133 of Amsacta moorei entomopoxvirus. Arch Virol 2014; 159:2541-7. [DOI: 10.1007/s00705-014-2096-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/20/2014] [Indexed: 10/25/2022]
|
6
|
Perera S, Krell P, Demirbag Z, Nalçacioğlu R, Arif B. Induction of apoptosis by the Amsacta moorei entomopoxvirus. J Gen Virol 2013; 94:1876-1887. [DOI: 10.1099/vir.0.051888-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CF-70-B2 cells derived from the spruce budworm (Choristoneura fumiferana) undergo apoptosis when infected with Amsacta moorei entomopoxvirus (AMEV), as characterized by membrane blebbing, formation of apoptotic bodies, TdT-mediated dUTP nick-end labelling (TUNEL) staining, condensed chromatin and induction of caspase-3/7 activity. The apoptotic response was reduced when cells were infected with UV-inactivated AMEV, but not when infected in the presence of the DNA synthesis inhibitor, cytosine β-d-arabinofuranoside. Hence, only pre-DNA replication events were involved in inducing the antiviral response in CF-70-B2 cells. The virus eventually overcame the host’s antiviral response and replicated to high progeny virus titres accompanied by high levels of caspase-3/7 activity. The CF-70-B2 cells were less productive of progeny virus in comparison to LD-652, a Lymantria dispar cell line routinely used for propagation of AMEV. At late stages of infection, LD-652 cells also showed characteristics of apoptosis such as oligosomal DNA fragmentation, TUNEL staining, condensed chromatin and increased caspase-3/7 activity. Induction of apoptosis in LD-652 cells was dependent on viral DNA replication and/or late gene expression. A significantly reduced rate of infection was observed in the presence of general caspase inhibitors Q-VD-OPH and Z-VAD-FMK, indicating caspases may be involved in productive virus infection.
Collapse
Affiliation(s)
- Srini Perera
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | - Peter Krell
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | - Zihni Demirbag
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | | | - Basil Arif
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| |
Collapse
|
7
|
New insights into the evolution of Entomopoxvirinae from the complete genome sequences of four entomopoxviruses infecting Adoxophyes honmai, Choristoneura biennis, Choristoneura rosaceana, and Mythimna separata. J Virol 2013; 87:7992-8003. [PMID: 23678178 DOI: 10.1128/jvi.00453-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Poxviruses are nucleocytoplasmic large DNA viruses encompassing two subfamilies, the Chordopoxvirinae and the Entomopoxvirinae, infecting vertebrates and insects, respectively. While chordopoxvirus genomics have been widely studied, only two entomopoxvirus (EPV) genomes have been entirely sequenced. We report the genome sequences of four EPVs of the Betaentomopoxvirus genus infecting the Lepidoptera: Adoxophyes honmai EPV (AHEV), Choristoneura biennis EPV (CBEV), Choristoneura rosaceana EPV (CREV), and Mythimna separata EPV (MySEV). The genomes are 80% AT rich, are 228 to 307 kbp long, and contain 247 to 334 open reading frames (ORFs). Most genes are homologous to those of Amsacta moorei entomopoxvirus and encode several protein families repeated in tandem in terminal regions. Some genomes also encode proteins of unknown functions with similarity to those of other insect viruses. Comparative genomic analyses highlight a high colinearity among the lepidopteran EPV genomes and little gene order conservation with other poxvirus genomes. As with previously sequenced EPVs, the genomes include a relatively conserved central region flanked by inverted terminal repeats. Protein clustering identified 104 core EPV genes. Among betaentomopoxviruses, 148 core genes were found in relatively high synteny, pointing to low genomic diversity. Whole-genome and spheroidin gene phylogenetic analyses showed that the lepidopteran EPVs group closely in a monophyletic lineage, corroborating their affiliation with the Betaentomopoxvirus genus as well as a clear division of the EPVs according to the orders of insect hosts (Lepidoptera, Coleoptera, and Orthoptera). This suggests an ancient coevolution of EPVs with their insect hosts and the need to revise the current EPV taxonomy to separate orthopteran EPVs from the lepidopteran-specific betaentomopoxviruses so as to form a new genus.
Collapse
|
8
|
Biernat MA, Eker APM, van Oers MM, Vlak JM, van der Horst GTJ, Chaves I. A baculovirus photolyase with DNA repair activity and circadian clock regulatory function. J Biol Rhythms 2012; 27:3-11. [PMID: 22306969 DOI: 10.1177/0748730411429665] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cryptochromes and photolyases belong to the same family of flavoproteins but, despite being structurally conserved, display distinct functions. Photolyases use visible light to repair ultraviolet-induced DNA damage. Cryptochromes, however, function as blue-light receptors, circadian photoreceptors, or repressors of the CLOCK/BMAL1 heterodimer, the transcription activator controlling the molecular circadian clock. Here, we present evidence that the functional divergence between cryptochromes and photolyases is not so univocal. Chrysodeixis chalcites nucleopolyhedrovirus possesses 2 photolyase-like genes: phr1 and phr2. We show that PHR1 and PHR2 are able to bind the CLOCK protein. Only for PHR2, however, the physical interaction with CLOCK represses CLOCK/BMAL1-driven transcription. This result shows that binding of photolyase per se is not sufficient to inhibit the CLOCK/BMAL1 heterodimer. PHR2, furthermore, affects the oscillation of immortalized mouse embryonic fibroblasts, suggesting that PHR2 can regulate the molecular circadian clock. These findings are relevant for further understanding the evolution of cryptochromes and photolyases as well as behavioral changes induced in insects by baculoviruses.
Collapse
|
9
|
Biernat MA, Ros VID, Vlak JM, van Oers MM. Baculovirus cyclobutane pyrimidine dimer photolyases show a close relationship with lepidopteran host homologues. INSECT MOLECULAR BIOLOGY 2011; 20:457-464. [PMID: 21477200 DOI: 10.1111/j.1365-2583.2011.01076.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Cyclobutane pyrimidine dimer (CPD) photolyases repair ultraviolet (UV)-induced DNA damage using blue light. To get insight in the origin of baculovirus CPD photolyase (phr) genes, homologues in the lepidopteran insects Chrysodeixis chalcites, Spodoptera exigua and Trichoplusia ni were identified and characterized. Lepidopteran and baculovirus phr genes each form a monophyletic group, and together form a well-supported clade within the insect photolyases. This suggests that baculoviruses obtained their phr genes from an ancestral lepidopteran insect host. A likely evolutionary scenario is that a granulovirus, Spodoptera litura GV or a direct ancestor, obtained a phr gene. Subsequently, it was horizontally transferred from this granulovirus to several group II nucleopolyhedroviruses (NPVs), including those that infect noctuids of the Plusiinae subfamily.
Collapse
Affiliation(s)
- M A Biernat
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
10
|
Xu F, Ince IA, Boeren S, Vlak JM, van Oers MM. Protein composition of the occlusion derived virus of Chrysodeixis chalcites nucleopolyhedrovirus. Virus Res 2011; 158:1-7. [PMID: 21354223 DOI: 10.1016/j.virusres.2011.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 11/27/2022]
Abstract
Chrysodeixis chalcites nucleopolyhedrovirus (ChchNPV) is a group II NPV and its genome has 151 predicted open reading frames. In this study, the protein composition of ChchNPV occlusion derived virus (ODV) was determined by LC-MS/MS. Fifty-three proteins were identified in ChchNPV ODV particles. One ODV-protein is encoded by a gene so far unique to ChchNPV (Chch105). The two DNA photolyases PHR1 and PHR2, which are characteristic for ChchNPV and thought to be involved in repairing UV damage in viral DNA, were not detected in the ODVs. Comparison of the ODV proteins identified in ChchNPV and in three other baculoviruses enabled the identification of ten conserved ODV proteins (ODV-E18, ODV-E56, ODV-EC27, ODV-EC43, P6.9, P33, P49, P74, GP41, and VP39). In addition, the baculovirus per os infectivity factors PIF1, PIF2 and PIF3 were all detected in ChchNPV and these should be considered as conserved ODV proteins as well as they are absolutely required for oral infection. With the LC-MS/MS method used 22 viral proteins were detected, which were not identified as ODV proteins in previous studies.
Collapse
Affiliation(s)
- Fang Xu
- Laboratory of Virology, Wageningen University, P.O. Box 629, 6700 AP Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|