1
|
Cotto-Rivera RO, Joya N, Guo W, Hernández-Martínez P, Ferré J, Wang P. Calcofluor disrupts binding of Bt toxin Cry1Ac to midgut receptors in Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 180:104311. [PMID: 40220933 DOI: 10.1016/j.ibmb.2025.104311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
The parasporal crystal proteins (Cry proteins) from the soil bacterium Bacillus thuringiensis (Bt) are major insecticidal toxins in formulated Bt sprays and in current transgenic Bt crops widely used in agriculture. To understand the modes of action of Cry proteins and mechanisms of Cry resistance in insects, it is important to understand the specific interaction of Cry proteins with the specific receptors in the insect midgut. Previous studies have found that the fluorescent brightener Calcofluor could significantly reduce the insecticidal activity of Cry1Ac in the cabbage looper, Trichoplusia ni. In this study, the effects of Calcofluor in T. ni larvae on the structure of the midgut, the composition and abundance of midgut brush border membrane proteins, and the binding of midgut brush border membranes with Cry1Ac were examined. Finally, the inhibiting activity of Calcofluor on the binding of Cry1Ac to midgut binding sites was determined. The results from this study indicated that Calcofluor blocks the binding of Cry1Ac to the midgut binding sites by competitively binding the carbohydrate moieties that are involved in the specific binding of Cry1Ac to the midgut, which consequently inhibits the toxicity of Cry1Ac in larvae. Therefore, this study revealed that carbohydrate moieties on insect midgut brush border membranes play crucially important roles in the functional specific binding of Cry1Ac to the midgut receptors in the pathway of toxicity.
Collapse
Affiliation(s)
| | - Noelia Joya
- Department of Genetics, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, 46100, Spain
| | - Wei Guo
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA
| | - Patricia Hernández-Martínez
- Department of Genetics, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, 46100, Spain
| | - Juan Ferré
- Department of Genetics, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, 46100, Spain
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
2
|
Sleutel M, Sogues A, Van Gerven N, Jonsmoen UL, Aspholm M, Van Molle I, Fislage M, Theunissen L, Bellis N, Baquero D, Egelman E, Krupovic M, Wang J, Remaut H. Cryo-EM analysis of the Bacillus thuringiensis extrasporal matrix identifies F-ENA as a widespread family of endospore appendages across Firmicutes. RESEARCH SQUARE 2025:rs.3.rs-6050303. [PMID: 40162231 PMCID: PMC11952670 DOI: 10.21203/rs.3.rs-6050303/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
For over 100 years, Bacillus thuringiensis (Bt) has been used as an agricultural biopesticide to control pests caused by insect species in the orders of Lepidoptera, Diptera and Coleoptera. Under nutrient starvation, Bt cells differentiate into spores and associated toxin crystals that can adopt biofilm-like aggregates. We reveal that such Bt spore/toxin biofilms are embedded in a fibrous extrasporal matrix (ESM), and using cryoID, we resolved the structure and molecular identity of an uncharacterized type of pili, referred to here as Fibrillar ENdospore Appendages or 'F-ENA'. F-ENA are monomolecular protein polymers tethered to the exosporium of Bt and are decorated with a flexible tip fibrillum. Phylogenetic analysis reveals that F-ENA is widespread not only in the class Bacilli, but also in the class Clostridia, and the cryoEM structures of F-ENA filaments from Bacillus, Anaerovorax and Paenibaccilus reveal subunits with a generic head-neck domain structure, where the b-barrel neck of variable length latch onto a preceding head domain through short N-terminal hook peptides. In Bacillus, two collagen-like proteins (CLP) respectively tether F-ENA to the exosporium (F-Anchor), or constitute the tip fibrillum at the distal terminus of F-ENA (F-BclA). Sedimentation assays point towards F-ENA involvement in spore-spore clustering, likely mediated via F-BclA contacts and F-ENA bundling through the antiparallel interlocking of the head-neck units.
Collapse
|
3
|
Sleutel M, Sogues A, Van Gerven N, Jonsmoen UL, Van Molle I, Fislage M, Theunissen LD, Bellis NF, Baquero DP, Egelman EH, Krupovic M, Wang F, Aspholm M, Remaut H. Cryo-EM analysis of the Bacillus thuringiensis extrasporal matrix identifies F-ENA as a widespread family of endospore appendages across the Firmicutes phylum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637640. [PMID: 39990323 PMCID: PMC11844507 DOI: 10.1101/2025.02.11.637640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
For over 100 years, Bacillus thuringiensis (Bt) has been used as an agricultural biopesticide to control pests caused by insect species in the orders of Lepidoptera, Diptera and Coleoptera. Under nutrient starvation, Bt cells differentiate into spores and associated toxin crystals that can adopt biofilm-like aggregates. We reveal that such Bt spore/toxin biofilms are embedded in a fibrous extrasporal matrix (ESM), and using cryoID, we resolved the structure and molecular identity of an uncharacterized type of pili, referred to here as Fibrillar ENdospore Appendages or 'F-ENA'. F-ENA are monomolecular protein polymers tethered to the exosporium of Bt and are decorated with a flexible tip fibrillum. Phylogenetic analysis reveals that F-ENA is widespread not only in the class Bacilli, but also in the class Clostridia, and the cryoEM structures of F-ENA filaments from Bacillus, Anaerovorax and Paenibaccilus reveal subunits with a generic head-neck domain structure, where the β-barrel neck of variable length latch onto a preceding head domain through short N-terminal hook peptides. In Bacillus, two collagen-like proteins (CLP) respectively tether F-ENA to the exosporium (F-Anchor), or constitute the tip fibrillum at the distal terminus of F-ENA (F-BclA). Sedimentation assays point towards F-ENA involvement in spore-spore clustering, likely mediated via F-BclA contacts and F-ENA bundling through the antiparallel interlocking of the head-neck units.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Adrià Sogues
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | - Inge Van Molle
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Laurent Dirk Theunissen
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| | - Nathan F. Bellis
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham Birmingham, AL 35233, USA
| | - Diana P. Baquero
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics University of Virginia School of Medicine Charlottesville, VA 22903, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris 75015, France
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics University of Alabama at Birmingham Birmingham, AL 35233, USA
- Department of Biochemistry and Molecular Genetics University of Virginia School of Medicine Charlottesville, VA 22903, USA
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Cotto-Rivera RO, Joya N, Hernández-Martínez P, Ferré J, Wang P. Downregulation of APN1 and ABCC2 mutation in Bt Cry1Ac-resistant Trichoplusia ni are genetically independent. Appl Environ Microbiol 2024; 90:e0074224. [PMID: 39291983 PMCID: PMC11497812 DOI: 10.1128/aem.00742-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
The resistance to the insecticidal protein Cry1Ac from the bacterium Bacillus thuringiensis (Bt) in the cabbage looper, Trichoplusia ni, has previously been identified to be associated with a frameshift mutation in the ABC transporter ABCC2 gene and with altered expression of the aminopeptidase N (APN) genes APN1 and APN6, shown as missing of the 110-kDa APN1 (phenotype APN1¯) in larval midgut brush border membrane vesicles (BBMV). In this study, genetic linkage analysis identified that the APN1¯ phenotype and the ABCC2 mutation in Cry1Ac-resistant T. ni segregated independently, although they were always associated under Cry1Ac selection. The ABCC2 mutation and APN1¯ phenotype were separated into two T. ni strains respectively. Bioassays of the T. ni strains with Cry1Ac determined that the T. ni with the APN1¯ phenotype showed a low level resistance to Cry1Ac (3.5-fold), and the associated resistance is incompletely dominant in the background of the ABCC2 mutation. Whereas the ABCC2 mutation-associated resistance to Cry1Ac is at a moderate level, and the resistance is incompletely recessive in the genetic background of downregulated APN1. Analysis of Cry1Ac binding to larval midgut BBMV indicated that the midgut in larvae with the APN1¯ phenotype had reduced binding affinity for Cry1Ac, but the number of binding sites remained unchanged, and the midgut in larvae with the ABCC2 mutation had both reduced binding affinity and reduced number of binding sites for Cry1Ac. The reduced Cry1Ac binding to BBMV from larvae with the ABCC2 mutation or APN1¯ phenotype correlated with the lower levels of resistance.IMPORTANCEThe soil bacterium Bacillus thuringiensis (Bt) is an important insect pathogen used as a bioinsecticide for pest control. Bt genes coding for insecticidal proteins are the primary transgenes engineered into transgenic crops (Bt crops) to confer insect resistance. However, the evolution of resistance to Bt proteins in insect populations in response to exposure to Bt threatens the sustainable application of Bt biotechnology. Cry1Ac is a major insecticidal toxin utilized for insect control. Genetic mechanisms of insect resistance to Cry1Ac are complex and require to be better understood. The resistance to Cry1Ac in Trichoplusia ni is associated with a mutation in the ABCC2 gene and also associated with the APN expression phenotype APN1¯. This study identified the genetic independence of the APN1¯ phenotype from the ABCC2 mutation and isolated and analyzed the ABCC2 mutation-associated and APN1¯ phenotype-associated resistance traits in T. ni to provide new insights into the genetic mechanisms of Cry1Ac resistance in insects.
Collapse
Affiliation(s)
| | - Noelia Joya
- Department of Genetics, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Department of Genetics, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Department of Genetics, Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, New York, USA
| |
Collapse
|
5
|
Chen R, Zhuang Y, Wang M, Yu J, Chi D. Transcriptomic Analysis of the Response of the Dioryctria abietella Larva Midgut to Bacillus thuringiensis 2913 Infection. Int J Mol Sci 2024; 25:10921. [PMID: 39456705 PMCID: PMC11507524 DOI: 10.3390/ijms252010921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Dioryctria abietella Denis Schiffermuller (Lepidoptera: Pyralidae) is an oligophagous pest that mainly damages Pinaceae plants. Here, we investigated the effects of the Bacillus thuringiensis 2913 strain (Bt 2913), which carries the Cry1Ac, Cry2Ab, and Vip3Aa genes, on the D. abietella midgut transcriptome at 6, 12, and 24 h after infection. In total, 7497 differentially expressed genes (DEGs) were identified from the midgut transcriptome of D. abietella larvae infected with Bt 2913. Among these DEGs, we identified genes possibly involved in Bt 2913-induced perforation of the larval midgut. For example, the DEGs included 67 genes encoding midgut proteases involved in Cry/Vip toxin activation, 74 genes encoding potential receptor proteins that bind to insecticidal proteins, and 19 genes encoding receptor NADH dehydrogenases that may bind to Cry1Ac. Among the three transcriptomes, 88 genes related to metabolic detoxification and 98 genes related to immune defense against Bt 2913 infection were identified. Interestingly, 145 genes related to the 60S ribosomal protein were among the DEGs identified in the three transcriptomes. Furthermore, we performed bioinformatic analysis of zonadhesin, GST, CYP450, and CarE in the D. abietella midgut to determine their possible associations with Bt 2913. On the basis of the results of this analysis, we speculated that trypsin and other serine proteases in the D. abietella larval midgut began to activate Cry/Vip prototoxin at 6 h to 12 h after Bt 2913 ingestion. At 12 h after Bt 2913 ingestion, chymotrypsin was potentially involved in degrading the active core fragment of Vip3Aa toxin, and the detoxification enzymes in the larvae contributed to the metabolic detoxification of the Bt toxin. The ABC transporter and several other receptor-protein-related genes were also downregulated to increase resistance to Bt 2913. However, the upregulation of 60S ribosomal protein and heat shock protein expression weakened the resistance of larvae to Bt 2913, thereby enhancing the expression of NADH dehydrogenase and other receptor proteins that are highly expressed in the larval midgut and bind to activating toxins, including Cry1Ac. At 24 h after Bt 2913 ingestion, many activated toxins were bound to receptor proteins such as APN in the larval midgut, resulting in membrane perforation. Here, we clarified the mechanism of Bt 2913 infection in D. abietella larvae, as well as the larval immune defense response to Bt 2913, which provides a theoretical basis for the subsequent control of D. abietella using B. thuringiensis.
Collapse
Affiliation(s)
| | | | | | | | - Defu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China; (R.C.); (Y.Z.); (M.W.); (J.Y.)
| |
Collapse
|
6
|
Sommerfeld S, Dos Santos Tomais LF, Gomes LR, Silva MVC, Pedrosa IE, Vieira DS, Peluco AC, de Azevedo VAC, Fonseca BB. The Resistance of Bacillus Spores: Implications for the Strain-Specific Response to High-Performance Disinfectants. Curr Microbiol 2024; 81:339. [PMID: 39225833 DOI: 10.1007/s00284-024-03872-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Bacterial spores in materials and equipment pose significant biosecurity risks, making effective disinfection crucial. This study evaluated Ortho-phthalaldehyde (OPA) and a quaternary ammonia-glutaraldehyde solution (AG) for inactivating spores of Bacillus thuringiensis (BT), B. cereus (BC), and two strains of B. velezensis (BV1 and BV2). Spores of BV1 and BT were treated with 22.5 mg/m3 OPA by dry fumigation or 1 mg/mL AG by spray for 20 min, according to the manufacturer's recommendation. As no sporicidal effect was observed, OPA was tested at 112.5 mg/m3 for 40 min, showing effectiveness for BT but not for BV1. Minimum bactericidal concentration (MBC) tests revealed higher MBC values for glutaraldehyde, prompting an overnight test with 112.5 mg/m3 OPA by dry fumigation and 50 mg/mL AG by spray, using formaldehyde as a control. AG reduced all Bacillus strains, but with limited sporicidal effect. OPA was sporicidal for BT and BV1 but not for BC and BV2, indicating a strain-dependent effect. Formaldehyde performed better overall but did not completely inactivate BV2 spores. Our findings suggest that OPA and AG have potential as formaldehyde replacements in wet disinfection procedures.
Collapse
Affiliation(s)
- Simone Sommerfeld
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil.
| | - Lidianne Fabricia Dos Santos Tomais
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Lara Reis Gomes
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Maysa Vitória Cunha Silva
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Isabelle Ezequiel Pedrosa
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Danielle Silva Vieira
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | - Arthur Campoi Peluco
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| | | | - Belchiolina Beatriz Fonseca
- Faculty of Veterinary Medicine, Federal University of Uberlândia, Av. Pará, 1720, Campus Umuarama, Bloco 2 E, CEP 38405-320, Uberlândia, Minas Gerais, Brazil
| |
Collapse
|
7
|
Wang Z, Liu C, Shi Y, Huang M, Song Z, Simal-Gandara J, Li N, Shi J. Classification, application, multifarious activities and production improvement of lipopeptides produced by Bacillus. Crit Rev Food Sci Nutr 2024; 64:7451-7464. [PMID: 36876514 DOI: 10.1080/10408398.2023.2185588] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Lipopeptides, a class of compounds consisting of a peptide ring and a fatty acid chain, are secondary metabolites produced by Bacillus spp. As their hydrophilic and oleophilic properties, lipopeptides are widely used in food, medicine, environment and other industrial or agricultural fields. Compared with artificial synthetic surfactants, microbial lipopeptides have the advantages of low toxicity, high efficiency and versatility, resulting in urgent market demand and broad development prospect of lipopeptides. However, due to the complex metabolic network and precursor requirements of synthesis, the specific and strict synthesis pathway, and the coexistence of multiple homologous substances, the production of lipopeptides by microorganisms has the problems of high cost and low production efficiency, limiting the mass production of lipopeptides and large-scale application in industry. This review summarizes the types of Bacillus-produced lipopeptides and their biosynthetic pathways, introduces the versatility of lipopeptides, and describes the methods to improve the production of lipopeptides, including genetic engineering and optimization of fermentation conditions.
Collapse
Affiliation(s)
- Zhimin Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Yingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
8
|
Habteweld A, Kantor M, Kantor C, Handoo Z. Understanding the dynamic interactions of root-knot nematodes and their host: role of plant growth promoting bacteria and abiotic factors. FRONTIERS IN PLANT SCIENCE 2024; 15:1377453. [PMID: 38745927 PMCID: PMC11091308 DOI: 10.3389/fpls.2024.1377453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024]
Abstract
Root-knot nematodes (Meloidogyne spp., RKN) are among the most destructive endoparasitic nematodes worldwide, often leading to a reduction of crop growth and yield. Insights into the dynamics of host-RKN interactions, especially in varied biotic and abiotic environments, could be pivotal in devising novel RKN mitigation measures. Plant growth-promoting bacteria (PGPB) involves different plant growth-enhancing activities such as biofertilization, pathogen suppression, and induction of systemic resistance. We summarized the up-to-date knowledge on the role of PGPB and abiotic factors such as soil pH, texture, structure, moisture, etc. in modulating RKN-host interactions. RKN are directly or indirectly affected by different PGPB, abiotic factors interplay in the interactions, and host responses to RKN infection. We highlighted the tripartite (host-RKN-PGPB) phenomenon with respect to (i) PGPB direct and indirect effect on RKN-host interactions; (ii) host influence in the selection and enrichment of PGPB in the rhizosphere; (iii) how soil microbes enhance RKN parasitism; (iv) influence of host in RKN-PGPB interactions, and (v) the role of abiotic factors in modulating the tripartite interactions. Furthermore, we discussed how different agricultural practices alter the interactions. Finally, we emphasized the importance of incorporating the knowledge of tripartite interactions in the integrated RKN management strategies.
Collapse
Affiliation(s)
- Alemayehu Habteweld
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Northeast Area, Beltsville, MD, United States
| | - Mihail Kantor
- Plant Pathology and Environmental Microbiology Department, Pennsylvania State University, University Park, PA, United States
| | - Camelia Kantor
- Huck Institutes of the Life Sciences, Pennsylvania State University, State College, PA, United States
| | - Zafar Handoo
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Northeast Area, Beltsville, MD, United States
| |
Collapse
|
9
|
Wang Y, Yao Y, Zhang Y, Qian X, Guo D, Coates BS. A chromosome-level genome assembly of the soybean pod borer: insights into larval transcriptional response to transgenic soybean expressing the pesticidal Cry1Ac protein. BMC Genomics 2024; 25:355. [PMID: 38594617 PMCID: PMC11005160 DOI: 10.1186/s12864-024-10216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Genetically modified (GM) crop plants with transgenic expression of Bacillus thuringiensis (Bt) pesticidal proteins are used to manage feeding damage by pest insects. The durability of this technology is threatened by the selection for resistance in pest populations. The molecular mechanism(s) involved in insect physiological response or evolution of resistance to Bt is not fully understood. RESULTS To investigate the response of a susceptible target insect to Bt, the soybean pod borer, Leguminivora glycinivorella (Lepidoptera: Tortricidae), was exposed to soybean, Glycine max, expressing Cry1Ac pesticidal protein or the non-transgenic parental cultivar. Assessment of larval changes in gene expression was facilitated by a third-generation sequenced and scaffolded chromosome-level assembly of the L. glycinivorella genome (657.4 Mb; 27 autosomes + Z chromosome), and subsequent structural annotation of 18,197 RefSeq gene models encoding 23,735 putative mRNA transcripts. Exposure of L. glycinivorella larvae to transgenic Cry1Ac G. max resulted in prediction of significant differential gene expression for 204 gene models (64 up- and 140 down-regulated) and differential splicing among isoforms for 10 genes compared to unexposed cohorts. Differentially expressed genes (DEGs) included putative peritrophic membrane constituents, orthologs of Bt receptor-encoding genes previously linked or associated with Bt resistance, and those involved in stress responses. Putative functional Gene Ontology (GO) annotations assigned to DEGs were significantly enriched for 36 categories at GO level 2, respectively. Most significantly enriched cellular component (CC), biological process (BP), and molecular function (MF) categories corresponded to vacuolar and microbody, transport and metabolic processes, and binding and reductase activities. The DEGs in enriched GO categories were biased for those that were down-regulated (≥ 0.783), with only MF categories GTPase and iron binding activities were bias for up-regulation genes. CONCLUSIONS This study provides insights into pathways and processes involved larval response to Bt intoxication, which may inform future unbiased investigations into mechanisms of resistance that show no evidence of alteration in midgut receptors.
Collapse
Affiliation(s)
- Yangzhou Wang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Yao
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yunyue Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xueyan Qian
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics Research Unit, 532 Science II, 2310 Pammel Dr., Ames, IA, 50011, USA.
| |
Collapse
|
10
|
Fu BW, Xu L, Zheng MX, Shi Y, Zhu YJ. Engineering of Bacillus thuringiensis Cry2Ab toxin for improved insecticidal activity. AMB Express 2024; 14:15. [PMID: 38300478 PMCID: PMC10834393 DOI: 10.1186/s13568-024-01669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/13/2024] [Indexed: 02/02/2024] Open
Abstract
Bacillus thuringiensis Cry2Ab toxin was a widely used bioinsecticide to control lepidopteran pests all over the world. In the present study, engineering of Bacillus thuringiensis Cry2Ab toxin was performed for improved insecticidal activity using site-specific saturation mutation. Variants L183I were screened with lower LC50 (0.129 µg/cm2) against P. xylostella when compared to wild-type Cry2Ab (0.267 µg/cm2). To investigate the molecular mechanism behind the enhanced activity of variant L183I, the activation, oligomerization and pore-formation activities of L183I were evaluated, using wild-type Cry2Ab as a control. The results demonstrated that the proteolytic activation of L183I was the same as that of wild-type Cry2Ab. However, variant L183I displayed higher oligomerization and pore-formation activities, which was consistence with its increased insecticidal activity. The current study demonstrated that the insecticidal activity of Cry2Ab toxin could be assessed using oligomerization and pore-formation activities, and the screened variant L183I with improved activity might contribute to Cry2Ab toxin's future application.
Collapse
Affiliation(s)
- Bai-Wen Fu
- School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Lian Xu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Mei-Xia Zheng
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Yan Shi
- School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| | - Yu-Jing Zhu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China.
| |
Collapse
|
11
|
Zhang J, Liu M, Wen L, Hua Y, Zhang R, Li S, Zafar J, Pang R, Xu H, Xu X, Jin F. MiR-2b-3p Downregulated PxTrypsin-9 Expression in the Larval Midgut to Decrease Cry1Ac Susceptibility of the Diamondback Moth, Plutella xylostella (L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2263-2276. [PMID: 38235648 DOI: 10.1021/acs.jafc.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Crystal (Cry) toxins, produced by Bacillus thuringiensis, are widely used as effective biological pesticides in agricultural production. However, insects always quickly evolve adaptations against Cry toxins within a few generations. In this study, we focused on the Cry1Ac protoxin activated by protease. Our results identified PxTrypsin-9 as a trypsin gene that plays a key role in Cry1Ac virulence in Plutella xylostella larvae. In addition, P. xylostella miR-2b-3p, a member of the micoRNA-2 (miR-2) family, was significantly upregulated by Cry1Ac protoxin and targeted to PxTrypsin-9 downregulated its expression. The mRNA level of PxTrypsin-9, regulated by miR-2b-3p, revealed an increased tolerance of P. xylostella larvae to Cry1Ac at the post-transcriptional level. Considering that miR-2b and trypsin genes are widely distributed in various pest species, our study provides the basis for further investigation of the roles of miRNAs in the regulation of the resistance to Cry1Ac and other insecticides.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingyou Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Liang Wen
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yanyan Hua
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ruonan Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - ShuZhong Li
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Junaid Zafar
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Rui Pang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Fengliang Jin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
12
|
Shen C, Jin J, Huang Z, Meng M, Lin M, Hu X, Zhu Q, Xu C, Chen W, Lin J, Zhang X, Liu Y, Liu X. Screening and Identification of Anti-Idiotypic Nanobody Capable of Broad-Spectrum Recognition of the Toxin Binding Region of Lepidopteran Cadherins and Mimicking Domain II of Cry2Aa Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1582-1591. [PMID: 38221880 DOI: 10.1021/acs.jafc.3c07295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The widespread use of Bacillus thuringiensis toxins as insecticides has brought about resistance problems. Anti-idiotypic nanobody approaches provide new strategies for resistance management and toxin evolution. In this study, the monoclonal antibody generated against the receptor binding region Domain II of Cry2Aa toxin was used as a target to screen materials with insecticidal activity. After four rounds of screening, anti-idiotypic nanobody 1C12 was obtained from the natural alpaca nanobody phage display library. To better analyze the activity of 1C12, soluble 1C12 was expressed by the Escherichia coli BL21 (DE3). The results showed that 1C12 not only binds the midgut brush border membrane vesicles (BBMV) of two lepidopteran species and cadherin CR9-CR11 of three lepidopteran species but also inhibits Cry2Aa toxins from binding to CR9-CR11. The insect bioassay showed that soluble 1C12 caused 25.65% and 23.61% larvae mortality of Helicoverpa armigera and Plutella xylostella, respectively. Although 1C12 has low insecticidal activity, soluble 1C12 possesses the ability to screen a broad-spectrum recognition of the toxin binding region of lepidopteran cadherins and can be used for the identification of the toxin binding region of other lepidopteran cadherins and the subsequent evolution of Cry2Aa toxin. The present study demonstrates a new strategy to screen for the production of novel insecticides.
Collapse
Affiliation(s)
- Cheng Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Jiafeng Jin
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Ziyan Huang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Meng Meng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Manman Lin
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Xiaodan Hu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Qing Zhu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
- School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Chongxin Xu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Wei Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Johnson Lin
- School of Life Sciences, Discipline of Microbiology, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| | - Xiao Zhang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Yuan Liu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| | - Xianjin Liu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Food Quality and Safety of Jiangsu Province, Nanjing 210014, China
| |
Collapse
|
13
|
He X, Yang Y, Soberón M, Bravo A, Zhang L, Zhang J, Wang Z. Bacillus thuringiensis Cry9Aa Insecticidal Protein Domain I Helices α3 and α4 Are Two Core Regions Involved in Oligomerization and Toxicity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1321-1329. [PMID: 38175929 DOI: 10.1021/acs.jafc.3c08070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Bacillus thuringiensis Cry9 proteins show high insecticidal activity against different lepidopteran pests. Cry9 could be a valuable alternative to Cry1 proteins because it showed a synergistic effect with no cross-resistance. However, the pore-formation region of the Cry9 proteins is still unclear. In this study, nine mutations of certain Cry9Aa helices α3 and α4 residues resulted in a complete loss of insecticidal activity against the rice pest Chilo suppressalis; however, the protein stability and receptor binding ability of these mutants were not affected. Among these mutants, Cry9Aa-D121R, Cry9Aa-D125R, Cry9Aa-D163R, Cry9Aa-E165R, and Cry9Aa-D167R are unable to form oligomers in vitro, while the oligomers formed by Cry9Aa-R156D, Cry9Aa-R158D, and Cry9Aa-R160D are unstable and failed to insert into the membrane. These data confirmed that helices α3 and α4 of Cry9Aa are involved in oligomerization, membrane insertion, and toxicity. The knowledge of Cry9 pore-forming action may promote its application as an alternative to Cry1 insecticidal proteins.
Collapse
Affiliation(s)
- Xiang He
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanchao Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos 62250, Mexico
| | - Lihong Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Jie Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zeyu Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Zhao Y, Li P, Yao X, Li Y, Tian Y, Xie G, Deng Z, Xu S, Wei J, Li X, An S. V-ATPase E mediates Cry2Ab binding and toxicity in Helicoverpa armigera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105744. [PMID: 38225087 DOI: 10.1016/j.pestbp.2023.105744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024]
Abstract
Cry2Ab is one of the important alternative Bt proteins that can be used to manage insect pests resistant to Cry1A toxins and to expand the insecticidal spectrum of pyramided Bt crops. Previous studies have showed that vacuolar H+-ATPase subunits A and B (V-ATPase A and B) may be involved in Bt insecticidal activities. The present study investigated the role of V-ATPases subunit E in the toxicity of Cry2Ab in Helicoverpa amigera. RT-PCR analysis revealed that oral exposure of H. amigera larvae to Cry2Ab led to a significant reduction in the expression of H. armigera V-ATPase E (HaV-ATPase E). Ligand blot, homologous and heterologous competition experiments confirmed that HaV-ATPases E physically and specifically bound to activated Cry2Ab toxin. Heterologous expressing of HaV-ATPase E in Sf9 cells made the cell line more susceptible to Cry2Ab, whereas knockdown of the endogenous V-ATPase E in H. zea midgut cells decreased Cry2Ab's cytotoxicity against this cell line. Further in vivo bioassay showed that H. armigera larvae fed a diet overlaid with both Cry2Ab and E. coli-expressed HaV-ATPase E protein suffered significantly higher mortality than those fed Cry2Ab alone. These results support that V-ATPases E is a putative receptor of Cry2Ab and can be used to improve Cry2Ab toxicity and manage Cry2Ab resistance at least in H. armigera.
Collapse
Affiliation(s)
- Yuge Zhao
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China; State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Pin Li
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xue Yao
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuepu Li
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yu Tian
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Guiying Xie
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhongyuan Deng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuxia Xu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jizhen Wei
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
15
|
Wang S, Guo Y, Sun Y, Weng M, Liao Q, Qiu R, Zou S, Wu S. Identification of two Bacillus thuringiensis Cry3Aa toxin-binding aminopeptidase N from Rhynchophorus ferrugineus (Coleoptera: Curculionidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:615-625. [PMID: 37466033 DOI: 10.1017/s0007485323000299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rhynchophorus ferrugineus is a quarantine pest that mainly damages plants in tropical regions, which are essential economic resources. Cry3Aa has been used to control coleopteran pests and is known to be toxic to R. ferrugineus. The binding of the Cry toxin to specific receptors on the target insect plays a crucial role in the toxicological mechanism of Cry toxins. However, in the case of R. ferrugineus, the nature and identity of the receptor proteins involved remain unknown. In the present study, pull-down assays and mass spectrometry were used to identify two proteins of aminopeptidase N proteins (RfAPN2a and RfAPN2b) in the larval midguts of R. ferrugineus. Cry3Aa was able to bind to RfAPN2a (Kd = 108.5 nM) and RfAPN2b (Kd = 68.2 nM), as well as midgut brush border membrane vesicles (Kd = 482.5 nM). In silico analysis of both RfAPN proteins included the signal peptide and anchored sites for glycosyl phosphatidyl inositol. In addition, RfAPN2a and RfAPN2b were expressed in the human embryonic kidney 293T cell line, and cytotoxicity assays showed that the transgenic cells were not susceptible to activated Cry3Aa. Our results show that RfAPN2a and RfAPN2b are Cry3Aa-binding proteins involved in the Cry3Aa toxicity of R. ferrugineus. This study deepens our understanding of the action mechanism of Cry3Aa in R. ferrugineus larvae.
Collapse
Affiliation(s)
- Shaozhen Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 188-0002, Japan
| | - Yunzhu Sun
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Mingqing Weng
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Qiliao Liao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Ru Qiu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Shuangquan Zou
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China, 350002
| |
Collapse
|
16
|
Naing ZL, Soe ET, Zhang C, Niu L, Tang J, Ding Z, Yu S, Lu J, Fang F, Liang G. Cadherin Is a Binding Protein but Not a Functional Receptor of Bacillus thuringiensis Cry2Ab in Helicoverpa armigera. Appl Environ Microbiol 2023; 89:e0062523. [PMID: 37378519 PMCID: PMC10370303 DOI: 10.1128/aem.00625-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Midgut receptors play a critical role in the specificity of Cry toxins for individual insect species. Cadherin proteins are essential putative receptors of Cry1A toxins in lepidopteran larvae. Cry2A family members share common binding sites in Helicoverpa armigera, and one of them, Cry2Aa, has been widely reported to interact with midgut cadherin. Here, we studied the binding interaction and functional role of H. armigera cadherin in the mechanism of Cry2Ab toxicity. A region spanning from cadherin repeat 6 (CR6) to the membrane-proximal region (MPR) of cadherin protein was produced as six overlapping peptides to identify the specific binding regions of Cry2Ab. Binding assays showed that Cry2Ab binds nonspecifically to peptides containing CR7 and CR11 regions in a denatured state but binds specifically only to CR7-containing peptides in the native state. The peptides CR6-11 and CR6-8 were transiently expressed in Sf9 cells to assess the functional role of cadherin. Cytotoxicity assays showed that Cry2Ab is not toxic to the cells expressing any of the cadherin peptides. However, ABCA2-expressing cells showed high sensitivity to Cry2Ab toxin. Neither increased nor decreased sensitivity to Cry2Ab was observed when the peptide CR6-11 was coexpressed with the ABCA2 gene in Sf9 cells. Instead, treating ABCA2-expressing cells with a mixture of Cry2Ab and CR6-8 peptides resulted in significantly reduced cell death compared with treatment with Cry2Ab alone. Moreover, silencing of the cadherin gene in H. armigera larvae showed no significant effect on Cry2Ab toxicity, in contrast to the reduced mortality in ABCA2-silenced larvae. IMPORTANCE To improve the efficiency of production of a single toxin in crops and to delay the evolution of insect resistance to the toxin, the second generation of Bt cotton, expressing Cry1Ac and Cry2Ab, was introduced. Understanding the mode action of the Cry proteins in the insect midgut and the mechanisms insects use to overcome these toxins plays a crucial role in developing measures to counter them. Extensive studies have been conducted on the receptors of Cry1A toxins, but relatively little has been done about those of Cry2Ab. By showing the nonfunctional binding of cadherin protein with Cry2Ab, we have furthered the understanding of Cry2Ab receptors.
Collapse
Affiliation(s)
- Zaw Lin Naing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ei Thinzar Soe
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Caihong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Linlin Niu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jinrong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhongwei Ding
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Siqi Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jie Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Fengyun Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Mouawad C, Awad MK, Liegeois S, Ferrandon D, Sanchis-Borja V, El Chamy L. The NF-κB factor Relish is essential for the epithelial defenses protecting against δ-endotoxin dependent effects of Bacillus thuringiensis israelensis infection in the Drosophila model. Res Microbiol 2023; 174:104089. [PMID: 37348743 DOI: 10.1016/j.resmic.2023.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Bacillus thuringiensis israelensis is largely regarded as the most selective, safe and ecofriendly biopesticide used for the control of insect vectors of human diseases. Bti enthomopathogenicity relies on the Cry and Cyt δ-endotoxins, produced as crystalline inclusions during sporulation. Insecticidal selectivity of Bti is mainly ascribed to the binding of the Cry toxins to receptors in the gut of target insects. However, the contribution of epithelial defenses in limiting Bti side effects in non-target species remains largely unexplored. Here, taking advantage of the genetically tractable Drosophila melanogaster model and its amenability for deciphering highly conserved innate immune defenses, we unravel a central role of the NF-κB factor Relish in the protection against the effects of ingested Bti spores in a non-susceptible host. Intriguingly, our data indicate that the Bti-induced Relish response is independent of its canonical activation downstream of peptidoglycan sensing and does not involve its longstanding role in the regulation of antimicrobial peptides encoding genes. In contrast, our data highlight a novel enterocyte specific function of Relish that is essential for preventing general septicemia following Bti oral infections strictly when producing δ-endotoxins. Altogether, our data provide novel insights into Bti-hosts interactions of prominent interest for the optimization and sustainability of insects' biocontrol strategies.
Collapse
Affiliation(s)
- Carine Mouawad
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon.
| | - Mireille Kallassy Awad
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon.
| | - Samuel Liegeois
- Université de Strasbourg, Strasbourg, France; Modèles Insectes de l'Immunité Innée, UPR 9022 du CNRS, Strasbourg, France.
| | - Dominique Ferrandon
- Université de Strasbourg, Strasbourg, France; Modèles Insectes de l'Immunité Innée, UPR 9022 du CNRS, Strasbourg, France.
| | - Vincent Sanchis-Borja
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Laure El Chamy
- Unité de Recherche Environnement, Génomique et Protéomique, Faculté des Sciences, Université Saint-Joseph de Beyrouth-Liban, Mar Roukos, Mkalles, Beirut, Lebanon.
| |
Collapse
|
18
|
Dornelas ASP, Pestana JLT, de Souza Saraiva A, Barbosa RS, Cavallini GS, Gravato C, da Maia Soares AMV, Sarmento RA. The combined effects of microbial insecticides and sodium chloride on the development and emergence of Chironomus xanthus. PEST MANAGEMENT SCIENCE 2023; 79:2255-2263. [PMID: 36775861 DOI: 10.1002/ps.7407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Freshwater organisms are facing increasing salinity levels, not only due to natural environmental processes, but also human activities, which can cause several physiological adaptations to osmotic stress. Additionally, these organisms might also have to deal with contamination by microbial insecticides. Our main goal was to use Chironomus xanthus to assess the chronic effects of increasing the salinity and commercial formulations of the microbial insecticides based on Bacillus thuringiensis subs. kurstaki (Btk) and Beauveria bassiana (Bb) as active ingredients, respectively. RESULTS A significant interaction of growth was observed between the biopesticide based on Bb and NaCl on the larvae of C. xanthus. Single exposure to NaCl and each one of the formulations demonstrated deleterious impacts not only on larval development, but also on the emergence success and emergence time of this nontarget insect, with potential consequences for freshwater ecosystems due to cascading effects. CONCLUSION The chronic effects induced by both bioinsecticides show that these formulations can have environmental impacts on nontarget freshwater insects. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | | | - Rone Silva Barbosa
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| | - Grasiele Soares Cavallini
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| | - Carlos Gravato
- Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | | | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Produção Vegetal, Campus Universitário de Gurupi, 77402-970, Gurupi, Tocantins, Brazil
| |
Collapse
|
19
|
Pietz S, Kolbenschlag S, Röder N, Roodt AP, Steinmetz Z, Manfrin A, Schwenk K, Schulz R, Schäfer RB, Zubrod JP, Bundschuh M. Subsidy Quality Affects Common Riparian Web-Building Spiders: Consequences of Aquatic Contamination and Food Resource. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1346-1358. [PMID: 36946335 DOI: 10.1002/etc.5614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 05/27/2023]
Abstract
Anthropogenic stressors can affect the emergence of aquatic insects. These insects link aquatic and adjacent terrestrial food webs, serving as high-quality subsidy to terrestrial consumers, such as spiders. While previous studies have demonstrated that changes in the emergence biomass and timing may propagate across ecosystem boundaries, the physiological consequences of altered subsidy quality for spiders are largely unknown. We used a model food chain to study the potential effects of subsidy quality: Tetragnatha spp. were exclusively fed with emergent Chironomus riparius cultured in the absence or presence of either copper (Cu), Bacillus thuringiensis var. israelensis (Bti), or a mixture of synthetic pesticides paired with two basal resources (Spirulina vs. TetraMin®) of differing quality in terms of fatty acid (FA) composition. Basal resources shaped the FA profile of chironomids, whereas their effect on the FA profile of spiders decreased, presumably due to the capacity of both chironomids and spiders to modify (dietary) FA. In contrast, aquatic contaminants had negligible effects on prey FA profiles but reduced the content of physiologically important polyunsaturated FAs, such as 20:4n-6 (arachidonic acid) and 20:5n-3 (eicosapentaenoic acid), in spiders by approximately 30% in Cu and Bti treatments. This may have contributed to the statistically significant decline (40%-50%) in spider growth. The observed effects in spiders are likely related to prey nutritional quality because biomass consumption by spiders was, because of our experimental design, constant. Analyses of additional parameters that describe the nutritional quality for consumers such as proteins, carbohydrates, and the retention of contaminants may shed further light on the underlying mechanisms. Our results highlight that aquatic contaminants can affect the physiology of riparian spiders, likely by altering subsidy quality, with potential implications for terrestrial food webs. Environ Toxicol Chem 2023;42:1346-1358. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Sebastian Pietz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Sara Kolbenschlag
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Nina Röder
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Alexis P Roodt
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Zacharias Steinmetz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Alessandro Manfrin
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Klaus Schwenk
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Ralf B Schäfer
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Jochen P Zubrod
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Zubrod Environmental Data Science, Landau, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
20
|
Fonseca FCDA, Antonino JD, de Moura SM, Rodrigues-Silva PL, Macedo LLP, Gomes Júnior JE, Lourenço-Tessuti IT, Lucena WA, Morgante CV, Ribeiro TP, Monnerat RG, Rodrigues MA, Cuccovia IM, Mattar Silva MC, Grossi-de-Sa MF. In vivo and in silico comparison analyses of Cry toxin activities toward the sugarcane giant borer. BULLETIN OF ENTOMOLOGICAL RESEARCH 2023; 113:335-346. [PMID: 36883802 DOI: 10.1017/s000748532200061x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The sugarcane giant borer, Telchin licus licus, is an insect pest that causes significant losses in sugarcane crops and in the sugar-alcohol sector. Chemical and manual control methods are not effective. As an alternative, in the current study, we have screened Bacillus thuringiensis (Bt) Cry toxins with high toxicity against this insect. Bioassays were conducted to determine the activity of four Cry toxins (Cry1A (a, b, and c) and Cry2Aa) against neonate T. licus licus larvae. Notably, the Cry1A family toxins had the lowest LC50 values, in which Cry1Ac presented 2.1-fold higher activity than Cry1Aa, 1.7-fold larger than Cry1Ab, and 9.7-fold larger than Cry2Aa toxins. In silico analyses were performed as a perspective to understand putative interactions between T. licus licus receptors and Cry1A toxins. The molecular dynamics and docking analyses for three putative aminopeptidase N (APN) receptors (TlAPN1, TlAPN3, and TlAPN4) revealed evidence for the amino acids that may be involved in the toxin-receptor interactions. Notably, the properties of Cry1Ac point to an interaction site that increases the toxin's affinity for the receptor and likely potentiate toxicity. The interacting amino acid residues predicted for Cry1Ac in this work are probably those shared by the other Cry1A toxins for the same region of APNs. Thus, the presented data extend the existing knowledge of the effects of Cry toxins on T. licus licus and should be considered in further development of transgenic sugarcane plants resistant to this major occurring insect pest in sugarcane fields.
Collapse
Affiliation(s)
- Fernando Campos de Assis Fonseca
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Biology Cellular Department, Federal University of Brasília (UnB), Brasília, DF, Brazil
- Federal Institut of Goias (IFG), Águas Lindas, GO, Brazil
| | - José Dijair Antonino
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Biology Cellular Department, Federal University of Brasília (UnB), Brasília, DF, Brazil
- Federal Rural University of Pernambuco (UFRPE), Recife, PE, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Stéfanie Menezes de Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Paolo Lucas Rodrigues-Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Leonardo Lima Pepino Macedo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - José Edílson Gomes Júnior
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- Biology Cellular Department, Federal University of Brasília (UnB), Brasília, DF, Brazil
| | - Isabela Tristan Lourenço-Tessuti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Wagner Alexandre Lucena
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Carolina Viana Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Embrapa Semiarid, Petrolina, PE, Brazil
| | - Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | | | | | | | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
- Catholic University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
21
|
Alba-Tercedor J, Vilchez S. Anatomical damage caused by Bacillus thuringiensis variety israelensis in yellow fever mosquito Aedes aegypti (L.) larvae revealed by micro-computed tomography. Sci Rep 2023; 13:8759. [PMID: 37253797 DOI: 10.1038/s41598-023-35411-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/17/2023] [Indexed: 06/01/2023] Open
Abstract
With micro-computed tomography techniques, using the single-distance phase-retrieval algorithm phase contrast, we reconstructed enhanced rendered images of soft tissues of Aedes aeqypti fourth instar larvae after Bti treatment. In contrast to previous publications based on conventional microscopy, either optical or electron microscopy, which were limited to partial studies, mostly in the form of histological sections, here we show for the first time the effects of Bti on the complete internal anatomy of an insect. Using 3D rendered images it was possible to study the effect of the bacterium in tissues and organs, not only in sections but also as a whole. We compared the anatomy of healthy larvae with the changes undergone in larvae after being exposed to Bti (for 30 min, 1 h and 6 h) and observed the progressive damage that Bti produce. Damage to the midgut epithelia was confirmed, with progressive swelling of the enterocytes, thickening epithelia, increase of the vacuolar spaces and finally cell lysis, producing openings in the midgut walls. Simultaneously, the larvae altered their motility, making it difficult for them to rise to the surface and position the respiratory siphon properly to break surface tension and breathe. Internally, osmotic shock phenomena were observed, resulting in a deformation of the cross-section shape, producing the appearance of a wide internal space between the cuticle and the internal structures and a progressive collapse of the tracheal trunks. Taken together, these results indicate the death of the larvae, not by starvation as a consequence of the destruction of the epithelia of the digestive tract as previously stated, but due to a synergic catastrophic multifactor process in addition to asphyxia due to a lack of adequate gas exchange.
Collapse
Affiliation(s)
- Javier Alba-Tercedor
- Department of Zoology, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| | - Susana Vilchez
- Institute of Biotechnology and Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
22
|
Kolbenschlag S, Bollinger E, Gerstle V, Brühl CA, Entling MH, Schulz R, Bundschuh M. Impact across ecosystem boundaries - Does Bti application change quality and composition of the diet of riparian spiders? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162351. [PMID: 36822417 DOI: 10.1016/j.scitotenv.2023.162351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Emerging aquatic insects link aquatic and adjacent terrestrial food webs by subsidizing terrestrial predators with high-quality prey. One of the main constituents of aquatic subsidy, the non-biting midges (Chironomidae), showed altered emergence dynamics in response to the mosquito control agent Bacillus thuringiensis var. israelensis (Bti). As riparian spiders depend on aquatic subsidy, they may be affected by such changes in prey availability. Thus, we conducted a field study in twelve floodplain pond mesocosms (FPMs), six were treated with Bti (2.88 × 109 ITU/ha, VectoBac WDG) three times, to investigate if the Bti-induced shift in chironomid emergence dynamics is reflected in their nutritional value and in the diet of riparian spiders. We measured the content of proteins, lipids, glycogen, and carbohydrates in emerged Chironomidae, and determined the stable isotope ratios of female Tetragnatha extensa, a web-building spider living in the riparian vegetation of the FPMs. We analysed the proportion of aquatic prey in spiders' diet, niche size, and trophic position. While the content of nutrients and thus the prey quality was not significantly altered by Bti, effects on the spiders' diet were observed. The trophic position of T. extensa from Bti-treated FPMs was lower compared to the control while the aquatic proportion was only minimally reduced. We assume that spiders fed more on terrestrial prey but also on other aquatic organisms such as Baetidae, whose emergence was unaffected by Bti. In contrast to the partly predaceous Chironomidae, consumption of aquatic and terrestrial primary consumers potentially explains the observed lower trophic position of spiders from Bti-treated FPMs. As prey organisms vary in their quality the suggested dietary shift could transfer previously observed effects of Bti to riparian spiders conceivably affecting their populations. Our results further support that anthropogenic stressors in aquatic ecosystems may translate to terrestrial predators through aquatic subsidy.
Collapse
Affiliation(s)
- Sara Kolbenschlag
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstr. 7, D-76829 Landau, Germany
| | - Eric Bollinger
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstr. 7, D-76829 Landau, Germany
| | - Verena Gerstle
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstr. 7, D-76829 Landau, Germany
| | - Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstr. 7, D-76829 Landau, Germany
| | - Martin H Entling
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstr. 7, D-76829 Landau, Germany
| | - Ralf Schulz
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstr. 7, D-76829 Landau, Germany; Eußerthal Ecosystem Research Station, RPTU Kaiserslautern-Landau, Birkenthalstr. 13, D-76857 Eußerthal, Germany
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Fortstr. 7, D-76829 Landau, Germany; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, SWE-75007 Uppsala, Sweden.
| |
Collapse
|
23
|
Li ET, Wu HJ, Wang ZM, Li KB, Zhang S, Cao YZ, Yin J. PI3K/Akt/CncC signaling pathway mediates the response to EPN-Bt infection in Holotrichia parallela larvae. PEST MANAGEMENT SCIENCE 2023; 79:1660-1673. [PMID: 36565065 DOI: 10.1002/ps.7337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Combining the entomopathogenic nematode (EPN), Heterorhabditis beicherriana LF strain, and Bacillus thuringiensis (Bt) HBF-18 strain is a practical strategy to manage the larvae of Holotrichia parallela Motschulsky (white grubs). However, the mechanisms underlying the larval defense response to this combined biocontrol strategy are unknown. RESULTS The activities of some antioxidant enzymes (SOD, POD, CAT) and some detoxifying enzymes (AChE, P-450, CarE, GST) in grubs showed an activation-inhibition trend throughout the EPN-Bt exposure time course. Eight potentially key antioxidant and detoxifying enzyme genes in response to EPN-Bt infection were identified from the midgut of grubs through RNA sequencing. After silencing CAT, CarE18, and GSTs1, the enzyme activities were significantly decreased by 30.29%, 68.80%, and 34.63%, respectively. Meanwhile, the mortality of grubs was increased by 18.40%, 46.30%, and 42.59% after exposure to EPN-Bt for 1 day. Interestingly, the PI3K/Akt signaling pathway was significantly enriched in KEGG enrichment analysis, and the expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), cap 'n' collar isoform-C (CncC), kelch-like ECH-associated protein 1 (Keap1), and CarE18 were all up-regulated when exposed to EPN-Bt for 1 day. Furthermore, RNAi-mediated PI3K silencing showed a similar down-regulated trend between PI3K/Akt/CncC and CarE18. Moreover, silencing PI3K rendered grubs more susceptible to EPN-Bt and accelerated symbiotic bacteria multiplication in grubs. CONCLUSION These results suggest that the PI3K/Akt/CncC pathway mediates the expression of CarE18 and participates in the defense response of H. parallela larvae against EPN-Bt infection. Our data provide valuable insights into the design of appropriate management strategies for this well-known agricultural pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Er-Tao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han-Jia Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke-Bin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ya-Zhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
24
|
Jin L, Zhang BW, Lu JW, Liao JA, Zhu QJ, Lin Y, Yu XQ. The mechanism of Cry41-related toxin against Myzus persicae based on its interaction with Buchnera-derived ATP-dependent 6-phosphofructokinase. PEST MANAGEMENT SCIENCE 2023; 79:1684-1691. [PMID: 36602054 DOI: 10.1002/ps.7340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/29/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Myzus persicae (Hemiptera: Aphididae) is one of the most notorious pests of many crops worldwide. Most Cry toxins produced by Bacillus thuringiensis show very low toxicity to M. persicae; however, a study showed that Cry41-related toxin had moderate toxic activity against M. persicae. In our previous work, potential Cry41-related toxin-binding proteins in M. persicae were identified, including cathepsin B, calcium-transporting ATPase, and Buchnera-derived ATP-dependent 6-phosphofructokinase (PFKA). Buchnera is an endosymbiont present in almost all aphids and it provides necessary nutrients for aphid growth. This study investigated the role of Buchnera-derived PFKA in Cry41-related toxicity against M. persicae. RESULTS In this study, recombinant PFKA was expressed and purified, and in vitro assays revealed that PFKA bound to Cry41-related toxin, and Cry41-related toxin at 25 μg ml-1 significantly inhibited the activity of PFKA. In addition, when M. persicae was treated with 30 μg ml-1 of Cry41-related toxin for 24 h, the expression of dnak, a single-copy gene in Buchnera, was significantly decreased, indicating a decrease in the number of Buchnera. CONCLUSION Our results suggest that Cry41-related toxin interacts with Buchnera-derived PFKA to inhibit its enzymatic activity and likely impair cell viability, resulting in a decrease in the number of Buchnera, and finally leading to M. persicae death. These findings open up new perspectives in our understanding of the mode of action of Cry toxins and are useful in helping improve Cry toxicity for aphid control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liang Jin
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Bin-Wu Zhang
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jing-Wen Lu
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Jun-Ao Liao
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Qi-Jun Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yi Lin
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Department of Bioengineering & Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
25
|
Guerrero M. GG. Sporulation, Structure Assembly, and Germination in the Soil Bacterium Bacillus thuringiensis: Survival and Success in the Environment and the Insect Host. MICROBIOLOGY RESEARCH 2023. [DOI: 10.3390/microbiolres14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a rod-shaped, Gram-positive soil bacterium that belongs to the phylum Firmicutes and the genus Bacillus. It is a spore-forming bacterium. During sporulation, it produces a wide range of crystalline proteins that are toxic to different orders of insects. Sporulation, structure assembly, and germination are essential stages in the cell cycle of B. thuringiensis. The majority of studies on these issues have focused on the model organism Bacillus subtilis, followed by Bacillus cereus and Bacillus anthracis. The machinery for sporulation and germination extrapolated to B. thuringiensis. However, in the light of recent findings concerning the role of the sporulation proteins (SPoVS), the germination receptors (Gr), and the cortical enzymes in Bt, the theory strengthened that conservation in sporulation, structure assembly, and germination programs drive the survival and success of B. thuringiensis in the environment and the insect host. In the present minireview, the latter pinpointed and reviewed.
Collapse
Affiliation(s)
- Gloria G. Guerrero M.
- Unidad Académica de Ciencias Biológicas, Laboratorio de Immunobiología, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Col. Agronomicas, Zacatecas 98066, Mexico
| |
Collapse
|
26
|
Rabha M, Das D, Konwar T, Acharjee S, Sarmah BK. Whole genome sequencing of a novel Bacillus thuringiensis isolated from Assam soil. BMC Microbiol 2023; 23:91. [PMID: 37003972 PMCID: PMC10064770 DOI: 10.1186/s12866-023-02821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Bacillus thuringiensis (Bt) is a gram-positive ubiquitous saprophytic bacterium that produces proteins (Crystal protein, Vegetative insecticidal protein, and Secreted insecticidal protein) toxic to insects during its growth cycle. In the present study, the whole genome of a locally isolated B. thuringiensis strain BA04 was sequenced to explore the genetic makeup and to identify the genes responsible to produce insecticidal proteins including the virulence factors. The strain was isolated from the soil sample of the Kaziranga National Park, Assam, North-Eastern part of India (Latitude: 26°34'39.11''N and Longitude: 93°10'16.04''E). RESULTS The whole genome sequencing (WGS) of the BA04 strain revealed that it has a circular genome of size 6,113,005 bp with four numbers of plasmids. A total of 6,111 genes including two novel crystal protein-encoding genes (MH753362.1 and MH753363.1) were identified. The BLASTn analysis of MH753362.1 showed 84% similarities (maximum identity) with Cry1Ia (KJ710646.1) gene, whereas MH753363.1 exhibited 66% identity with Insecticidal Crystal Protein (ICP)-6 gene (KM053257.1). At the protein level, MH753362.1 and MH753363.1 shared 79% identity with Cry1Ia (AIW52613.1) and 40% identity with Insecticidal Crystal Protein (ICP)-6 (AJW76687.1) respectively. Three-dimensional structures of these two novel protein sequences revealed that MH753362.1 have 48% structural similarity with Cry8ea1 protein, whereas MH753363.1 showed only 20% structural similarity with Cry4Aa protein. Apart from these insecticidal genes, the strain was also found to contain virulence and virulence-associated factors including the antibiotic resistance genes and Clustered regularly interspaced short palindromic repeat (CRISPR) sequences. CONCLUSION This is the first report on the whole genome sequence of Bt strain BA04 isolated from Assam, a North-Eastern state of India. The WGS of strain BA04 unveils the presence of two novel types of insecticidal crystal protein-encoding genes which can be used for the development of insect-resistant transgenic crops. Additionally, the strain could be used for the formulations of effective biopesticides. The WGS provides the fastest and cheapest platform for a better understanding of the genetic makeup of a strain and helps to explore the role of virulence genes in pathogenicity against the insect host.
Collapse
Affiliation(s)
- Mihir Rabha
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Silkworm Pathology Section, Central Sericultural Research and Training Institute, Central Silk Board, Ministry of Textile, Govt of India, Berhampore, West Bengal, 7421 01, India
| | - Debajit Das
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India
| | - Trishna Konwar
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India.
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India.
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, Assam, India.
- Department of Biotechnology-Northeast Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat-13, Assam, India.
| |
Collapse
|
27
|
Zhang J, Liu Y, Li S, Zhou Q, Zhang L, Zhang S, Zhou X, Wu C, Qian ZY. A 90-day rodent feeding study with grain for genetically modified maize L4 conferring insect resistance and glyphosate tolerance. Food Chem Toxicol 2023; 176:113733. [PMID: 36966880 DOI: 10.1016/j.fct.2023.113733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
A 90-day rat feeding study was performed to conduct a safety assessment on L4, a multi-gene genetically modified maize, conferring "Bt" insect resistance and glyphosate tolerance. A total of 140 Wistar rats were assigned to seven groups, 10 animals/group/sex, which comprised three genetically modified groups fed diets containing different concentrations of L4, three corresponding non-genetically modified groups fed diets containing different concentrations of zheng58 (parent plants), and a basal diet group fed the standard basal diet for 13 weeks. The fed diets contained L4 and Zheng58 at w/w% percentages of 12.5%, 25.0%, and 50% of the total. Animals were evaluated on some research parameters, including general behaviour, body weight/gain, feed consumption/efficiency, ophthalmology, clinical pathology, organ weights, and histopathology. Throughout the feeding trial, all animals were in good condition. No mortality and no biologically relevant effects or toxicologically significant alterations were observed in the total research parameters of the rats in the genetically modified groups compared with those in the basal diet group or their corresponding non-genetically modified groups. No adverse effects were observed in any of the animals. The results indicated that L4 is as safe and wholesome as conventional, non-genetically modified control maize.
Collapse
Affiliation(s)
- Jing Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Yinghua Liu
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Shufei Li
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Qinghong Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Li Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Shujing Zhang
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Xiaoli Zhou
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Chao Wu
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China
| | - Zhi Yong Qian
- Tianjin Centers for Disease Control and Prevention, Tianjin, 300011, China.
| |
Collapse
|
28
|
Yang Y, Lu K, Qian J, Guo J, Xu H, Lu Z. Identification and characterization of ABC proteins in an important rice insect pest, Cnaphalocrocis medinalis unveil their response to Cry1C toxin. Int J Biol Macromol 2023; 237:123949. [PMID: 36894061 DOI: 10.1016/j.ijbiomac.2023.123949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
Rice leaffolder (Cnaphalocrocis medinalis) is an important insect pest in paddy fields. Due to their essential role in the physiology and insecticidal resistance, ATP-binding cassette (ABC) proteins were studied in many insects. In this study, we identified the ABC proteins in C. medinalis through genomic data and analyzed their molecular characteristics. A total of 37 sequences with nucleotide-binding domain (NBD) were identified as ABC proteins and belonged to eight families (ABCA-ABCH). Four structure styles of ABC proteins were found in C. medinalis, including full structure, half structure, single structure, and ABC2 structure. In addition to these structures, TMD-NBD-TMD, NBD-TMD-NBD, and NBD-TMD-NBD-NBD were found in C. medinalis ABC proteins. Docking studies suggested that in addition to the soluble ABC proteins, other ABC proteins including ABCC4, ABCH1, ABCG3, ABCB5, ABCG1, ABCC7, ABCB3, ABCA3, and ABCC5 binding with Cry1C had higher weighted scores. The upregulation of ABCB1 and downregulation of ABCB3, ABCC1, ABCC7, ABCG1, ABCG3, and ABCG6 were associated with the C. medinalis response to Cry1C toxin. Collectively, these results help elucidate the molecular characteristics of C. medinalis ABC proteins, pave the way for further functional studies of C. medinalis ABC proteins, including their interaction with Cry1C toxin, and provide potential insecticide targets.
Collapse
Affiliation(s)
- Yajun Yang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Ke Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China; Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Qian
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Jiawen Guo
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China
| | - Hongxing Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| | - Zhongxian Lu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou 310021, China.
| |
Collapse
|
29
|
Jneid R, Loudhaief R, Zucchini-Pascal N, Nawrot-Esposito MP, Fichant A, Rousset R, Bonis M, Osman D, Gallet A. Bacillus thuringiensis toxins divert progenitor cells toward enteroendocrine fate by decreasing cell adhesion with intestinal stem cells in Drosophila. eLife 2023; 12:e80179. [PMID: 36847614 PMCID: PMC9977296 DOI: 10.7554/elife.80179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Bacillus thuringiensis subsp. kurstaki (Btk) is a strong pathogen toward lepidopteran larvae thanks to specific Cry toxins causing leaky gut phenotypes. Hence, Btk and its toxins are used worldwide as microbial insecticide and in genetically modified crops, respectively, to fight crop pests. However, Btk belongs to the B. cereus group, some strains of which are well known human opportunistic pathogens. Therefore, ingestion of Btk along with food may threaten organisms not susceptible to Btk infection. Here we show that Cry1A toxins induce enterocyte death and intestinal stem cell (ISC) proliferation in the midgut of Drosophila melanogaster, an organism non-susceptible to Btk. Surprisingly, a high proportion of the ISC daughter cells differentiate into enteroendocrine cells instead of their initial enterocyte destiny. We show that Cry1A toxins weaken the E-Cadherin-dependent adherens junction between the ISC and its immediate daughter progenitor, leading the latter to adopt an enteroendocrine fate. Hence, although not lethal to non-susceptible organisms, Cry toxins can interfere with conserved cell adhesion mechanisms, thereby disrupting intestinal homeostasis and endocrine functions.
Collapse
Affiliation(s)
- Rouba Jneid
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese UniversityTripoliLebanon
| | | | | | | | - Arnaud Fichant
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & SafetyMaisons-AlfortFrance
| | | | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & SafetyMaisons-AlfortFrance
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese UniversityTripoliLebanon
| | - Armel Gallet
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
| |
Collapse
|
30
|
Soe ET, Naing ZL, Zhang C, Niu LL, Tang J, Yu S, Ding Z, Liang G. Cry51Aa Proteins Are Active against Apolygus lucorum and Show a Mechanism Similar to Pore Formation Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2279-2289. [PMID: 36710440 DOI: 10.1021/acs.jafc.2c07244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Reduced insecticide spray in crop fields due to the widespread adoption of Bacillus thuringiensis (Bt) crops has favored the population increases of mirid bugs. Cry51Aa proteins are new types of Bt proteins that belong to aerolysin-like β pore-forming proteins with insecticidal activity against hemipteran and coleopteran pests. Here, we studied the activity of Bt Cry51Aa1 and Cry51Aa2 against Apolygus lucorum, an emerging pest in cotton, and their mechanism of action. Cry51Aa1 exhibited almost 5-fold higher toxicity than Cry51Aa2 with LC50 of 11.87 and 61.34 μg/mL, respectively. Protoxins could be activated both in vitro, by trypsin and midgut contents, and in vivo, by A. lucorum midgut. Both Cry51Aa protoxins were processed in two steps, producing pre-activated (∼30 kDa) and final activated (∼25-28 kDa) proteins. Cry51Aa proteins bound to a 25 kDa midgut protein, and Cry51Aa2 showed 2 times higher binding affinity than Cry51Aa1. Incubating Cry51Aa proteins with midgut homogenate resulted in toxin oligomers of 150-200 kDa. Our findings provide a theoretical basis for using Cry51Aa proteins to control A. lucorum and a better understanding of their mode of action.
Collapse
Affiliation(s)
- Ei Thinzar Soe
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, People Republic of China
| | - Zaw Lin Naing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, People Republic of China
| | - Caihong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, People Republic of China
| | - Lin Lin Niu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, People Republic of China
| | - Jinrong Tang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, People Republic of China
| | - Siqi Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, People Republic of China
| | - Zhongwei Ding
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, People Republic of China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, West Yuanmingyuan Road, Beijing 100193, People Republic of China
| |
Collapse
|
31
|
Prabu S, Jing D, Jurat-Fuentes JL, Wang Z, He K. Hemocyte response to treatment of susceptible and resistant Asian corn borer ( Ostrinia furnacalis) larvae with Cry1F toxin from Bacillus thuringiensis. Front Immunol 2022; 13:1022445. [PMID: 36466886 PMCID: PMC9714555 DOI: 10.3389/fimmu.2022.1022445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 10/12/2023] Open
Abstract
Midgut receptors have been recognized as the major mechanism of resistance to Cry proteins in lepidopteran larvae, while there is a dearth of data on the role of hemocyte's response to Cry intoxication and resistance development. We aimed at investigating the role of circulating hemocytes in the intoxication of Cry1F toxin in larvae from susceptible (ACB-BtS) and resistant (ACB-FR) strains of the Asian corn borer (ACB), Ostrinia furnacalis. Transcriptome and proteome profiling identified genes and proteins involved in immune-related (tetraspanin and C-type lectins) and detoxification pathways as significantly up-regulated in the hemocytes of Cry1F treated ACB-FR. High-throughput in vitro assays revealed the binding affinity of Cry1F with the tetraspanin and C-type lectin family proteins. We found significant activation of MAPKinase (ERK 1/2, p38α, and JNK 1/2) in the hemocytes of Cry1F treated ACB-FR. In testing plausible crosstalk between a tetraspanin (CD63) and downstream MAPK signaling, we knocked down CD63 expression by RNAi and detected an alteration in JNK 1/2 level but a significant increase in susceptibility of ACB-FR larvae to Cry1F toxin. Information from this study advances a change in knowledge on the cellular immune response to Cry intoxication and its potential role in resistance in a lepidopteran pest.
Collapse
Affiliation(s)
- Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dapeng Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, United States
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
32
|
Fernanda Vázquez-Ramírez M, Ibarra JE, Edith Casados-Vázquez L, Eleazar Barboza-Corona J, Rincón-Castro MCD. Molecular and Toxicological Characterization of a Bacillus thuringiensis Strain Expressing a Vip3 Protein Highly Toxic to Spodoptera frugiperda (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1455-1463. [PMID: 35930375 DOI: 10.1093/jee/toac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The characterization of the Bacillus thuringiensis (Berliner) LBIT-418 strain was based on a previous work which indicated its high insecticidal potential. Therefore, toxicological, molecular, and biochemical characterizations were conducted in this work to identify its unique features and its potential to be developed as a bioinsecticide. This strain, originally isolated from a healthy mosquito larva, was identified within the subspecies kenyae by sequencing of the hag gene and by the multilocus sequence typing (MLST) technique. Genes cry1Ac2, cry1Ea3, cry2Aa1 and cry2Ab4, and a cry1Ia were detected in its genome, in addition to a vip3Aa gene. In this research, the latter protein was successfully cloned, expressed, and purified and showed high toxicity towards the fall armyworm, Spodoptera frugiperda (J.E. Smith), fourth instar larvae in bioassays using the microdroplet ingestion technique, estimating an LD50 of 21.38 ng/larva. Additional bioassays were performed using the diet surface inoculation technique of the strain's spore-crystal complex against diamondback moth larvae, Plutella xylostella (Linnaeus), estimating an LC50 of 10.22 ng/cm2. Its inability to produce β-exotoxin was demonstrated by bioassays against the nematode Caenorhabditis elegans Maupas and by HPLC analysis. These results support the high potential of this strain to be developed as a bioinsecticide.
Collapse
Affiliation(s)
- María Fernanda Vázquez-Ramírez
- Departamento de Alimentos, Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex Hacienda El Copal Km., Carretera Irapuato-León, Irapuato, Guanajuato, México
| | - Jorge E Ibarra
- Departamento de Biotecnología y Bioquímica, Cinvestav Unidad Irapuato, Irapuato, Guanajuato, México
| | - Luz Edith Casados-Vázquez
- Departamento de Alimentos, Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex Hacienda El Copal Km., Carretera Irapuato-León, Irapuato, Guanajuato, México
| | - J Eleazar Barboza-Corona
- Departamento de Alimentos, Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex Hacienda El Copal Km., Carretera Irapuato-León, Irapuato, Guanajuato, México
| | - Ma Cristina Del Rincón-Castro
- Departamento de Alimentos, Posgrado en Biociencias, División de Ciencias de la Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Ex Hacienda El Copal Km., Carretera Irapuato-León, Irapuato, Guanajuato, México
| |
Collapse
|
33
|
Cappa F, Baracchi D, Cervo R. Biopesticides and insect pollinators: Detrimental effects, outdated guidelines, and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155714. [PMID: 35525339 DOI: 10.1016/j.scitotenv.2022.155714] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
As synthetic pesticides play a major role in pollinator decline worldwide, biopesticides have been gaining increased attention to develop more sustainable methods for pest management in agriculture. These biocontrol agents are usually considered as safe for non-target species, such as pollinators. Unfortunately, when it comes to non-target insects, only the acute or chronic effects on survival following exposure to biopesticides are tested. Although international boards have highlighted the need to include also behavioral and morphophysiological traits when assessing risks of plant protection products on pollinators, no substantial concerns have been raised about the risks associated with sublethal exposure to these substances. Here, we provide a comprehensive review of the studies investigating the potential adverse effects of biopesticides on different taxa of pollinators (bees, butterflies, moths, beetles, flies, and wasps). We highlight the fragmentary knowledge on this topic and the lack of a systematic investigation of these negative effects of biopesticides on insect pollinators. We show that all the major classes of biopesticides, besides their direct toxicity, can also cause a plethora of more subtle detrimental effects in both solitary and social species of pollinators. Although research in this field is growing, the current risk assesment approach does not suffice to properly assess all the potential side-effects that these agents of control may have on pollinating insects. Given the urgent need for a sustainable agriculture and wildlife protection, it appears compelling that these so far neglected detrimental effects should be thoroughly assessed before allegedly safe biopesticides can be used in the field and, in this view, we provide a perspective for future directions.
Collapse
Affiliation(s)
- Federico Cappa
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy.
| | - David Baracchi
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| | - Rita Cervo
- Department of Biology, University of Florence, Via Madonna del Piano, 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
34
|
Tetreau G, Sawaya MR, De Zitter E, Andreeva EA, Banneville AS, Schibrowsky NA, Coquelle N, Brewster AS, Grünbein ML, Kovacs GN, Hunter MS, Kloos M, Sierra RG, Schiro G, Qiao P, Stricker M, Bideshi D, Young ID, Zala N, Engilberge S, Gorel A, Signor L, Teulon JM, Hilpert M, Foucar L, Bielecki J, Bean R, de Wijn R, Sato T, Kirkwood H, Letrun R, Batyuk A, Snigireva I, Fenel D, Schubert R, Canfield EJ, Alba MM, Laporte F, Després L, Bacia M, Roux A, Chapelle C, Riobé F, Maury O, Ling WL, Boutet S, Mancuso A, Gutsche I, Girard E, Barends TRM, Pellequer JL, Park HW, Laganowsky AD, Rodriguez J, Burghammer M, Shoeman RL, Doak RB, Weik M, Sauter NK, Federici B, Cascio D, Schlichting I, Colletier JP. De novo determination of mosquitocidal Cry11Aa and Cry11Ba structures from naturally-occurring nanocrystals. Nat Commun 2022; 13:4376. [PMID: 35902572 PMCID: PMC9334358 DOI: 10.1038/s41467-022-31746-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Michael R Sawaya
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
| | - Elke De Zitter
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Elena A Andreeva
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Anne-Sophie Banneville
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Natalie A Schibrowsky
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Nicolas Coquelle
- Large-Scale Structures Group, Institut Laue-Langevin, F-38000, Grenoble, France
| | - Aaron S Brewster
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Marie Luise Grünbein
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Gabriela Nass Kovacs
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marco Kloos
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Raymond G Sierra
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Giorgio Schiro
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Pei Qiao
- Department of Chemistry, Texas A&M University, College Station, TX, 77845, USA
| | - Myriam Stricker
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Dennis Bideshi
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Iris D Young
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ninon Zala
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Sylvain Engilberge
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Alexander Gorel
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Luca Signor
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Jean-Marie Teulon
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Mario Hilpert
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Johan Bielecki
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Richard Bean
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Raphael de Wijn
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Tokushi Sato
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Henry Kirkwood
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Romain Letrun
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexander Batyuk
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Irina Snigireva
- European Synchrotron Radiation Facility (ESRF), BP 220, 38043, Grenoble, France
| | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Robin Schubert
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Ethan J Canfield
- Mass Spectrometry Core Facility, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Mario M Alba
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | | | | | - Maria Bacia
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Amandine Roux
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | | | - François Riobé
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Olivier Maury
- Univ. Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342, Lyon, France
| | - Wai Li Ling
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Sébastien Boutet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Adrian Mancuso
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Irina Gutsche
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Thomas R M Barends
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jean-Luc Pellequer
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Hyun-Woo Park
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
- Department of Biological Sciences, California Baptist University, Riverside, CA, 92504, USA
| | - Arthur D Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77845, USA
| | - Jose Rodriguez
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Manfred Burghammer
- European Synchrotron Radiation Facility (ESRF), BP 220, 38043, Grenoble, France
| | - Robert L Shoeman
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - R Bruce Doak
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Martin Weik
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France
| | - Nicholas K Sauter
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brian Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Duilio Cascio
- UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1570, USA
| | - Ilme Schlichting
- Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120, Heidelberg, Germany
| | - Jacques-Philippe Colletier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 Avenue des martyrs, F-38000, Grenoble, France.
| |
Collapse
|
35
|
Alam I, Batool K, Idris AL, Tan W, Guan X, Zhang L. Role of Lectin in the Response of Aedes aegypti Against Bt Toxin. Front Immunol 2022; 13:898198. [PMID: 35634312 PMCID: PMC9136036 DOI: 10.3389/fimmu.2022.898198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Abstract
Aedes aegypti is one of the world’s most dangerous mosquitoes, and a vector of diseases such as dengue fever, chikungunya virus, yellow fever, and Zika virus disease. Currently, a major global challenge is the scarcity of antiviral medicine and vaccine for arboviruses. Bacillus thuringiensis var israelensis (Bti) toxins are used as biological mosquito control agents. Endotoxins, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa, and Cyt1Aa, are toxic to mosquitoes. Insect eradication by Cry toxin relies primarily on the interaction of cry toxins with key toxin receptors, such as aminopeptidase (APN), alkaline phosphatase (ALP), cadherin (CAD), and ATP-binding cassette transporters. The carbohydrate recognition domains (CRDs) of lectins and domains II and III of Cry toxins share similar structural folds, suggesting that midgut proteins, such as C-type lectins (CTLs), may interfere with interactions among Cry toxins and receptors by binding to both and alter Cry toxicity. In the present review, we summarize the functional role of C-type lectins in Ae. aegypti mosquitoes and the mechanism underlying the alteration of Cry toxin activity by CTLs. Furthermore, we outline future research directions on elucidating the Bti resistance mechanism. This study provides a basis for understanding Bti resistance, which can be used to develop novel insecticides.
Collapse
Affiliation(s)
- Intikhab Alam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Khadija Batool
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aisha Lawan Idris
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Lab of Biopesticides and Chemical Biology, MOE, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Lingling Zhang,
| |
Collapse
|
36
|
Rezende-Teixeira P, Dusi RG, Jimenez PC, Espindola LS, Costa-Lotufo LV. What can we learn from commercial insecticides? Efficacy, toxicity, environmental impacts, and future developments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118983. [PMID: 35151812 DOI: 10.1016/j.envpol.2022.118983] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 05/27/2023]
Abstract
Worldwide pesticide usage was estimated in up to 3.5 million tons in 2020. The number of approved products varies among different countries, however, in Brazil, there are nearly 5000 of such products available. Among them, insecticides correspond to a group of mounting importance for controlling crop pests and disease-associated vectors in public health. Unfortunately, resistance to commercially approved insecticides is commonly observed, limiting the use of these products. Thus, the search for more effective and environmentally friendly products is both a challenge and a necessity since several insecticides are no longer allowed in many countries. In this review, we discuss the historical strategies used in the development of modern insecticides, including chemical structure alterations, mechanism of action and their impact on insecticidal activity. The environmental impact of each pesticide class is also discussed, with persistence data and activity on non-target organisms, along with the human toxicological effect. By tracing the historical route of discovery and development of blockbuster pesticides like DDT, pyrethroids and organophosphates, we also aim to categorize and relate the successful chemical alterations and novel pesticide development strategies that resulted in safer alternatives. A brief discussion on the Brazilian registration procedure and a perspective of insecticides currently approved in the country was also included.
Collapse
Affiliation(s)
- Paula Rezende-Teixeira
- Laboratório de Farmacologia Marinha, Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil
| | - Renata G Dusi
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, 70910-900, Brazil
| | - Paula C Jimenez
- Laboratório de Bioprospecção de Organismos Marinhos, Instituto do Mar, Universidade Federal de São Paulo, Santos, SP, Brazil
| | - Laila S Espindola
- Laboratório de Farmacognosia, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, 70910-900, Brazil
| | - Letícia V Costa-Lotufo
- Laboratório de Farmacologia Marinha, Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
37
|
Li Y, Wang C, Ge L, Hu C, Wu G, Sun Y, Song L, Wu X, Pan A, Xu Q, Shi J, Liang J, Li P. Environmental Behaviors of Bacillus thuringiensis ( Bt) Insecticidal Proteins and Their Effects on Microbial Ecology. PLANTS (BASEL, SWITZERLAND) 2022; 11:1212. [PMID: 35567212 PMCID: PMC9100956 DOI: 10.3390/plants11091212] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 05/12/2023]
Abstract
Bt proteins are crystal proteins produced by Bacillus thuringiensis (Bt) in the early stage of spore formation that exhibit highly specific insecticidal activities. The application of Bt proteins primarily includes Bt transgenic plants and Bt biopesticides. Transgenic crops with insect resistance (via Bt)/herbicide tolerance comprise the largest global area of agricultural planting. After artificial modification, Bt insecticidal proteins expressed from Bt can be released into soils through root exudates, pollen, and plant residues. In addition, the construction of Bt recombinant engineered strains through genetic engineering has become a major focus of Bt biopesticides, and the expressed Bt proteins will also remain in soil environments. Bt proteins expressed and released by Bt transgenic plants and Bt recombinant strains are structurally and functionally quite different from Bt prototoxins naturally expressed by B. thuringiensis in soils. The former can thus be regarded as an environmentally exogenous substance with insecticidal toxicity that may have potential ecological risks. Consequently, biosafety evaluations must be conducted before field tests and production of Bt plants or recombinant strains. This review summarizes the adsorption, retention, and degradation behavior of Bt insecticidal proteins in soils, in addition to their impacts on soil physical and chemical properties along with soil microbial diversity. The review provides a scientific framework for evaluating the environmental biosafety of Bt transgenic plants, Bt transgenic microorganisms, and their expression products. In addition, prospective research targets, research methods, and evaluation methods are highlighted based on current research of Bt proteins.
Collapse
Affiliation(s)
- Yujie Li
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Cui Wang
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Lei Ge
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Cong Hu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Guogan Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Yu Sun
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Lili Song
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Xiao Wu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Aihu Pan
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
| | - Qinqing Xu
- Shandong County Agricultural Technology Extension Center, Jinan 250003, China;
| | - Jialiang Shi
- Dezhou Academy of Agricultural Sciences, Dezhou 253000, China;
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Peng Li
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (C.W.); (L.G.); (C.H.); (G.W.); (Y.S.); (L.S.); (X.W.); (A.P.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai 201106, China
- Shanghai Co-Elite Agricultural Sci-Tech (Group) Co., Ltd., Shanghai 201106, China
| |
Collapse
|
38
|
Hernández-Martínez P, Bretsnyder EC, Baum JA, Haas JA, Head GP, Jerga A, Ferré J. Comparison of in vitro and in vivo binding site competition of Bacillus thuringiensis Cry1 proteins in two important maize pests. PEST MANAGEMENT SCIENCE 2022; 78:1457-1466. [PMID: 34951106 DOI: 10.1002/ps.6763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Binding site models, derived from in vitro competition binding studies, have been widely used for predicting potential cross-resistance among insecticidal proteins from Bacillus thuringiensis. However, because discrepancies have been found between binding data and observed cross-resistance patterns in some insect species, new tools are required to study the functional relevance of the shared binding sites. RESULTS Here, an in vivo approach has been applied to the competition studies to establish the functional relevance of shared binding sites as determined by in vitro competition assays. Using Cry disabled proteins as competitors in mixed protein overlay assays, we assessed the preference of Cry1Ab, Cry1Fa, and Cry1A.105 proteins for shared binding sites in vivo in two important corn pests, Ostrinia nubilalis and Spodoptera frugiperda. CONCLUSION This study shows that in vivo and in vitro binding site competition assays can provide useful information to better ascertain whether different Cry proteins share binding sites and, consequently, whether cross-resistance due to binding site alteration can occur. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Patricia Hernández-Martínez
- Department of Genetics, University Institute of Biotechnology and Biomedicine, University of Valencia, Burjassot, Spain
| | - Eric C Bretsnyder
- Plant Biotechnology Program, Bayer Crop Science, Chesterfield, MO, USA
| | - James A Baum
- Plant Biotechnology Program, Bayer Crop Science, Chesterfield, MO, USA
| | - Jeff A Haas
- Plant Biotechnology Program, Bayer Crop Science, Chesterfield, MO, USA
| | - Graham P Head
- Plant Biotechnology Program, Bayer Crop Science, Chesterfield, MO, USA
| | - Agoston Jerga
- Plant Biotechnology Program, Bayer Crop Science, Chesterfield, MO, USA
| | - Juan Ferré
- Department of Genetics, University Institute of Biotechnology and Biomedicine, University of Valencia, Burjassot, Spain
| |
Collapse
|
39
|
Chen Y, Romeis J, Meissle M. No Adverse Effects of Stacked Bacillus thuringiensis Maize on the Midge Chironomus riparius. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1078-1088. [PMID: 35040173 PMCID: PMC9306926 DOI: 10.1002/etc.5293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Material from genetically engineered maize producing insecticidal Cry proteins from Bacillus thuringiensis (Bt) may enter aquatic ecosystems and expose nontarget organisms. We investigated the effects on life table parameters of the midge Chironomus riparius (Diptera: Chironomidae) of SmartStax maize leaves, which contain six different Cry proteins targeting Lepidoptera and Coleoptera pests, in two plant backgrounds. For midge development and emergence, 95% confidence intervals for the means of six conventional maize lines (Rheintaler, Tasty Sweet, ES-Eurojet, Planoxx, EXP 258, and EXP 262), were used to capture the natural range of variation. For reproduction, lowest and highest means were used. The natural range of variation allows one to judge whether observed effects between Bt maize and the closest non-Bt comparator are likely to be of biological relevance. No adverse effects on C. riparius were observed with any Bt maize line compared with the respective non-Bt counterpart. Development time was shorter when females were fed Bt maize than when they were fed non-Bt maize, but this effect was not considered adverse. Development time, emergence ratio, sex ratio, and larvae/egg rope measured for Bt maize were within the natural range of variation. Fecundity for the Bt lines was equal to or higher than that for the conventional lines. Future risk assessment studies may consider plant background effects and the natural range of variation to judge the relevance of observed differences between particular genetically engineered and non-genetically engineered plants. Environ Toxicol Chem 2022;41:1078-1088. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Yi Chen
- Research Division Agroecology and Environment, AgroscopeZurichSwitzerland
- Institute of Tropical Bioscience and BiotechnologyChinese Academy of Tropical Agricultural SciencesHaikouHainanChina
- Sanya Research InstituteChinese Academy of Tropical Agricultural SciencesSanyaHainanChina
| | - Jörg Romeis
- Research Division Agroecology and Environment, AgroscopeZurichSwitzerland
| | - Michael Meissle
- Research Division Agroecology and Environment, AgroscopeZurichSwitzerland
| |
Collapse
|
40
|
Zhong J, Fang S, Gao M, Lu L, Zhang X, Zhu Q, Liu Y, Jurat-Fuentes JL, Liu X. Evidence of a shared binding site for Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Cnaphalocrocis medinalis cadherin. INSECT MOLECULAR BIOLOGY 2022; 31:101-114. [PMID: 34637177 DOI: 10.1111/imb.12741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Insect midgut cadherins function as receptors and play critical roles as protein receptors of insecticidal Bacillus thuringiensis (Bt) toxins used as biopesticides and in Bt transgenic crops worldwide. Here, we cloned and characterized the full-length midgut cadherin (CmCad) cDNA from the rice leaffolder (Cnaphalocrocis medinalis), a destructive pest of rice in many Asian countries. Expression of recombinant proteins corresponding to the extracellular domain of CmCad allowed testing binding of Cry proteins. Results from in vitro ligand blotting and enzyme-linked immunosorbent assays supported that the extracellular domain of CmCad contains regions recognized by both Cry1Ac and Cry2Aa. Molecular modelling and docking simulations indicated that binding to both Cry1Ac and Cry2Aa is localized primarily within a CmCad motif corresponding to residues T1417-D1435. A recombinant CmCad protein produced without residues T1417-D1435 lacked binding to Cry1Ac and Cry2Aa, confirmed our modelling predictions that CmCad has a shared Cry1Ac and Cry2Aa binding site. The potential existence of a shared binding region in CmCad suggests that caution should be taken when using combinations of Cry1Ac and Cry2Aa in pyramided transgenic rice, as their combined use could speed the evolution of resistance to both toxins.
Collapse
Affiliation(s)
- J Zhong
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - S Fang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - M Gao
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - L Lu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - X Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Q Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Y Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - J L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - X Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
41
|
Then C, Miyazaki J, Bauer-Panskus A. Deficiencies in the Risk Assessment of Genetically Engineered Bt Cowpea Approved for Cultivation in Nigeria: A Critical Review. PLANTS 2022; 11:plants11030380. [PMID: 35161361 PMCID: PMC8838765 DOI: 10.3390/plants11030380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/23/2022]
Abstract
We analyze the application filed for the marketing and cultivation of genetically engineered Bt cowpea (event AAT 709A) approved in Nigeria in 2019. Cowpea (Vigna ungiguiculata) is extensively grown throughout sub-Saharan Africa and consumed by around two hundred million people. The transgenic plants produce an insecticidal, recombinant Bt toxin meant to protect the plants against the larvae of Maruca vitrata, which feed on the plants and are also known as pod borer. Our analysis of the application reveals issues of concern regarding the safety of the Bt toxins produced in the plants. These concerns include stability of gene expression, impact on soil organisms, effects on non-target species and food safety. In addition, we show deficiencies in the risk assessment of potential gene flow and uncontrolled spread of the transgenes and cultivated varieties as well as the maintenance of seed collections. As far as information is publicly available, we analyze the application by referring to established standards of GMO risk assessment. We take the provisions of the Cartagena Protocol on Biosafety (CPB) into account, of which both Nigeria and the EU are parties. We also refer to the EU standards for GMO risk assessment, which are complementary to the provisions of the CPB.
Collapse
|
42
|
Sharma M, Kumar V. Mosquito-larvicidal Binary (BinA/B) proteins for mosquito control programs —advancements, challenges, and possibilities. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100028. [PMID: 36003274 PMCID: PMC9387486 DOI: 10.1016/j.cris.2021.100028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 11/18/2022]
Abstract
Binary (BinAB) toxin is primarily responsible for the larvicidal action of the WHO recognized mosquito-larvicidal bacterium Lysinibacillus sphaericus. BinAB is a single receptor-specific toxin, active against larvae of Culex and Anopheles, but not Aedes aegypti. The target receptor in Culex is Cqm1 protein, a GPI-anchored amylomaltase located apically in the lipid-rafts of the larval-midgut epithelium. Interaction of the toxin components with the receptor is critical for the larvicidal activity of the toxin. Evidences support the pore formation model for BinAB toxin internalization and the role of toxin-glycan interactions in the endoplasmic reticulum in mediating larval death. Targeted R&D efforts are required to maintain the sustainability and improve efficacy of the eco-friendly BinAB proteins for efficient mosquito control interventions.
The increasing global burden of mosquito-borne diseases require targeted, environmentally friendly, and sustainable approaches for effective vector control without endangering the non-target beneficial insect population. Biological interventions such as biopesticides, Wolbachia-mediated biological controls, or sterile insect techniques are used worldwide. Here we review Binary or BinAB toxin—the mosquito-larvicidal component of WHO-recognized Lysinibacillus sphaericus bacterium employed in mosquito control programs. Binary (BinAB) toxin is primarily responsible for the larvicidal effect of the bacterium. BinAB is a single-receptor-specific toxin and is effective against larvae of Culex and Anopheles, but not against Aedes aegypti. The receptor in Culex, the Cqm1 protein, has been extensively studied. It is a GPI-anchored amylomaltase and is located apically in the lipid rafts of the larval-midgut epithelium. The interaction of the toxin components with the receptor is crucial for the mosquito larvicidal activity of the BinAB toxin. Here we extend support for the pore formation model of BinAB toxin internalization and the role of toxin-glycan interactions in the endoplasmic reticulum in mediating larval death. BinAB is phylogenetically safe for humans, as Cqm1-like protein is not expected in the human proteome. This review aims to initiate targeted R&D efforts, such as applying fusion technologies (chimera of BinA, chemical modification of BinA), for efficient mosquito control interventions. In addition, the review also examines other areas such as bioremediation and cancer therapeutics, in which L. sphaericus is proving useful and showing potential for further development.
Collapse
Affiliation(s)
- Mahima Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Vinay Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
- Correspondence Author: Professor (Retired) Vinay Kumar, Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| |
Collapse
|
43
|
A Novel Reference for Bt-Resistance Mechanism in Plutella xylostella Based on Analysis of the Midgut Transcriptomes. INSECTS 2021; 12:insects12121091. [PMID: 34940179 PMCID: PMC8708430 DOI: 10.3390/insects12121091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Plutella xylostella is a very serious pest to cruciferous vegetables. At present, the control methods used are mainly traditional insecticides and the cultivation of Bt crops. However, with the long-term and large-scale use of insecticides, the diamondback moth has developed strong resistance to many kinds of insecticides and Bt crops. The Cry1S1000 strain of P. xylostella used here is a strain with more than 8000 times resistance to Bt Cry1Ac protoxin. In this paper, we used transcriptome sequencing to determine the midgut transcriptome of the G88-susceptible strain, Cry1S1000-resistant strain and its corresponding toxin-induced strains to find more genes related to Bt resistance. Our results will provide a reference for optimizing the control strategy of diamondback moth resistance and improving the control efficiency of biopesticides and Bt crops. Abstract The diamondback moth, Plutella xylostella, is a lepidopteran insect that mainly harms cruciferous vegetables, with strong resistance to a variety of agrochemicals, including Bacillus thuringiensis (Bt) toxins. This study intended to screen genes associated with Bt resistance in P. xylostella by comparing the midgut transcriptome of Cry1Ac-susceptible and -resistant strains together with two toxin-treated strains 24 h before sampling. A total of 12 samples were analyzed by BGISEQ-500, and each sample obtained an average of 6.35 Gb data. Additionally, 3284 differentially expressed genes (DEGs) were identified in susceptible and resistant strains. Among them, five DEGs for cadherin, 14 for aminopeptidase, zero for alkaline phosphatase, 14 for ATP binding cassette transport, and five heat shock proteins were potentially involved in resistance to Cry1Ac in P. xylostella. Furthermore, DEGs associated with “binding”, “catalytic activity”, “cellular process”, “metabolic process”, and “cellular anatomical entity” were more likely to be responsible for resistance to Bt toxin. Thus, together with other omics data, our results will offer prospective genes for the development of Bt resistance, thereby providing a brand new reference for revealing the resistance mechanism to Bt of P. xylostella.
Collapse
|
44
|
Microbiota and transcriptome changes of Culex pipiens pallens larvae exposed to Bacillus thuringiensis israelensis. Sci Rep 2021; 11:20241. [PMID: 34642414 PMCID: PMC8511237 DOI: 10.1038/s41598-021-99733-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/29/2021] [Indexed: 11/08/2022] Open
Abstract
Culex pipiens pallens is an important vector of lymphatic filariasis and epidemic encephalitis. Mosquito control is the main strategy used for the prevention of mosquito-borne diseases. Bacillus thuringiensis israelensis (Bti) is an entomopathogenic bacterium widely used in mosquito control. In this study, we profiled the microbiota and transcriptional response of the larvae of Cx. pipiens pallens exposed to different concentrations of Bti. The results demonstrated that Bti induced a significant effect on both the microbiota and gene expression of Cx. pipiens pallens. Compared to the control group, the predominant bacteria changed from Actinobacteria to Firmicutes, and with increase in the concentration of Bti, the abundance of Actinobacteria was gradually reduced. Similar changes were also detected at the genus level, where Bacillus replaced Microbacterium, becoming the predominant genus in Bti-exposed groups. Furthermore, alpha diversity analysis indicated that Bti exposure changed the diversity of the microbota, possibly because the dysbiosis caused by the Bti infection inhibits some bacteria and provides opportunities to other opportunistic taxa. Pathway analysis revealed significant enhancement for processes associated with sphingolipid metabolism, glutathione metabolism and glycerophospholipid metabolism between all Bti-exposed groups and control group. Additionally, genes associated with the Toll and Imd signaling pathway were found to be notably upregulated. Bti infection significantly changed the bacterial community of larvae of Cx. pipiens pallens.
Collapse
|
45
|
Kouadio JL, Duff S, Aikins M, Zheng M, Rydel T, Chen D, Bretsnyder E, Xia C, Zhang J, Milligan J, Evdokimov A, Nageotte J, Yin Y, Moar W, Giddings K, Park Y, Jerga A, Haas J. Structural and functional characterization of Mpp75Aa1.1, a putative beta-pore forming protein from Brevibacillus laterosporus active against the western corn rootworm. PLoS One 2021; 16:e0258052. [PMID: 34634061 PMCID: PMC8504720 DOI: 10.1371/journal.pone.0258052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022] Open
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is a major corn pest of significant economic importance in the United States. The continuous need to control this corn maize pest and the development of field-evolved resistance toward all existing transgenic maize (Zea mays L.) expressing Bacillus thuringiensis (Bt) insecticidal proteins against WCR has prompted the development of new insect-protected crops expressing distinct structural classes of insecticidal proteins. In this current study, we describe the crystal structure and functional characterization of Mpp75Aa1.1, which represents the first corn rootworm (CRW) active insecticidal protein member of the ETX_MTX2 sub-family of beta-pore forming proteins (β-PFPs), and provides new and effective protection against WCR feeding. The Mpp75Aa1.1 crystal structure was solved at 1.94 Å resolution. The Mpp75Aa1.1 is processed at its carboxyl-terminus by WCR midgut proteases, forms an oligomer, and specifically interacts with putative membrane-associated binding partners on the midgut apical microvilli to cause cellular tissue damage resulting in insect death. Alanine substitution of the surface-exposed amino acids W206, Y212, and G217 within the Mpp75Aa1.1 putative receptor binding domain I demonstrates that at least these three amino acids are required for WCR activity. The distinctive spatial arrangement of these amino acids suggests that they are part of a receptor binding epitope, which may be unique to Mpp75Aa1.1 and not present in other ETX_MTX2 proteins that do not have WCR activity. Overall, this work establishes that Mpp75Aa1.1 shares a mode of action consistent with traditional WCR-active Bt proteins despite significant structural differences.
Collapse
Affiliation(s)
- Jean-Louis Kouadio
- Bayer Crop Science, Chesterfield, Missouri, United States of America
- * E-mail:
| | - Stephen Duff
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Michael Aikins
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Meiying Zheng
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Timothy Rydel
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Danqi Chen
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Eric Bretsnyder
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Chunsheng Xia
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jun Zhang
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jason Milligan
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Artem Evdokimov
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jeffrey Nageotte
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Yong Yin
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - William Moar
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Kara Giddings
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Agoston Jerga
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| | - Jeffrey Haas
- Bayer Crop Science, Chesterfield, Missouri, United States of America
| |
Collapse
|
46
|
Zhang Y, Zhang A, Li M, He K, Guo S. Nanoparticle-loaded microcapsules providing effective UV protection for Cry1Ac. J Microencapsul 2021; 38:522-532. [PMID: 34615422 DOI: 10.1080/02652048.2021.1990424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM To prepare several novel microcapsules using chitosan (Cs) and Alginate (Alg) as coating materials, and nano-ZnO, nano-SiO2, nano-TiO2 as UV protective agents for improving UV resistance of Cry1Ac. METHODS Microcapsules were prepared by the layer-by-layer (LbL) self-assembly technique and electrostatic adsorption. The morphologies were observed by scanning electron microscopy (SEM), and the stability under UV radiation was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioassay. RESULTS SEM showed that nano-ZnO and nano-TiO2 could be adsorbed on the negatively charged MC with the outermost layer being Alg, while nano-SiO2 could be adsorbed on the positively charged MC with Cs as the outermost layer. SDS-PAGE and bioassay showed that nano-ZnO and nano-SiO2 could provide effective UV protection after 8 h UV irradiation (p > 0.05), and nano-TiO2 could provide effective UV protection after 4 h UV irradiation (p > 0.05). CONCLUSION The microcapsules loaded with nanoparticles provided excellent UV resistance for Cry1Ac.
Collapse
Affiliation(s)
- Yongjing Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Aijing Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Mengyuan Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuyuan Guo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
47
|
Xie Y, Xu C, Gao M, Zhang X, Lu L, Hu X, Chen W, Jurat-Fuentes JL, Zhu Q, Liu Y, Lin M, Zhong J, Liu X. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella). PEST MANAGEMENT SCIENCE 2021; 77:4593-4606. [PMID: 34092019 DOI: 10.1002/ps.6499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 05/19/2021] [Accepted: 06/06/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Broad use of insecticidal Cry proteins from Bacillus thuringiensis in biopesticides and transgenic crops has resulted in cases of practical field resistance, highlighting the need for novel approaches to insect control. Previously we described an anti-Cry1Ab idiotypic-antibody (B12-scFv) displaying toxicity against rice leafroller (Cnaphalocrocis medinalis) larvae, supporting the potential of antibodies for pest control. The goal of the present study was to generate insecticidal antibodies against diamondback moth (Plutella xylostella) larvae. RESULTS Four genetically engineered antibodies (GEAbs) were designed in silico from B12-scFv using three-dimensional (3D) structure and docking predictions to alkaline phosphatase (ALP) as a Cry1Ac receptor in P. xylostella. Among these GEAbs, the GEAb-dVL antibody consisting of two light chains had overlapping binding sites with Cry1A and Cry1B proteins and displayed high binding affinity to P. xylostella midgut brush border membrane (BBM) proteins. Proteins in BBM identified by pull-down assays as binding to GEAb-dVL included an ABC transporter and V-ATPase subunit A protein. Despite lacking the α-helical structures in Cry1A that are responsible for pore formation, ingestion of GEAb-dVL disrupted the P. xylostella larval midgut epithelium and resulted in toxicity. Apoptotic genes were activated in gut cells upon treatment with GEAb-dVL . CONCLUSION This study describes the first insecticidal GEAb targeting P. xylostella by mimicking Cry proteins. Data support that GEAb-dVL toxicity is associated to activation of intracellular cell death pathways, in contrast to pore-formation associated toxicity of Cry proteins. This work provides a foundation for the design of novel insecticidal antibodies for insect control. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yajing Xie
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Chongxin Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Meijing Gao
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Xiao Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Lina Lu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Xiaodan Hu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Wei Chen
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Juan L Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Qing Zhu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Yuan Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Manman Lin
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Jianfeng Zhong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, P. R. China
| |
Collapse
|
48
|
Coates BS, Deleury E, Gassmann AJ, Hibbard BE, Meinke LJ, Miller NJ, Petzold-Maxwell J, French BW, Sappington TW, Siegfried BD, Guillemaud T. Up-regulation of apoptotic- and cell survival-related gene pathways following exposures of western corn rootworm to B. thuringiensis crystalline pesticidal proteins in transgenic maize roots. BMC Genomics 2021; 22:639. [PMID: 34479486 PMCID: PMC8418000 DOI: 10.1186/s12864-021-07932-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood. RESULTS Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome. Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and transport, were, in part, shared among transcripts that changed significantly following exposures to the entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in common between Bt and entomopathogen treatments encode proteins in general stress response pathways, including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases, pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among transcripts uniquely up-regulated following exposure to either Bt protein. CONCLUSIONS Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for future investigations of resistance mechanisms.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 103 Genetics Laboratory, Iowa State University, Ames, IA, 50011, USA.
| | | | | | | | - Lance J Meinke
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | | | | | - B Wade French
- USDA-ARS, North Central Agricultural Research Laboratory, Brookings, SD, USA
| | - Thomas W Sappington
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 103 Genetics Laboratory, Iowa State University, Ames, IA, 50011, USA
| | | | | |
Collapse
|
49
|
Pan ZZ, Xu L, Liu B, Chen QX, Zhu YJ. Key residues of Bacillus thuringiensis Cry2Ab for oligomerization and pore-formation activity. AMB Express 2021; 11:112. [PMID: 34331618 PMCID: PMC8325727 DOI: 10.1186/s13568-021-01270-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
As a pore-forming toxin, activation, oligomerization and pore-formation were both required for the mode of action of Cry toxins. Previous results revealed that the helices α4-α5 of Domain I were involved in the oligomerization of Cry2Ab, however, the key residues for Cry2Ab aggregation remained ambiguous. In present studies, we built 20 Cry2Ab alanine mutants site-directed in the helices α4-α5 of Domain I and demonstrated that mutants N151A, T152A, F157A, L183A, L185A and I188A could reduce the assembly of the 250 kDa oligomers, suggesting that these mutation residues might be essential for Cry2Ab oligomerization. As expected, all of these variants showed lower insecticidal activity against P. xylostella. Furthermore, we found that the pore-forming activities of these mutants also decreased when compared to wild-type Cry2Ab. Taken together, our data identified key residues for Cry2Ab oligomerization and emphasized that oligomerization was closely related to the insecticidal activity and pore-forming activity of Cry2Ab.
Collapse
|
50
|
How Does Bacillus thuringiensis Crystallize Such a Large Diversity of Toxins? Toxins (Basel) 2021; 13:toxins13070443. [PMID: 34206796 PMCID: PMC8309854 DOI: 10.3390/toxins13070443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/31/2022] Open
Abstract
Bacillus thuringiensis (Bt) is a natural crystal-making bacterium. Bt diversified into many subspecies that have evolved to produce crystals of hundreds of pesticidal proteins with radically different structures. Their crystalline form ensures stability and controlled release of these major virulence factors. They are responsible for the toxicity and host specificity of Bt, explaining its worldwide use as a biological insecticide. Most research has been devoted to understanding the mechanisms of toxicity of these toxins while the features driving their crystallization have long remained elusive, essentially due to technical limitations. The evolution of methods in structural biology, pushing back the limits in size of amenable protein crystals now allows access to be gained to structural information hidden within natural crystals of such toxins. In this review, we present the main parameters that have been identified as key drivers of toxin crystallization in Bt, notably in the light of recent discoveries driven by structural biology studies. Then, we develop how the future evolution of structural biology will hopefully unveil new mechanisms of Bt toxin crystallization, opening the door to their hijacking with the aim of developing a versatile in vivo crystallization platform of high academic and industrial interest.
Collapse
|