1
|
Shahmohammadi N, Khan F, Jin G, Kwon M, Lee D, Kim Y. Tomato Spotted Wilt Virus Suppresses the Antiviral Response of the Insect Vector, Frankliniella occidentalis, by Elevating an Immunosuppressive C18 Oxylipin Level Using Its Virulent Factor, NSs. Cells 2024; 13:1377. [PMID: 39195265 PMCID: PMC11352781 DOI: 10.3390/cells13161377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Orthotospovirus tomatomaculae (tomato spotted wilt virus, TSWV) is transmitted by the western flower thrips, Frankliniella occidentalis. Epoxyoctadecamonoenoic acids (EpOMEs) function as immune-suppressive factors, particularly in insects infected by viral pathogens. These oxylipins are produced by cytochrome P450 monooxygenases (CYPs) and are degraded by soluble epoxide hydrolase (sEH). In this study, we tested the hypothesis that TSWV modulates the EpOME level in the thrips to suppress antiviral responses and enhance its replication. TSWV infection significantly elevated both 9,10-EpOME and 12,13-EpOME levels. Following TSWV infection, the larvae displayed apoptosis in the midgut along with the upregulated expression of four caspase genes. However, the addition of EpOME to the viral treatment notably reduced apoptosis and downregulated caspase gene expressions, which led to a marked increase in TSWV titers. The CYP and sEH genes of F. occidentalis were identified, and their expression manipulation using RNA interference (RNAi) treatments led to significant alternations in the insect's immune responses and TSWV viral titers. To ascertain which viral factor influences the host EpOME levels, specialized RNAi treatments targeting genes encoded by TSWV were administered to larvae infected with TSWV. These treatments demonstrated that NSS expression is pivotal in manipulating the genes involved in EpOME metabolism. These results indicate that NSs of TSWV are crucially linked with the elevation of host insect EpOME levels and play a key role in suppressing the antiviral responses of F. occidentalis.
Collapse
Affiliation(s)
- Niayesh Shahmohammadi
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| | - Falguni Khan
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| | - Gahyeon Jin
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| | - Minji Kwon
- Industry Academy Cooperation Foundation, Andong National University, Andong 36729, Republic of Korea; (M.K.); (D.L.)
| | - Donghee Lee
- Industry Academy Cooperation Foundation, Andong National University, Andong 36729, Republic of Korea; (M.K.); (D.L.)
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea; (N.S.); (F.K.); (G.J.)
| |
Collapse
|
2
|
Kim CY, Kim Y. In vivo transient expression of a viral silencing suppressor, NSs, derived from tomato spotted wilt virus decreases insect RNAi efficiencies. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21982. [PMID: 36335566 DOI: 10.1002/arch.21982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Tomato spotted wilt virus is a single-stranded RNA virus and causes a serious plant disease. Its horizontal transmission depends on some thrips species including Frankliniella occidentalis. Its genome encodes a nonstructural protein, nonstructural (NSs), which acts as a silencing suppressor and plays a crucial role in the pathogenicity by defending antiviral immunity using RNA interference (RNAi) in plant hosts. However, its physiological function as a silencing suppressor was not well clarified in insect vectors. This study assessed any change of RNAi efficiencies in two other insect systems by NSs expression. To this end, the gene was cloned into a eukaryotic expression vector and transiently expressed in two different insect species via in vivo transient expression (IVTE). After feeding the recombinant construct to non-viruliferous F. occidentalis, NSs expression was observed for over 2 days in the thrips. Under this expression of NSs, thrips were rescued from a treatment of a toxic double stranded RNA specific to v-ATPase. Interestingly, the thrips treated with IVTE significantly suppressed the expression of RNAi machinery genes such as SID and Dicer-2. The recombinant vector expressing NSs was injected to a non-vector insect, Spodoptera exigua, larvae. The larvae expressing NSs by the IVTE were highly susceptible to an infection of a RNA virus called iflavirus. These suggest that NSs acts as a silencing suppressor in insects and would be used for a synergist for RNA pathogens to control insect pests.
Collapse
Affiliation(s)
- Chul-Young Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, Korea
| |
Collapse
|
3
|
Ahmed S, Hasan MA, Kim Y. Overexpression of PGE2 synthase by in vivo transient expression enhances immunocompetency along with fitness cost in a lepidopteran insect. J Exp Biol 2019; 222:jeb.207019. [DOI: 10.1242/jeb.207019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/30/2019] [Indexed: 01/04/2023]
Abstract
Prostaglandins (PGs) mediate various physiological functions in insects. Especially, PGE2 is known to mediate immunity and egg-laying behavior in the beet armyworm, Spodoptera exigua. A PGE2 synthase 2 (Se-PGES2) has been identified to catalyze the final step to produce PGE2 in S. exigua. Its expression is inducible in response to immune challenge. Inhibition of the gene expression results in immunosuppression. On the other hand, any physiological alteration induced by its uncontrolled overexpression was not recognized in insects. This study used in vivo transient expression (IVTE) technique to induce overexpression and assessed subsequent physiological alteration in S. exigua. Se-PGES2 was cloned into a eukaryotic expression vector and transfected to Sf9 cells to monitor its heterologous expression. The Sf9 cells expressed the recombinant Se-PGES2 (rSe-PGES2) at an expected size (∼47 kDa), which was localized in cytoplasm. The recombinant expression vector was then used to transfect larvae of S. exigua. Hemocytes collected from the larvae treated with IVTE expressed rSe-PGES2 gene for at least 48 h. The larvae treated with IVTE exhibited an enhanced competency in cellular immune response measured by hemocyte nodule formation. In addition, IVTE treatment of Se-PGES2 induced gene expression of antimicrobial peptides without any immune challenge. The larvae treated with IVTE became significantly resistant to infection of an entomopathogenic nematode, Steinernema monticolum or to infection to its symbiotic bacterium, Xenorhabdus hominickii. However, IVTE-treated S. exigua larvae suffered from reduced pupal size and fecundity.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea
| | - Md Ariful Hasan
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea
| |
Collapse
|
4
|
Kusakisako K, Ido A, Masatani T, Morokuma H, Hernandez EP, Talactac MR, Yoshii K, Tanaka T. Transcriptional activities of two newly identified Haemaphysalis longicornis tick-derived promoter regions in the Ixodes scapularis tick cell line (ISE6). INSECT MOLECULAR BIOLOGY 2018; 27:590-602. [PMID: 29663614 DOI: 10.1111/imb.12497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ticks are obligate haematophagous ectoparasites considered to be second to mosquitoes as vectors of human diseases and the most important vector for animals. Despite efforts to control tick infestations, they remain a serious health problem. Gene manipulation has been established in mosquitoes and led to the control of mosquito populations and of mosquito-borne pathogens. Therefore, gene manipulation could be useful for controlling ticks and tick-borne pathogens. To investigate effective gene expression vectors for ticks, the promoter activities of commercial plasmids were evaluated in a tick cell line (ISE6). Dual luciferase assays revealed that pmirGLO, the human phosphoglycerate kinase promoter contained plasmid vector, showed the highest activity in ISE6 cells amongst the tested plasmids. Moreover, we identified the promoter regions of the Haemaphysalis longicornis actin (HlAct) and the intracellular ferritin (HlFer1) genes. To construct a more effective expression vector for ticks, these promoter regions were inserted into pmirGLO (pmirGLO-HlAct pro and pmirGLO-HlFer1 pro). The pmirGLO-HlAct pro vector showed significantly higher promoter activity than pmirGLO, whereas the pmirGLO-HlFer1 pro vector demonstrated significantly lower promoter activity than pmirGLO in ISE6 cells. The HlAct promoter region may have high promoter activity in ISE6 cells. The results of the present study provide useful information for the development of a genetic modification system in ticks.
Collapse
Affiliation(s)
- K Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - A Ido
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - T Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - H Morokuma
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - E P Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
| | - M R Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, Philippines
| | - K Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - T Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi, Japan
| |
Collapse
|
5
|
Characterization of joining sites of a viral histone H4 on host insect chromosomes. PLoS One 2017; 12:e0177066. [PMID: 28486493 PMCID: PMC5423620 DOI: 10.1371/journal.pone.0177066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/22/2017] [Indexed: 12/28/2022] Open
Abstract
A viral histone H4 (CpBV-H4) is encoded in a polydnavirus, Cotesia plutellae bracovirus (CpBV). It plays a crucial role in parasitism of an endoparasitoid wasp, C. plutellae, against diamondback moth, Plutella xylostella, by altering host gene expression in an epigenetic mode by its N-terminal tail after joining host nucleosomes. Comparative transcriptomic analysis between parasitized and nonparasitized P. xylostella by RNA-Seq indicated that 1,858 genes were altered at more than two folds in expression levels at late parasitic stage, including 877 up-regulated genes and 981 down-regulated genes. Among parasitic factors altering host gene expression, CpBV-H4 alone explained 16.3% of these expressional changes. To characterize the joining sites of CpBV-H4 on host chromosomes, ChIP-Seq (chromatin immunoprecipitation followed by deep sequencing) was applied to chromatins extracted from parasitized larvae. It identified specific 538 ChIP targets. Joining sites were rich (60.2%) in AT sequence. Almost 40% of ChIP targets included short nucleotide repeat sequences presumably recognizable by transcriptional factors and chromatin remodeling factors. To further validate these CpBV-H4 targets, CpBV-H4 was transiently expressed in nonparasitized host at late larval stage and subjected to ChIP-Seq. Two kinds of ChIP-Seqs shared 51 core joining sites. Common targets were close (within 1 kb) to genes regulated at expression levels by CpBV-H4. However, other host genes not close to CpBV-H4 joining sites were also regulated by CpBV-H4. These results indicate that CpBV-H4 joins specific chromatin regions of P. xylostella and controls about one sixth of the total host genes that were regulated by C. plutellae parasitism in an epigenetic mode.
Collapse
|
6
|
Kumar S, Venkata P, Kim Y. Suppressive activity of a viral histone H4 against two host chromatin remodelling factors: lysine demethylase and SWI/SNF. J Gen Virol 2016; 97:2780-2796. [PMID: 27443988 DOI: 10.1099/jgv.0.000560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Histone H4, a nucleosome subunit in eukaryotes, plays crucial roles in DNA package and regulation of gene expression through covalent modification. A viral histone H4 encoded in Cotesia plutellae bracovirus (CpBV), a polydnavirus, is called CpBV-H4. It is highly homologous to other histone H4 proteins excepting 38 extra amino acid residues in the N terminus. CpBV-H4 can form octamer with other histone subunits and alter host gene expression. In this study, CpBV-H4 was transiently expressed in a natural host (Plutella xylostella) and its suppressive activity on host gene expression was evaluated by the suppressive subtractive hybridization (SSH) technique. The SSH targets down-regulated by CpBV-H4 were read with the 454 pyrosequencing platform and annotated using the genome of P. xylostella. The down-regulated genes (610 contigs) were annotated in most functional categories based on gene ontology. Among these SSH targets, 115 genes were functionally distinct, including two chromatin remodelling factors: a lysine-specific demethylase (Px-KDM) and a chromatin remodelling complex [Px-SWI/SNF (SWItch/Sucrose Non-Fermentable)]. Px-KDM was highly expressed in all tested tissues during the entire larval period. Suppression of Px-KDM expression by specific RNA interference (RNAi) significantly (P<0.05) reduced haemocyte nodule formation in response to immune challenge and impaired both larval and pupal development. Px-SWI/SNF was expressed in all developmental stages. Suppression of Px-SWI/SNF expression by RNAi reduced cellular immune response and interfered with adult metamorphosis. These results suggest that CpBV-H4 can alter host gene expression by interfering with chromatin modification and remodelling factors in addition to its direct epigenetic control activity.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Prasad Venkata
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
7
|
Kim Y, Hepat R. Baculoviral p94 homologs encoded in Cotesia plutellae bracovirus suppress both immunity and development of the diamondback moth, Plutellae xylostella. INSECT SCIENCE 2016; 23:235-244. [PMID: 25973570 DOI: 10.1111/1744-7917.12237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Polydnaviruses (PDVs) are a group of insect DNA viruses, which exhibit a mutual symbiotic relationship with their specific host wasps. Moreover, most encapsidated genes identified so far in PDVs share homologies with insect-originated genes, but not with virus-originated genes. In the meantime, PDVs associated with 2 wasp genera Cotesia and Glytapanteles encode some genes presumably originated from other viruses. Cotesia plutellae bracovirus (CpBV) encodes 4 genes homologous to baculoviral p94: CpBV-E94k1, CpBV-E94k2, CpBV-E94k3, and CpBV-E94k4. This study was conducted to predict the origin of CpBV-E94ks by comparing their sequences with those of baculoviral orthologs and to determine the physiological functions by their transient expressions in nonparasitized larvae and subsequent specific RNA interference. Our phylogenetic analysis indicated that CpBV-E94ks were clustered with other E94ks originated from different PDVs and shared high similarity with betabaculoviral p94s. These 4 CpBV genes were expressed during most developmental stages of the larvae of Plutella xylostella parasitized by C. plutellae. Expression of these 4 E94ks was mainly detected in hemocytes and fat body. Subsequent functional analysis by in vivo transient expression showed that all 4 viral genes significantly inhibited both host immune and developmental processes. These results suggest that CpBV-E94ks share an origin with betabaculoviral p94s and play parasitic roles in suppressing host immune and developmental processes.
Collapse
Affiliation(s)
- Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, Korea
| | - Rahul Hepat
- Department of Bioresource Sciences, Andong National University, Andong, 760-749, Korea
| |
Collapse
|
8
|
Prasad SV, Hepat R, Kim Y. Selectivity of a translation-inhibitory factor, CpBV15β, in host mRNAs and subsequent alterations in host development and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:152-162. [PMID: 24361921 DOI: 10.1016/j.dci.2013.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
An endoparasitoid wasp, Cotesia plutellae, parasitizes young larvae of the diamondback moth, Plutella xylostella. Its symbiotic virus, C. plutellae bracovirus (CpBV), has been shown to play a crucial role in inducing physiological changes in the parasitized host. A viral gene, CpBV15β, exhibits a specific translational control against host mRNAs by sequestering a eukaryotic translation initiation factor, eIF4A. Inhibitory target mRNAs have high thermal stability (>≈9 kcal/mol) of their secondary structures in 5'UTR. To determine the specificity of translational control in terms of 5'UTR complexity, this study screened target/nontarget mRNAs of CpBV15β using a proteomics approach through an in vivo transient expression technique. A proteomics analysis of host plasma proteins showed that 12.9% (23/178) spots disappeared along with the expression of CpBV15β. A total of ten spots were chosen, in which five spots ('target') were disappeared by expression of CpBV15β and the other five ('nontarget') were insensitive to expression of CpBV15β, and further analyzed by a tandem mass spectroscopy. The predicted genes of target spots had much greater complexity (-12.3 to -25.2 kcal/mol) of their 5'UTR in terms of thermal stability compared to those (-3.70 to -9.00 kcal/mol) of nontarget spots. 5'UTRs of one target gene (arginine kinase:Px-AK) and one nontarget gene (imaginal disc growth factor:Px-IDGF) were cloned and used for in vitro translation (IVT) assay using rabbit reticulocyte lysate. IVT assay clearly showed that mRNA of Px-IDGF was translated in the presence of CpBV15β, but mRNA of Px-AK was not. Physiological significance of these two genes was compared in immune and development processes of P. xylostella by specific RNA interference (RNAi). Under these RNAi conditions, suppression of Px-AK exhibited much more significant adverse effects on larval immunity and larva-to-pupa metamorphosis compared to the effect of suppression of Px-IDGF. These results support the hypothesis that 5'UTR complexity is a molecular motif to discriminate host mRNAs by CpBV15β for its host translational control and suggest that this discrimination would be required for altering host physiology to accomplish a successful parasitism of the wasp host, C. plutellae.
Collapse
Affiliation(s)
- Surakasi Venkata Prasad
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea; Sanzyme Ltd., PO Bag No: 1014, Banjara Hills, Hyderabad 500034, Andhra Pradesh, India
| | - Rahul Hepat
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | - Yonggyun Kim
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea.
| |
Collapse
|
9
|
A viral histone h4 joins to eukaryotic nucleosomes and alters host gene expression. J Virol 2013; 87:11223-30. [PMID: 23926351 DOI: 10.1128/jvi.01759-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A viral histone H4 (CpBV-H4) is encoded in a polydnavirus, Cotesia plutellae bracovirus. Its predicted amino acid sequence is highly homologous to that of host insect histone H4 except for an extended N-terminal tail containing 38 amino acids with nine lysine residues. Its expression induces an immunosuppression of target insects by suppressing immune-associated genes, presumably through an epigenetic control. This study analyzed its molecular interaction with eukaryotic host nucleosomes and subsequent regulation of host gene expression. Purified recombinant CpBV-H4 could associate with nucleosomal components (H2A, H2B, H3, and H4) and form an octamer. Transient expression of CpBV-H4 in an insect, Tribolium castaneum, was performed by microinjection of a recombinant expression vector and confirmed by both reverse transcriptase PCR (RT-PCR) and immunoblotting assays. Under this transient expression condition, total RNAs were extracted and read by a deep-sequencing technique. Annotated transcripts were classified into different gene ontology (GO) categories and compared with those of control insects injected with a truncated CpBV-H4. Target genes manipulated by CpBV-H4 expression showing significant differences (fold changes > 10(9)) included all GO categories, including development and immune-associated genes. When the target genes were physically mapped, they were found to be scattered on entire chromosomes of T. castaneum. In addition, chromatin immunoprecipitation against CpBV-H4 determined 16 nucleosome sites (P < 10(-5)) of the viral histone incorporation, which were noncoding regions near DNA-binding and inducible genes. These findings suggest that the viral histone H4 alters host gene expression by a direct molecular interaction with insect nucleosomes.
Collapse
|
10
|
Hepat R, Lee D, Kim Y. Juvenile hormone regulates an expression of a late gene encoded in a polydnavirus, Cotesia plutellae bracovirus. Comp Biochem Physiol A Mol Integr Physiol 2013; 165:214-22. [DOI: 10.1016/j.cbpa.2013.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 12/17/2022]
|
11
|
Hepat R, Kim Y. A viral factor, CpBV15α, interacts with a translation initiation factor, eIF2, to suppress host gene expression at a post-transcriptional level. J Invertebr Pathol 2013; 114:34-41. [PMID: 23711415 DOI: 10.1016/j.jip.2013.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/09/2013] [Accepted: 05/16/2013] [Indexed: 12/29/2022]
Abstract
An endoparasitoid wasp, Cotesia plutellae, possesses its specific symbiotic virus called C. plutellae bracovirus (CpBV) and parasitizes young larvae of Plutella xylostella. CpBV encodes CpBV15α, which was previously shown to interfere with host protein translation. In vivo transient expression of CpBV15α induced a significant decrease in a storage protein level without its transcriptional level change. In vitro translation assay using rabbit reticulocyte lysate showed that CpBV15α suppressed translation efficiency of mRNAs extracted from fat body of P. xylostella. Transient expression of CpBV15α in nonparasitized P. xylostella suppressed humoral immunity and development to pupal and adult stages. Immunoprecipitation (IP) of CpBV15α co-precipitated eIF2 and eIF2B (a guanine nucleotide exchange factor of eIF2) in parasitized P. xylostella. Additionally, IP of eIF2 co-precipitated CpBV15α as well as eIF2B and eIF5 in parasitized larvae. IP with eIF5 antibody showed that relative amount of eIF2 bound to eIF5 was much decreased in parasitized larvae, while significant amount of eIF2 was bound to CpBV15α. These results suggest that CpBV15α inhibits some host mRNA translation by sequestering eIF2.
Collapse
Affiliation(s)
- Rahul Hepat
- Department of Bioresource Sciences, Andong National University, Andong 760-749, Republic of Korea
| | | |
Collapse
|