1
|
Hong G, Yang M, Wang S, Xia Y, Peng G. Metarhizium acridum transcription factor MaFTF1 negatively regulates virulence of the entomopathogenic fungus by controlling cuticle penetration of locusts. PEST MANAGEMENT SCIENCE 2025; 81:2020-2031. [PMID: 39704032 DOI: 10.1002/ps.8604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND The entomopathogenic fungus (EPF) Metarhizium acridum, a typical filamentous fungus, has been utilized for the biological control of migratory locusts (Locusta migratoria manilensis). Fungal-specific transcription factors (TFs) play a crucial role in governing various cellular processes in fungi, although TFs with only the Fungal_trans domain remain poorly understood. RESULTS In this study, we identified a unique fungal-specific TF in M. acridum, named MaFTF1, which contains only a Fungal_trans domain and functions as a negative regulator of M. acridum virulence by influencing cuticle penetration. The virulence of the MaFTF1 knockout strain (ΔMaFTF1) against L. migratoria was increased, with a median lethal time (LT50) ~0.91 days shorter than that of the wild-type (WT) strain when inoculated topically, mimicking natural infection conditions. Correspondingly, ΔMaFTF1 penetrated the cuticle earlier than did the WT strain. Our investigation revealed that the development of appressoria was accelerated in ΔMaFTF1 compared with the WT strain. Furthermore, the appressoria of the ΔMaFTF1 displayed higher turgor pressure and an upregulated expression of fungal hydrolases active toward the insect cuticle. RNA sequencing analysis indicated that the differences in appressorium behavior between the strains were due to MaFTF1 regulating a complex metabolism pathway. CONCLUSION This study revealed that MaFTF1 acts as a negative regulator of virulence, impacting the process of cuticle penetration by slowing the formation of appressoria, decreasing their turgor pressure, and reducing the expression of hydrolases in appressoria, revealing an unexpected strategy in the EPFs. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Geng Hong
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Man Yang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Shanjun Wang
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| | - Guoxiong Peng
- School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
2
|
Hu X, Li B, Li Y, Xia Y, Jin K. MaPac2, a Transcriptional Regulator, Is Involved in Conidiation, Stress Tolerances and Pathogenicity in Metarhizium acridum. J Fungi (Basel) 2025; 11:100. [PMID: 39997395 PMCID: PMC11855946 DOI: 10.3390/jof11020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/26/2025] Open
Abstract
The Gti1/Pac2 protein family, which is highly conserved across fungi, is pivotal in processes such as fungal development, spore formation, protein export, toxin production, and virulence. Despite its importance, the precise functions of Pac2 within entomopathogenic fungi have yet to be fully understood. In our study, the MaPac2 gene from M. acridum was identified, and its functions were explored. Studying the domain of the protein showed that MaPac2 comprises 422 amino acids with a characteristic Gti1/Pac2 family domain (Pfam09729). Additionally, MaPac2 is predicted to have an N-terminal protein kinase A phosphorylation site and a potential cyclin-dependent kinase phosphorylation site, highlighting its potential regulatory roles in the fungus. Our findings indicate that the inactivation of MaPac2 resulted in faster germination of conidia and a marked reduction in conidial production. Furthermore, stress tolerance tests revealed that the absence of MaPac2 significantly bolstered the fungal resilience to UV-B radiation, heat shock, SDS exposure, and stresses induced by hyperosmotic conditions and oxidative challenges. Virulence assessments through bioassays indicated no substantial differences among the WT, MaPac2-disrupted strain, and CP strains in the topical inoculation trials. Interestingly, deletion of MaPac2 increased the fungal virulence by intrahemocoel injection. Furthermore, we found that disruption of MaPac2 impaired fungal cuticle penetration due to the diminished appressorium formation but increased the fungal growth in locust hemolymph. These findings provide further insights into the roles played by Gti1/Pac2 in insect pathogenic fungi.
Collapse
Affiliation(s)
- Xiaobin Hu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.H.); (B.L.); (Y.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Baicheng Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.H.); (B.L.); (Y.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yan Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.H.); (B.L.); (Y.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.H.); (B.L.); (Y.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (X.H.); (B.L.); (Y.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| |
Collapse
|
3
|
Jiang Q, Wang T, Li Y, Bi Y, Zhang M, Wang X, Prusky DB. AaSlt2 Is Required for Vegetative Growth, Stress Adaption, Infection Structure Formation, and Virulence in Alternaria alternata. J Fungi (Basel) 2024; 10:774. [PMID: 39590693 PMCID: PMC11595810 DOI: 10.3390/jof10110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Slt2 is an important component of the Slt2-MAPK pathway and plays critical regulatory roles in growth, cell wall integrity, melanin biosynthesis, and pathogenicity of plant fungi. AaSlt2, an ortholog of the Saccharomyces cerevisiae Slt2 gene, was identified from A. alternata in this study, and its function was clarified by knockout of the gene. The ΔAaSlt2 strain of A. alternata was found to be defective in spore morphology, vegetative growth, and sporulation. Analysis of gene expression showed that expression of the AaSlt2 gene was significantly up-regulated during infection structure formation of A. alternata on hydrophobic and pear wax extract-coated surfaces. Further tests on onion epidermis confirmed that spore germination was reduced in the ΔAaSlt2 strain, together with decreased formation of appressorium and infection hyphae. Moreover, the ΔAaSlt2 strain was sensitive to cell wall inhibitors, and showed significantly reduced virulence on pear fruit. Furthermore, cell wall degradation enzyme (CWDE) activities, melanin accumulation, and toxin biosynthesis were significantly lower in the ΔAaSlt2 strain. Overall, the findings demonstrate the critical involvement of AaSlt2 in growth regulation, stress adaptation, infection structure formation, and virulence in A. alternata.
Collapse
Affiliation(s)
- Qianqian Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tiaolan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- College of Applied Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaojing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov B. Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| |
Collapse
|
4
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
5
|
Hong G, Wang S, Xia Y, Peng G. MaAzaR Influences Virulence of Metarhizium acridum against Locusta migratoria manilensis by Affecting Cuticle Penetration. J Fungi (Basel) 2024; 10:564. [PMID: 39194890 DOI: 10.3390/jof10080564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
The entomopathogenic fungus (EPF) Metarhizium acridum is a typical filamentous fungus and has been used to control migratory locusts (Locusta migratoria manilensis). This study examines the impact of the Zn(II)2Cys6 transcription factor, MaAzaR, in the virulence of M. acridum. Disruption of MaAzaR (ΔMaAzaR) diminished the fungus's ability to penetrate the insect cuticle, thereby decreasing its virulence. The median lethal time (LT50) for the ΔMaAzaR strain increased by approximately 1.5 d compared to the wild-type (WT) strain when topically inoculated, simulating natural infection conditions. ΔMaAzaR compromises the formation, turgor pressure, and secretion of extracellular hydrolytic enzymes in appressoria. However, the growth ability of ΔMaAzaR within the hemolymph is not impaired; in fact, it grows better than the WT strain. Moreover, RNA-sequencing (RNA-Seq) analysis of ΔMaAzaR and WT strains grown for 20 h on locust hindwings revealed 87 upregulated and 37 downregulated differentially expressed genes (DEGs) in the mutant strain. Pathogen-host interaction database (PHI) analysis showed that about 40% of the total DEGs were associated with virulence, suggesting that MaAzaR is a crucial transcription factor that directly regulates the expression of downstream genes. This study identifies a new transcription factor involved in EPF cuticle penetration, providing theoretical support and genetic resources for the developing highly virulent strains.
Collapse
Affiliation(s)
- Geng Hong
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Siqing Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Guoxiong Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| |
Collapse
|
6
|
Fan L, Li X, Li H, Li B, Wang J, He L, Wang Z, Lin Y. Comparative transcriptome analysis to unveil genes affecting the host cuticle destruction in Metarhizium rileyi. Curr Genet 2023; 69:253-265. [PMID: 37726495 DOI: 10.1007/s00294-023-01274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Insect pathogenic fungi, also known as entomopathogenic fungi, are one of the largest insect pathogenic microorganism communities, represented by Beauveria spp. and Metarhizium spp. Entomopathogenic fungi have been proved to be a great substitute for chemical pesticide in agriculture. In fact, a lot of functional genes were also already characterized in entomopathogenic fungi, but more depth of exploration is still needed to reveal their complicated pathogenic mechanism to insects. Metarhizium rileyi (Nomuraea rileyi) is a great potential biocontrol fungus that can parasitize more than 40 distinct species (mainly Lepidoptera: Noctuidae) to cause large-scale infectious diseases within insect population. In this study, a comparative analysis of transcriptome profile was performed with topical inoculation and hemolymph injection to character the infectious pattern of M. rileyi. Appressorium and multiple hydrolases are indispensable constituents to break the insect host primary cuticle defense in entomopathogenic fungi. Within our transcriptome data, numerous transcripts related to destruction of insect cuticle rather growth regulations were obtained. Most importantly, some unreported ribosomal protein genes and novel unannotated protein (hypothetical protein) genes were proved to participate in the course of pathogenic regulation. Our current data provide a higher efficiency gene library for virulence factors screen in M. rileyi, and this library may be also useful for furnishing valuable information on entomopathogenic fungal pathogenic mechanisms to host.
Collapse
Affiliation(s)
- Liqin Fan
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Xinxin Li
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Hongli Li
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Bingjie Li
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Jiahui Wang
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Le He
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China
| | - Zhongkang Wang
- Chongqing Engineering Research Center for Fungal Insecticide, School of Life Science, Chongqing University, Chongqing, People's Republic of China
| | - Yunlong Lin
- Zhoukou Normal University, Zhoukou, 466001, People's Republic of China.
- Chongqing Precision Medical Industry Technology Research Institute, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Villota-Salazar NA, Ramos-García VH, González-Prieto JM, Hernández-Delgado S. Effects of chemical inhibition of histone deacetylase proteins in the growth and virulence of Macrophomina phaseolina (Tassi) Goid. Rev Argent Microbiol 2023; 55:296-306. [PMID: 37296064 DOI: 10.1016/j.ram.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023] Open
Abstract
Chromatin remodeling enzymes are important "writers", "readers" and "erasers" of the epigenetic code. These proteins are responsible for the placement, recognition, and removal of molecular marks in histone tails that trigger structural and functional changes in chromatin. This is also the case for histone deacetylases (HDACs), i.e., enzymes that remove acetyl groups from histone tails, signaling heterochromatin formation. Chromatin remodeling is necessary for cell differentiation processes in eukaryotes, and fungal pathogenesis in plants includes many adaptations to cause disease. Macrophomina phaseolina (Tassi) Goid. is a nonspecific, necrotrophic ascomycete phytopathogen that causes charcoal root disease. M. phaseolina is a frequent and highly destructive pathogen in crops such as common beans (Phaseolus vulgaris L.), particularly under both water and high temperature stresses. Here, we evaluated the effects of the classical HDAC inhibitor trichostatin A (TSA) on M. phaseolinain vitro growth and virulence. During inhibition assays, the growth of M. phaseolina in solid media, as well as the size of the microsclerotia, were reduced (p<0.05), and the colony morphology was remarkably affected. Under greenhouse experiments, treatment with TSA reduced (p<0.05) fungal virulence in common bean cv. BAT 477. Tests of LIPK, MAC1 and PMK1 gene expression during the interaction of fungi with BAT 477 revealed noticeable deregulation. Our results provide additional evidence about the role of HATs and HDACs in important biological processes of M. phaseolina.
Collapse
Affiliation(s)
- Nubia Andrea Villota-Salazar
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Víctor Hugo Ramos-García
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Sanjuana Hernández-Delgado
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico.
| |
Collapse
|
8
|
Zhao X, Jiang Y, Wang H, Lu Z, Huang S, Luo Z, Zhang L, Lv T, Tang X, Zhang Y. Fus3/Kss1-MAP kinase and Ste12-like control distinct biocontrol-traits besides regulation of insect cuticle penetration via phosphorylation cascade in a filamentous fungal pathogen. PEST MANAGEMENT SCIENCE 2023; 79:2611-2624. [PMID: 36890107 DOI: 10.1002/ps.7446] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Accepted: 03/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Homolog of the yeast Fus3/Kss1 mitogen-activated protein kinase (MAPK) pathway and its target transcription factor, Ste12-like, are involved in penetration of host cuticle/pathogenicity in many ascomycete pathogens. However, details of their interaction during fungal infection, as well as their controlled other virulence-associated traits, are unclear. RESULTS Ste12-like (BbSte12) and Fus3/Kss1 MAPK homolog (Bbmpk1) interacted in nucleus, and phosphorylation of BbSte12 by Bbmpk1 was essential for penetration of insect cuticle in an insect fungal pathogen, Beauveria bassiana. However, some distinct biocontrol-traits were found to be mediated by Ste12 and Bbmpk1. In contrast to ΔBbmpk1 colony that grew more rapid than wild-type strain, inactivation of BbSte12 resulted in the opposite phenotype, which was consistent with their different proliferation rates in insect hemocoel after direct injection of conidia bypass the cuticle. Reduced conidial yield with decreased hydrophobicity was examined in both mutants, however they displayed distinct conidiogenesis, accompanying with differently altered cell cycle, distinct hyphal branching and septum formation. Moreover, ΔBbmpk1 showed increased tolerance to oxidative agent, whereas the opposite phenotype was seen for ΔBbSte12 strain. RNA sequencing analysis revealed that Bbmpk1 controlled 356 genes depending on BbSte12 during cuticle penetration, but 1077 and 584 genes were independently controlled by Bbmpk1 and BbSte12. CONCLUSION BbSte12 and Bbmpk1 separately participate in additional pathways for control of conidiation, growth and hyphal differentiation, as well as oxidative stress response besides regulating cuticle penetration via phosphorylation cascade. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Zhao
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Yahui Jiang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Huifang Wang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Zhuoyue Lu
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Shuaishuai Huang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Zhibing Luo
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Liuyi Zhang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Ting Lv
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Xiaohan Tang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| | - Yongjun Zhang
- Academy of Agricultural Sciences, Biotechnology Research Center, Southwest University, Chongqing, P. R. China
| |
Collapse
|
9
|
Knockdown of Bmp1 and Pls1 Virulence Genes by Exogenous Application of RNAi-Inducing dsRNA in Botrytis cinerea. Int J Mol Sci 2023; 24:ijms24054869. [PMID: 36902297 PMCID: PMC10003348 DOI: 10.3390/ijms24054869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Botrytis cinerea is a pathogen of wide agronomic and scientific importance partly due to its tendency to develop fungicide resistance. Recently, there has been great interest in the use of RNA interference as a control strategy against B. cinerea. In order to reduce the possible effects on non-target species, the sequence-dependent nature of RNAi can be used as an advantage to customize the design of dsRNA molecules. We selected two genes related to virulence: BcBmp1 (a MAP kinase essential for fungal pathogenesis) and BcPls1 (a tetraspanin related to appressorium penetration). After performing a prediction analysis of small interfering RNAs, dsRNAs of 344 (BcBmp1) and 413 (BcPls1) nucleotides were synthesized in vitro. We tested the effect of topical applications of dsRNAs, both in vitro by a fungal growth assay in microtiter plates and in vivo on artificially inoculated detached lettuce leaves. In both cases, topical applications of dsRNA led to gene knockdown with a delay in conidial germination for BcBmp1, an evident growth retardation for BcPls1, and a strong reduction in necrotic lesions on lettuce leaves for both genes. Furthermore, a strongly reduced expression of the BcBmp1 and BcPls1 genes was observed in both in vitro and in vivo experiments, suggesting that these genes could be promising targets for the development of RNAi-based fungicides against B. cinerea.
Collapse
|
10
|
Kang Q, Ning S, Sui L, Lu Y, Zhao Y, Shi W, Li Q, Zhang Z. Transcriptomic analysis of entomopathogenic fungus Beauveria bassiana infected by a hypervirulent polymycovirus BbPmV-4. Fungal Biol 2023; 127:958-967. [PMID: 36906386 DOI: 10.1016/j.funbio.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/30/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Polymycoviridae is a recently established family of mycoviruses. Beauveria bassiana polymycovirus 4 (BbPmV-4) was previously reported. However, the effect of the virus on host fungus B. bassiana was not clarified. Here, a comparison between virus-free and virus-infected isogenic lines of B. bassiana revealed that BbPmV-4 infection of B. bassiana changes morphology and could lead to decreases in conidiation and increases in virulence against Ostrinia furnacalis larvae. The differential expression of genes between virus-free and virus-infected strains was compared by RNA-Seq and was consistent with the phenotype of B. bassiana. The enhanced pathogenicity may be related to the significant up-regulation of genes encoding mitogen activated protein kinase, cytochrome P450, and polyketide synthase. The results enable studies of the mechanism of interaction between BbPmV-4 and B. bassiana.
Collapse
Affiliation(s)
- Qin Kang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Siyu Ning
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China
| | - Li Sui
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China
| | - Yang Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China
| | - Yu Zhao
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China
| | - Wangpeng Shi
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| | - Qiyun Li
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China; Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, PR China.
| | - Zhengkun Zhang
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Areas, Changchun, 130033, Jilin Province, PR China.
| |
Collapse
|
11
|
Yu L, Wen D, Yang Y, Qiu X, Xiong D, Tian C. Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Pathogenicity, Stress Responses, and Development in Cytospora chrysosperma. PHYTOPATHOLOGY 2023; 113:239-251. [PMID: 36191174 DOI: 10.1094/phyto-04-22-0126-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are highly conserved signal transduction pathways that mediate cellular responses to various biotic and abiotic signals in plant-pathogenic fungi. Generally, there are three MAPKs in filamentous pathogenic fungi: Pmk1/Fus3/Kss1, Hog1, and Stl2. Our previous studies have shown that CcPmk1 is a core regulator of fungal pathogenicity in Cytospora chrysosperma, the causal agent of canker disease in a wide range of woody plants. Here, we identified and functionally characterized the other two MAPK genes (CcHog1 and CcSlt2) and then compared the transcriptional differences among these three MAPKs in C. chrysosperma. We found that the MAPKs shared convergent and distinct roles in fungal development, stress responses, and virulence. For example, CcHog1, CcSlt2, and CcPmk1 were all involved in conidiation and response to stresses, including hyperosmotic pressure, cell wall inhibition agents, and H2O2, but only CcPmk1 and CcSlt2 were required for hyphal growth and fungal pathogenicity. Transcriptomic analysis showed that numerous hyperosmosis- and cell wall-related genes significantly reduced their expression levels in ΔCcHog1 and ΔCcSlt2, respectively. Interestingly, RNA- and ribosome-related processes were significantly enriched in the upregulated genes of ΔCcSlt2, whereas they were significantly enriched in the downregulated genes of ΔCcPmk1. Moreover, two secondary metabolite gene clusters were significantly downregulated in ΔCcPmk1, ΔCcSlt2, and/or ΔCcHog1. Importantly, some virulence-associated genes were significantly downregulated in ΔCcPmk1 and/or ΔCcSlt2, such as candidate effector genes. Collectively, these results suggest that the similar and distinct phenotypes of each MAPK deletion mutant may result from the transcriptional regulation of a series of common or specific downstream genes, which provides a better understanding of the regulation network of MAPKs in C. chrysosperma.
Collapse
Affiliation(s)
- Lu Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dasen Wen
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yuchen Yang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Xiaolin Qiu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Dianguang Xiong
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
12
|
Song D, Jin Y, Shi Y, Xia Y, Peng G. The carbon catabolite repressor CreA is an essential virulence factor of Metarhizium acridum against Locusta migratoria. PEST MANAGEMENT SCIENCE 2022; 78:3676-3684. [PMID: 35613131 DOI: 10.1002/ps.7010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/04/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND CreA has been proved to be a core gene in asexual conidiation in Metarhizium acridum, which regulates the shift of normal conidiation and microcycle conidiation. At present, research on CreA in fungi has focused on carbon source metabolism. There is a lack of research on the effect of CreA in virulence of pathogenic fungi. RESULTS The virulence of the MaCreA disrupted strain (ΔMaCreA) for Locusta migratoria was lost by topical inoculation bioassay. The formation rate and turgor pressure of the appressoria decreased. Growth of ΔMaCreA in host hemolymph was delayed, and the number of hyphal bodies was significantly reduced. The conidial cell wall of ΔMaCreA became thicker, the mannan content decreased, and the chitin content increased significantly, and it was more sensitive to calcofluor white and Congo Red. α-1,3-Glucan and β-1,3-glucan are more exposed on the surface of ΔMaCreA conidia than on the wild type. Lmspätzle and Lmcactus, the immune response genes in the host Toll pathway, showed stronger transcriptional activities at the early stage of ΔMaCreA invasion. The phenoloxidase activity assay also showed stronger immunostimulation by ΔMaCreA in vitro. CONCLUSION The main reasons for the loss of virulence of ΔMaCreA in the topical inoculation were the reduced penetration ability of appressoria, limited growth in hemolymph and stronger insect immunostimulation of ΔMaCreA. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongxu Song
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
| | - Yumei Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
| | - Youhui Shi
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
| | - Guoxiong Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
| |
Collapse
|
13
|
Host–Pathogen Interactions between Metarhizium spp. and Locusts. J Fungi (Basel) 2022; 8:jof8060602. [PMID: 35736085 PMCID: PMC9224550 DOI: 10.3390/jof8060602] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
Abstract
The progress in research on the interactions between Metarhizium spp. and locusts has improved our understanding of the interactions between fungal infection and host immunity. A general network of immune responses has been constructed, and the pathways regulating fungal pathogenicity have also been explored in depth. However, there have been no systematic surveys of interaction between Metarhizium spp. and locusts. The pathogenesis of Metarhizium comprises conidial attachment, germination, appressorial formation, and colonization in the body cavity of the host locusts. Meanwhile, the locust resists fungal infection through humoral and cellular immunity. Here, we summarize the crucial pathways that regulate the pathogenesis of Metarhizium and host immune defense. Conidial hydrophobicity is mainly affected by the contents of hydrophobins and chitin. Appressorial formation is regulated by the pathways of MAPKs, cAMP/PKA, and Ca2+/calmodulin. Lipid droplets degradation and secreted enzymes contributed to fungal penetration. The humoral response of locust is coordinated by the Toll pathway and the ecdysone. The regulatory mechanism of hemocyte differentiation and migration is elusive. In addition, behavioral fever and density-dependent population immunity have an impact on the resistance of hosts against fungal infection. This review depicts a prospect to help us understand host–pathogen interactions and provides a foundation for the engineering of entomopathogenic fungi and the discovery of insecticidal targets to control insect pests.
Collapse
|
14
|
Tang D, Tang X, Fang W. New Downstream Signaling Branches of the Mitogen-Activated Protein Kinase Cascades Identified in the Insect Pathogenic and Plant Symbiotic Fungus Metarhizium robertsii. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:911366. [PMID: 37746179 PMCID: PMC10512405 DOI: 10.3389/ffunb.2022.911366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 09/26/2023]
Abstract
Fungi rely on major signaling pathways such as the MAPK (Mitogen-Activated Protein Kinase) signaling pathways to regulate their responses to fluctuating environmental conditions, which is vital for fungi to persist in the environment. The cosmopolitan Metarhizium fungi have multiple lifestyles and remarkable stress tolerance. Some species, especially M. robertsii, are emerging models for investigating the mechanisms underlying ecological adaptation in fungi. Here we review recently identified new downstream branches of the MAPK cascades in M. robertsii, which controls asexual production (conidiation), insect infection and selection of carbon and nitrogen nutrients. The Myb transcription factor RNS1 appears to be a central regulator that channels information from the Fus3- and Slt2-MAPK cascade to activate insect infection and conidiation, respectively. Another hub regulator is the transcription factor AFTF1 that transduces signals from the Fus3-MAPK and the membrane protein Mr-OPY2 for optimal formation of the infection structures on the host cuticle. Homologs of these newly identified regulators are found in other Metarhizium species and many non-Metarhizium fungi, indicating that these new downstream signaling branches of the MAPK cascades could be widespread.
Collapse
Affiliation(s)
| | | | - Weiguo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Science, Institute of Microbiology, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Yu H, Yi L, Lu Z. Silencing of Chitin-Binding Protein with PYPV-Rich Domain Impairs Cuticle and Wing Development in the Asian Citrus Psyllid, Diaphorina citri. INSECTS 2022; 13:insects13040353. [PMID: 35447795 PMCID: PMC9027310 DOI: 10.3390/insects13040353] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 12/25/2022]
Abstract
Simple Summary Molting is extremely important for insect growth and development, which is accompanied the degradation of old cuticle and synthesis of new cuticle. Chitin and proteins, as major components of insect cuticle, maintain the rigidity of the exoskeleton. The functions of chitin-binding proteins have not, to date, been characterized in Diaphorina citri. In the current study, we identified a cuticle protein (DcCP64) according to chitin column purification and LC-MS/MS analysis. Silencing of DcCP64 induced an abnormal phenotype and increased the permeability of the abdomen and wings. Additionally, the mortality and malformation rate significantly increased, and the molting rate decreased after inhibition of DcCP64. Transcriptome sequencing analysis revealed that up-regulated DEGs were mainly related to oxidative phosphorylation, whereas down-regulated DEGs were mainly involved in MAPK and FoxO signaling pathways. Our results provide a basis for further functional research on DcCP64 in D. citri. Abstract Chitin is a major component of the arthropod exoskeleton, always working together with chitin-binding proteins to maintain the functions of extracellular structures. In the present study, we identified a cuticle protein 64 from Diaphorina citri using a chitin-binding assay. Bioinformatics analysis revealed that DcCP64 contained eight conserved PYPV motifs but lacked a Rebers–Riddiford (R–R) consensus and other chitin-binding domains. RT-qPCR analysis suggested that DcCP64 had the highest expression level in the wing and fifth-instar nymph stage. Knockdown of DcCP64 by RNA interference (RNAi) resulted in a malformed-wing phenotype, higher mortality and decreased molting rate. Furthermore, transcriptomics analysis revealed that 1244 differentially expressed genes (DEGs) were up-regulated and 580 DEGs were down-regulated, compared with dsDcCP64 groups and dsGFP groups. KEGG enrichment analysis revealed that up-regulated DEGs were mainly related to oxidative phosphorylation, whereas down-regulated DEGs were mainly involved in the MAPK and FoxO signaling pathways. Moreover, inhibition of DcCP64 significantly affected the cuticle surface, and increased the permeability of the abdomen and wings. Further chitin- and cellulose-binding assay confirmed the chitin-binding properties of recombinant DcCP64 in vitro. These results indicate that DcCP64 might play an important role in the cuticle and wing development of D. citri.
Collapse
Affiliation(s)
- Haizhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Gannan Normal University, Ganzhou 341000, China
| | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (L.Y.); (Z.L.); Tel.: +86-0797-8397738 (L.Y. & Z.L.)
| | - Zhanjun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China;
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Nanling Insect Biology, Gannan Normal University, Ganzhou 341000, China
- Correspondence: (L.Y.); (Z.L.); Tel.: +86-0797-8397738 (L.Y. & Z.L.)
| |
Collapse
|
16
|
MaSln1, a Conserved Histidine Protein Kinase, Contributes to Conidiation Pattern Shift Independent of the MAPK Pathway in Metarhizium acridum. Microbiol Spectr 2022; 10:e0205121. [PMID: 35343772 PMCID: PMC9045129 DOI: 10.1128/spectrum.02051-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a conserved sensor kinase in the HOG-MAPK pathway, Sln1 plays distinct functions in different fungi. In this study, the roles of MaSln1 in Metarhizium acridum were analyzed using gene knockout and rescue strategies. Deletion of MaSln1 did not affect conidial germination, conidial yield, or resistance to chemical agents. However, fungal tolerance to heat shock and UV-B were significantly reduced after deletion of MaSln1. Insect bioassays showed that fungal pathogenicity was significantly impaired when MaSln1 was deleted. Further studies showed that MaSln1 did not affect either germination or appressorium formation of M. acridum on locust wings, but it significantly increased appressorium turgor pressure. In addition, disruption of MaSln1 resulted in a conidiation pattern shift in M. acridum. Microscopic observation revealed, however, that some genes located in the MAPK signaling pathway, including MaSho1, MaHog1, MaMk1, and MaSlt2, were not involved in the conidiation pattern shift on SYA medium (microcycle medium). Meanwhile, of the 143 differently expressed genes (DEGs) identified by RNA-seq, no genes related to the MAPK pathway were found, suggesting that MaSln1 regulation of the conidiation pattern shift was probably independent of the conserved MAPK signaling pathway. It was found that 22 of the 98 known DEGs regulated by MaSln1 were involved in mycelial growth, cell division, and cytoskeleton formation, indicating that MaSln1 likely regulates the expression of genes related to cell division and morphogenesis, thus regulating the conidiation pattern shift in M. acridum. IMPORTANCE The productivity and quality of conidia are both crucial for mycopesticides. In this study, we systematically analyzed the roles of MaSln1 in fungal pathogens. Most importantly, our results revealed that deletion of MaSln1 resulted in a conidiation pattern shift in M. acridum. However, some other genes, located in the MAPK signaling pathway, were not involved in the conidiation pattern shift. RNA-seq revealed no genes related to the MAPK pathway, suggesting that the regulation of the conidiation pattern shift by MaSln1 was probably independent of the conserved MAPK signaling pathway. This study provided a new insight into the functions of Sln1 and laid a foundation for exploring the mechanisms of conidiation pattern shifts in M. acridum.
Collapse
|
17
|
Martínez LC, Plata-Rueda A, Ramírez A, Serrão JE. Susceptibility of Demotispa neivai (Coleoptera: Chrysomelidae) to Beauveria bassiana and Metarhizium anisopliae entomopathogenic fungal isolates. PEST MANAGEMENT SCIENCE 2022; 78:126-133. [PMID: 34453875 DOI: 10.1002/ps.6613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The potential of Beauveria bassiana and Metarhizium anisopliae isolates obtained from naturally infected oil palm pests was evaluated to control Demotispa neivai as an alternative for organophosphate insecticide use in oil palm crops in Latin America. Two B. bassiana (Bb-0018 and Bb-0025) and two M. anisopliae (Ma-0002 and Ma-0003) isolates were tested against D. neivai adults for hydrophobicity, virulence, survival, adhesion to host cuticle, and mortality in semi-field conditions. RESULTS Concentration-mortality bioassays demonstrate that isolates had lethal effect on D. neivai adults with Bb-0025 [median lethal concentration (LC50 ) = 3.45 × 107 conidia mL-1 ] and Bb-0018 (LC50 = 3.75 × 107 conidia mL-1 ) being the most effective followed by Ma-0003 (LC50 = 3.38 × 108 conidia mL-1 ) and Ma-0002 (5.33 × 108 conidia mL-1 ). Adult survival was 99% without exposure to fungal isolates, decreasing to 21.65% in insects exposed to Ma-0002, 19.41% with Ma-0003, 20.13% with Bb-0018, and 0.17% with Bb-0025. Mortality of D. neivai adults caused by the entomopathogenic fungal isolates was similar in both laboratory and semi-field conditions. Also, vegetative growth of the entomopathogenic fungal isolates was found in infected D. neivai adults in the field. CONCLUSION Our data suggest that the tested entomopathogenic fungal isolates are effective against D. neivai with potential to be used as biological control agents contributing to the decrease of the use of chemical insecticides to control this oil palm pest. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Augusto Ramírez
- Facultad de Agronomía, Universidad Nacional de Colombia, Bogotá, Colombia
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
18
|
Fan Y, Zhang W, Chen Y, Xiang M, Liu X. DdaSTE12 is involved in trap formation, ring inflation, conidiation, and vegetative growth in the nematode-trapping fungus Drechslerella dactyloides. Appl Microbiol Biotechnol 2021; 105:7379-7393. [PMID: 34536100 DOI: 10.1007/s00253-021-11455-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Abstract
Ste12 transcription factors, downstream of mitogen-activated protein kinase (MAPK) signalling pathways, are exclusively found in the fungal kingdom and regulate fungal mating, development, and pathogenicity. The nematode-trapping fungus Drechslerella dactyloides can capture free-living nematodes using constricting rings by cell inflation within 1 s when stimulated by nematodes entering the rings. The MAPK signalling pathways are involved in the trap formation of nematode-trapping fungi, but their downstream regulation is not clearly understood. In this study, disruption of the DdaSTE12 gene in D. dactyloides disabled cell inflation of constricting rings and led to an inability to capture nematodes. The number of septa of constricting rings and the ring cell vacuoles were changed in ΔDdaSTE12. Compared with the wild type, ΔDdaSTE12 reduced trap formation, conidiation, and vegetative growth by 79.3%, 80.3%, and 21.5%, respectively. The transcriptomes of ΔDdaSTE12-3, compared with those of the wild type, indicated that the expression of genes participating in trap formation processes, including signal transduction (Gpa2 and a 7-transmembrane receptor), vesicular transport and cell fusion (MARVEL domain-containing proteins), and nematode infection (PEX11 and CFEM domain-containing proteins), is regulated by DdaSTE12. The results suggest that DdaSTE12 is involved in trap formation and ring cell inflation, as well as conidiation and vegetative growth, by regulating a wide range of downstream functions. Our findings expanded the roles of Ste12 homologous transcription factors in the development of constricting rings and provided new insights into the downstream regulation of the MAPK signalling pathway involved in nematode predation. KEY POINTS: • DdaSTE12 was the first gene disrupted in D. dactyloides. • DdaSTE12 is related to ring cell inflation, vegetative growth, and conidiation. • DdaSTE12 deletion resulted in defects in trap formation and ring development.
Collapse
Affiliation(s)
- Yani Fan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Chen
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Meichun Xiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3 Park 1, Beichen West Rd., Chaoyang District, Beijing, 100101, China.
| | - Xingzhong Liu
- Department of Microbiology, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
19
|
Coutinho-Rodrigues CJB, Rosa RLD, Freitas MCD, Fiorotti J, Berger M, Santi L, Beys-da-Silva WO, Yates JR, Bittencourt VREP. Exposure to a sublethal menadione concentration modifies the mycelial secretome and conidial enzyme activities of Metarhizium anisopliae sensu lato and increases its virulence against Rhipicephalus microplus. Microbiol Res 2021; 248:126753. [PMID: 33882376 DOI: 10.1016/j.micres.2021.126753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/08/2020] [Accepted: 03/27/2021] [Indexed: 11/24/2022]
Abstract
Menadione (MND) is known to induce oxidative stress in fungal cells. Here, we explore how exposure to this molecule alters conidial enzyme activities, fungal efficacy against Rhipicephalus microplus, and mycelial secretion (secretome) of an isolate of Metarhizium anisopliae sensu lato. First, the fungus was exposed to different MND concentrations in potato-dextrose-agar (PDA) to determine the LC50 by evaluating conidia germination (38μM). To ensure high cell integrity, a sublethal dose of MND (half of LC50) was added to solid (PDA MND) and liquid media (MS MND). Changes in colony growth, a slight reduction in conidia production, decreases in conidial surface Pr1 and Pr2 activities as well as improvements in proteolytic and antioxidant (catalase, superoxide dismutase, and peroxidase) conidial intracellular activities were observed for PDA MND conidia. Additionally, PDA MND conidia had the best results for killing tick larvae, with the highest mortality rates until 15 days after treatment, which reduces both LC50 and LT50, particularly at 108 conidia mL-1. The diversity of secreted proteins after growth in liquid medium + R. microplus cuticle (supplemented or not with half of MND LC50), was evaluated by mass spectrometry-based proteomics. A total of 654 proteins were identified, 31 of which were differentially regulated (up or down) and mainly related to antioxidant activity (catalase), pathogenicity (Pr1B, Pr1D, and Pr1K), cell repair, and morphogenesis. In the exclusively MS MND profile, 48 proteins, mostly associated with cellular signaling, nutrition, and antioxidant functions, were distinguished. Finally, enzymatic assays were performed to validate some of these proteins. Overall, supplementation with MND in the solid medium made conidia more efficient at controlling R. microplus larvae, especially by increasing, inside the conidia, the activity of some infection-related enzymes. In the liquid medium (a consolidated study model that mimics some infection conditions), proteins were up- and/or exclusively-regulated in the presence of MND, which opens a spectrum of new targets for further study to improve biological control of ticks using Metarhizium species.
Collapse
Affiliation(s)
| | - Rafael Lopes da Rosa
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Maria Clemente de Freitas
- Graduate Program in Veterinary Science, Department of Animal Parasitology, Federal Rural University of Rio de Janeiro, Seropédica, RJ 23790-000, Brazil
| | - Jéssica Fiorotti
- Graduate Program in Veterinary Science, Department of Animal Parasitology, Federal Rural University of Rio de Janeiro, Seropédica, RJ 23790-000, Brazil
| | - Markus Berger
- Experimental Research Center, Porto Alegre Clinics Hospital, Porto Alegre, RS 90035-903, Brazil
| | - Lucélia Santi
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - Walter Orlando Beys-da-Silva
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil; Faculty of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS 90610-000, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Vânia Rita Elias Pinheiro Bittencourt
- Graduate Program in Veterinary Science, Department of Animal Parasitology, Federal Rural University of Rio de Janeiro, Seropédica, RJ 23790-000, Brazil.
| |
Collapse
|
20
|
Wang L, Wang J, Zhang X, Yin Y, Li R, Lin Y, Deng C, Yang K, Liu X, Wang Z. Pathogenicity of Metarhizium rileyi against Spodoptera litura larvae: Appressorium differentiation, proliferation in hemolymph, immune interaction, and reemergence of mycelium. Fungal Genet Biol 2021; 150:103508. [PMID: 33675988 DOI: 10.1016/j.fgb.2020.103508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/19/2020] [Accepted: 12/25/2020] [Indexed: 01/07/2023]
Abstract
The pathogenicity of Metarhizium rileyi is a multi-faceted process that depends on many factors. This study attempts to decipher those factors of M. rileyi by investigating its pathogenicity against Spodoptera litura (Lepidoptera: Noctuidae) larvae. Through morphogenesis analysis, we for the first time demonstrated the infection structure, appressorium, of M. rileyi that can generate a more than 4 MPa turgor pressure. The Mrpmk1 gene was found to be essential for appressorium differentiation and mycelium reemerging, ΔMrpmk1 mutant exhibited no pathogenicity towards S. litura by natural infection process. Delayed appressorium formation time, decreased appressorium formation rate and turgor pressure of ΔMrpbs2 mutant manifested itself in postponed death time and lower mortality against S. litura. Following invasion into the larval hemocoel, M. rileyi cells transformed into blastospores, which may be conducive to dispersal and propagation, moreover, the blastospore form M. rileyi may subverted phagocytic defenses. Then M. rileyi cells morphed into extended hyphal body to cope with elongated hemocytes that participated in encapsulation. In the end, M. rileyi mycelia reemerged from the larval cadaver evenly to form muscardine cadaver. Eventually, conidia were produced to complete the infection cycle. During the infection, M. rileyi triggered both cellular and humoral immunity of S. litura. Besides morphological changes, stage-specifically produced oxalic acid and F-actin arrangement may play roles in nutrient acquisition and mycelium reemerging, respectively.
Collapse
Affiliation(s)
- Li Wang
- School of Life Science, Chongqing University, China
| | - Jing Wang
- Chongqing Tobacco Monopoly Bureau, China
| | - Xiufen Zhang
- School of Life Science, Chongqing University, China
| | - Youping Yin
- School of Life Science, Chongqing University, China.
| | - Ren Li
- School of Life Science, Chongqing University, China
| | - Yunlong Lin
- School of Life Science, Chongqing University, China
| | - Chaoqun Deng
- School of Life Science, Chongqing University, China
| | - Kai Yang
- School of Life Science, Chongqing University, China
| | - Xiaoqin Liu
- Chongqing Chemical Industry Vocational College, China
| | | |
Collapse
|
21
|
Su X, Jiao R, Liu Z, Xia Y, Cao Y. Functional and characteristic analysis of an appressorium-specific promoter PMagas1 in Metarhizium acridum. J Invertebr Pathol 2021; 182:107565. [PMID: 33676966 DOI: 10.1016/j.jip.2021.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/07/2021] [Accepted: 02/15/2021] [Indexed: 11/17/2022]
Abstract
Entomopathogenic fungi have been used as important biological control agents throughout the world. To improve the biocontrol efficacy of entomopathogenic fungi, many genes have been used to improve fungal virulence or tolerance to adverse conditions via modulating their expression with strong promoters. The Magas1 gene is specifically expressed during appressorium formation and contributes to the virulence in Metarhizium acridum. In this study, we analyzed the functional region of the promoter of Magas1 gene (PMagas1) in M. acridum using 5'-deletion technique with enhanced green fluoresces protein (EGFP) as a reporter. Results showed the full length of the PMagas1 was at least 897 bp. Two regions (-897 to -611 bp and -392 to -328 bp) were essential for the activity of PMagas1. An engineered M. acridum strain was constructed with PMagas1 driving the expression of a subtilisin-like proteinase gene Pr1A (PMagas1-PR1A). Bioassay showed that the virulence was significantly increased in PMagas1-PR1A strain compared to wild type strain. Pmagas1 promoter is suitable for the overexpression of some genes during the infection of entomopathogenic fungi, which avoids the waste of nutritional resources and the influence on other fungal characteristics during the saprophytic process of constitutive promoter.
Collapse
Affiliation(s)
- Xueling Su
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, People's Republic of China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Run Jiao
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, People's Republic of China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Zhe Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, People's Republic of China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, People's Republic of China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing 401331, People's Republic of China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, People's Republic of China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China.
| |
Collapse
|
22
|
Shin TY, Lee MR, Park SE, Lee SJ, Kim WJ, Kim JS. Pathogenesis-related genes of entomopathogenic fungi. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21747. [PMID: 33029869 DOI: 10.1002/arch.21747] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
All living things on Earth experience various diseases such as those caused by viruses, bacteria, and fungi. Insects are no exception to this rule, and fungi that cause disease in insects are called entomopathogenic fungi. These fungi have been developed as microbial insecticides and are used to control various pests. Generally, the mode of action of entomopathogenic fungi is divided into the attachment of conidia, germination, penetration, growth, and generation of secondary infectious conidia. In each of these steps, that entomopathogenic fungi use genes in a complex manner (specific or diverse) has been shown by gene knock-out and RNA-sequencing analysis. In this review, the information mechanism of entomopathogenic fungi was divided into six steps: (1) attachment of conidia to host, (2) germination and appressorium, (3) penetration, (4) fungal growth in hemolymph, (5) conidia production on host, and (6) transmission and dispersal. The strategy used by the fungi in each step was described at the genetic level. In addition, an approach for studying the mode of action of the fungi is presented.
Collapse
Affiliation(s)
- Tae Young Shin
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mi Rong Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - So Eun Park
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Se Jin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Woo Jin Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
23
|
Wang G, Li M, Zhang C, Cheng H, Gao Y, Deng W, Li T. Transcriptome and proteome analyses reveal the regulatory networks and metabolite biosynthesis pathways during the development of Tolypocladium guangdongense. Comput Struct Biotechnol J 2020; 18:2081-2094. [PMID: 32802280 PMCID: PMC7419252 DOI: 10.1016/j.csbj.2020.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 12/17/2022] Open
Abstract
Tolypocladium guangdongense has a similar metabolite profile to Ophiocordyceps sinensis, a highly regarded fungus used for traditional Chinese medicine with high nutritional and medicinal value. Although the genome sequence of T. guangdongense has been reported, relatively little is known about the regulatory networks for fruiting body development and about the metabolite biosynthesis pathways. In order to address this, an analysis of transcriptome and proteome at differential developmental stages of T. guangdongense was performed. In total, 9076 genes were found to be expressed and 2040 proteins were identified. There were a large number of genes that were significantly differentially expressed between the mycelial stage and the stages. Interestingly, the correlation between the transcriptomic and proteomic data was low, suggesting the importance of the post-transcriptional processes in the growth and development of T. guangdongense. Among the genes/proteins that were both differentially expressed during the developmental process, there were numerous heat shock proteins and transcription factors. In addition, there were numerous proteins involved in terpenoid, ergosterol, adenosine and polysaccharide biosynthesis that also showed significant downregulation in their expression levels during the developmental process. Furthermore, both tryptophan and tryptamine were present at higher levels in the primordium stage. However, indole-3-acetic acid (IAA) levels continuously decreased as development proceeded, and the enzymes involved in IAA biosynthesis were also clearly differentially downregulated. These data could be meaningful in studying the molecular mechanisms of fungal development, and for the industrial and medicinal application of macro-fungi.
Collapse
Affiliation(s)
- Gangzheng Wang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Min Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.,College of Agriculture and Animal Husbandry, Tibet University, Nyingchi, 860000 Tibet, China
| | - Chenghua Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Huijiao Cheng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.,South China Agricultural University, Guangzhou 510642, China
| | - Yu Gao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China.,College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Wangqiu Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Taihui Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| |
Collapse
|
24
|
Shang J, Shang Y, Tang G, Wang C. Identification of a key G-protein coupled receptor in mediating appressorium formation and fungal virulence against insects. SCIENCE CHINA-LIFE SCIENCES 2020; 64:466-477. [PMID: 32712834 DOI: 10.1007/s11427-020-1763-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
Fungal G-protein coupled receptors (GPCRs) play essential roles in sensing environmental cues including host signals. The study of GPCR in mediating fungus-insect interactions is still limited. Here we report the evolution of GPCR genes encoded in the entomopathogenic Metarhizium species and found the expansion of Pth11-like GPCRs in the generalist species with a wide host range. By deletion of ten candidate genes MrGpr1-MrGpr10 selected from the six obtained subfamilies in the generalist M. robertsii, we found that each of them played a varied level of roles in mediating appressorium formation. In particular, deletion of MrGpr8 resulted in the failure of appressorium formation on different substrates and the loss of virulence during topical infection of insects but not during injection assays when compared with the wild-type (WT) strain. Further analysis revealed that disruption of MrGpr8 substantially impaired the nucleus translocation of the mitogen-activated protein kinase (MAPK) Mero-Fus3 but not the MAPK Mero-Slt2 during appressorium formation. We also found that the defect of AMrGpr8 could not be rescued with the addition of cyclic AMP for appressorium formation. Relative to the WT, differential expression of the selected genes have also been detected in AMrGpr8. The results of this study may benefit the understanding of fungus-interactions mediated by GPCRs.
Collapse
Affiliation(s)
- Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfang Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
25
|
Zhang J, Jiang H, Du Y, Keyhani NO, Xia Y, Jin K. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. PLoS Pathog 2019; 15:e1007964. [PMID: 31461507 PMCID: PMC6713334 DOI: 10.1371/journal.ppat.1007964] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/06/2019] [Indexed: 11/17/2022] Open
Abstract
Chitin is an important component of the fungal cell wall with a family of chitin synthases mediating its synthesis. Here, we report on the genetic characterization of the full suite of seven chitin synthases (MaChsI-VII) identified in the insect pathogenic fungus, Metarhizium acridum. Aberrant distribution of chitin was most evident in targeted gene knockouts of MaChsV and MaChsVII. Mutants of MaChsI, MaChsIII, MaChsIV showed delayed conidial germination, whereas ΔMaChsII and ΔMaChsV mutants germinated more rapidly when compared to the wild-type parent. All MaChs genes impacted conidial yield, but differentially affected stress tolerances. Inactivation of MaChsIII, MaChsV, MaChsVII resulted in cell wall fragility, and ΔMaChsV and ΔMaChsVII mutants showed high sensitivity to Congo red and calcofluor white, suggesting that the three genes are required for cell wall integrity. In addition, ΔMaChsIII and ΔMaChsVII mutants showed the highest sensitivities to heat and UV-B stress. Three of seven chitin synthase genes, MaChsIII, MaChsV, MaChsVII, were found to contribute to fungal virulence. Compared with the wild-type strain, ΔMaChsIII and ΔMaChsV mutants were reduced in virulence by topical inoculation, while the ΔMaChsVII mutant showed more severe virulence defects. Inactivation of MaChsIII, MaChsV, or MaChsVII impaired appressorium formation, affected growth of in insecta produced hyphal bodies, and altered the surface properties of conidia and hyphal bodies, resulting in defects in the ability of the mutant strains to evade insect immune responses. These data provide important links between the physiology of the cell wall and the ability of the fungus to parasitize insects and reveal differential functional consequences of the chitin synthase family in M. acridum growth, stress tolerances, cell wall integrity and virulence. The fungal cell wall is a dynamic and flexible organelle that modulates the interaction of the pathogen with its host and acts as a critical recognition and evasion interface with host defenses. Chitin is a hallmark constituent of the fungal cell wall and all fungi contain multiple chitin synthase (Chs) genes. However, systematic characterization of chitin synthase genes has not yet been reported in entomopathogenic fungi. By using the insect pathogen Metarhizium acridum as a model, we performed a systematic genetic analysis of the seven member Chs family (ChsI-VII) in the insect pathogenic fungus. Construction of strains bearing targeted single gene mutations revealed differential contributions of specific Chs genes to growth, cell wall integrity, and stress responses. In addition, we revealed that three chitin synthase genes MaChsIII, MaChsV and MaChsVII were shown to be important for fungal appressorium formation and evasion of insect cellular and/or humoral defenses, promoting the fungal dimorphic transition to the production of hyphal bodies that occurs within hosts, and ultimately to virulence. These data provide new insights into the roles of Chs genes and chitin as critical components affecting fungal membrane structure and function.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Hui Jiang
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Yanru Du
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Nemat O Keyhani
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Kai Jin
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| |
Collapse
|
26
|
Liu S, Xu Z, Wang X, Zhao L, Wang G, Li X, Zhang L. Pathogenicity and in vivo Development of Metarhizium rileyi Against Spodoptera litura (Lepidoptera: Noctuidae) Larvae. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1598-1603. [PMID: 31329887 DOI: 10.1093/jee/toz098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 06/10/2023]
Abstract
Metarhizium rileyi, a well-known entomopathogenic fungus, could open up new vistas in biological control of insect pests; however, due to its intrinsic shortcomings, such as long pathogenic process, its application is largely limited. To explore which process, the invasion or the following in vivo development, is the main factor responsible for the long pathogenic process, the lethal effect of M. rileyi against Spodoptera litura (Fabricius) was determined by conidial topical application and hyphae body injection, and the host immune response was also monitored. Results showed when larvae were inoculated by conidial topical application, the pathogenicity of M. rileyi varied greatly depending on the larval instar and conidia concentration, and LC50 values ranged from 6.24 × 106 to 6.06 × 109 conidia/ml while LT50 values fluctuated from 4.35 to 9.43 d. However, in vivo study showed when hyphal bodies (Hbs) of M. rileyi were injected into host hemocoel, they would not be recognized by the host's immune system as invaders. There were no significant differences in the hemocytes and phenoloxidase activity between the infected and control larvae at the initial 44 h, indicated that the fungus was able to successfully avoid the attack from the cellular and humoral immune systems, therefore, it could multiply freely in the hemocoel. The in vivo development time of M. rileyi tended to remain constant for 2-3 d regardless of the initial inoculated numbers. Considering no detectable defense response was observed during in vivo development, it can be concluded that host nonself-recognition system does not respond to the hemolymph borne-Hbs.
Collapse
Affiliation(s)
- Shouzhu Liu
- School of Agriculture, Liaocheng University, Liaocheng, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhimin Xu
- School of Agriculture, Liaocheng University, Liaocheng, China
| | - Xueying Wang
- Plant Protection Station, Jiyang Agricultural Bureau, Jinan, China
| | - Lvquan Zhao
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Guiqing Wang
- School of Agriculture, Liaocheng University, Liaocheng, China
| | - Xuewen Li
- School of Agriculture, Liaocheng University, Liaocheng, China
| | - Leilei Zhang
- School of Agriculture, Liaocheng University, Liaocheng, China
| |
Collapse
|
27
|
Tong SM, Feng MG. Insights into regulatory roles of MAPK-cascaded pathways in multiple stress responses and life cycles of insect and nematode mycopathogens. Appl Microbiol Biotechnol 2018; 103:577-587. [PMID: 30448905 DOI: 10.1007/s00253-018-9516-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 11/24/2022]
Abstract
Fungal entomopathogenicity may have evolved at least 200 million years later than carnivorism of nematophagous fungi on Earth. This mini-review focuses on the composition and regulatory roles of mitogen-activated protein kinase (MAPK) cascades, which act as stress-responsive signaling pathways. Unveiled by genomic comparison, three MAPK cascades of these mycopathogens consist of singular MAPKs (Fus3/Hog1/Slt2), MAPK kinases (Ste7/Pbs2/Mkk1), and MAPK kinase kinases (Ste11/Ssk2/Bck1). All cascaded components characterized in fungal entomopathogens play conserved and special roles in regulating multiple stress responses and phenotypes associated with biological control potential. Fus3-cascaded components are indispensable for fungal growth on oligotrophic substrata and virulence, and mediate cell tolerance to Na+/K+ toxicity, which is often misinterpreted as hyperosmotic effect but readily clarified by transcriptional changes of Na+/K+ ATPase genes and/or cell responses to osmotic polyols. Hog1-cascaded components regulate osmotolerance positively and phenylpyrrole-type fungicide resistance negatively, and also play differential roles in cell growth, conidiation, virulence, and responses to other stress cues. Ste11 has no stress-responsive role in the Beauveria Hog1 cascade despite an essential role in branched yeast Hog1 cascade. Slt2-cascaded components are required for mediation of cell wall integrity and repair of cell wall damage. A crosstalk between Hog1 and Slt2 cascades ensures fungal osmotolerance inside or outside insect. In nematode-trapping fungi, Slt2 is indispensable for cell wall integrity, conidiation, and mycelial trap formation, suggesting that the Slt2 cascade could have evolved along a distinct trajectory required for fungal carnivorism and dispersal/survival in nematode habitats. Altogether, the MAPK cascades are major parts of signaling network that regulate fungal adaptation to insects and nematodes and their habitats.
Collapse
Affiliation(s)
- Sen-Miao Tong
- College of Agricultural and Food Science, Zhejiang A&F University, Lin'an, 311300, Zhejiang, China. .,Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
28
|
Onyilo F, Tusiime G, Tripathi JN, Chen LH, Falk B, Stergiopoulos I, Tushemereirwe W, Kubiriba J, Tripathi L. Silencing of the Mitogen-Activated Protein Kinases (MAPK) Fus3 and Slt2 in Pseudocercospora fijiensis Reduces Growth and Virulence on Host Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:291. [PMID: 29593757 PMCID: PMC5859377 DOI: 10.3389/fpls.2018.00291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/19/2018] [Indexed: 05/14/2023]
Abstract
Pseudocercospora fijiensis, causal agent of the black Sigatoka disease (BSD) of Musa spp., has spread globally since its discovery in Fiji 1963 to all the banana and plantain growing areas across the globe. It is becoming the most damaging and economically important disease of this crop. The identification and characterization of genes that regulate infection processes and pathogenicity in P. fijiensis will provide important knowledge for the development of disease-resistant cultivars. In many fungal plant pathogens, the Fus3 and Slt2 are reported to be essential for pathogenicity. Fus3 regulates filamentous-invasion pathways including the formation of infection structures, sporulation, virulence, and invasive and filamentous growth, whereas Slt2 is involved in the cell-wall integrity pathway, virulence, invasive growth, and colonization in host tissues. Here, we used RNAi-mediated gene silencing to investigate the role of the Slt2 and Fus3 homologs in P. fijiensis in pathogen invasiveness, growth and pathogenicity. The PfSlt2 and PfFus3 silenced P. fijiensis transformants showed significantly lower gene expression and reduced virulence, invasive growth, and lower biomass in infected leaf tissues of East African Highland Banana (EAHB). This study suggests that Slt2 and Fus3 MAPK signaling pathways play important roles in plant infection and pathogenic growth of fungal pathogens. The silencing of these vital fungal genes through host-induced gene silencing (HIG) could be an alternative strategy for developing transgenic banana and plantain resistant to BSD.
Collapse
Affiliation(s)
- Francis Onyilo
- International Institute of Tropical Agriculture, Nairobi, Kenya
- Department of Agricultural Production, Makerere University, Kampala, Uganda
- National Agricultural Research Laboratories, Kampala, Uganda
| | - Geoffrey Tusiime
- Department of Agricultural Production, Makerere University, Kampala, Uganda
| | | | - Li-Hung Chen
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Bryce Falk
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | | | - Jerome Kubiriba
- National Agricultural Research Laboratories, Kampala, Uganda
| | - Leena Tripathi
- International Institute of Tropical Agriculture, Nairobi, Kenya
| |
Collapse
|
29
|
Wei Q, Du Y, Jin K, Xia Y. The Ste12-like transcription factor MaSte12 is involved in pathogenicity by regulating the appressorium formation in the entomopathogenic fungus, Metarhizium acridum. Appl Microbiol Biotechnol 2017; 101:8571-8584. [PMID: 29079863 DOI: 10.1007/s00253-017-8569-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/17/2017] [Accepted: 09/26/2017] [Indexed: 12/29/2022]
Abstract
Homeodomain transcription factor Ste12 is a key target activated by the pathogenic mitogen-activated-protein kinase pathway, and the activated Ste12p protein regulates downstream gene expression levels to modulate phenotypes. However, the functions of Ste12-like genes in entomopathogenic fungi remain poorly understood and little is known about the downstream genes regulated by Ste12. In this study, we characterized the functions of a Ste12 orthologue in Metarhizium acridum, MaSte12, and identified its downstream target genes. The deletion mutant (ΔMaSte12) is defective in conidial germination but not in hyphal growth, conidiation, or stress tolerance. Bioassays showed that ΔMaSte12 had a dramatically decreased virulence in topical inoculations, but no significant difference was found in intrahemolymph injections when the penetration process was bypassed. The mature appressorium formation rate of ΔMaSte12 was less than 10% on locust wings, with the majority hyphae forming appressorium-like, curved but no swollen structures. Digital gene expression profiling revealed that some genes involved in cell wall synthesis and remodeling, appressorium development, and insect cuticle penetration were downregulated in ΔMaSte12. Thus, MaSte12 has critical roles in the pathogenicity of the entomopathogenic fungus M. acridum, and our study provides some explanations for the impairment of fungal virulence in ΔMaSte12. In addition, virulence is very important for fungal biocontrol agents to control insect pests effectively. This study demonstrated that MaSte12 is involved in fungal virulence but not conidial yield or fungal stress tolerance in M. acridum. Thus, MaSte12 and its downstream genes may be candidates for enhancing fungal virulence to improve mycoinsecticides.
Collapse
Affiliation(s)
- Qinglv Wei
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China
| | - Yanru Du
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
30
|
Xu C, Liu R, Zhang Q, Chen X, Qian Y, Fang W. The Diversification of Evolutionarily Conserved MAPK Cascades Correlates with the Evolution of Fungal Species and Development of Lifestyles. Genome Biol Evol 2017; 9:311-322. [PMID: 26957028 PMCID: PMC5381651 DOI: 10.1093/gbe/evw051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2016] [Indexed: 11/14/2022] Open
Abstract
The fungal kingdom displays an extraordinary diversity of lifestyles, developmental processes, and ecological niches. The MAPK (mitogen-activated protein kinase) cascade consists of interlinked MAPKKK, MAPKK, and MAPK, and collectively such cascades play pivotal roles in cellular regulation in fungi. However, the mechanism by which evolutionarily conserved MAPK cascades regulate diverse output responses in fungi remains unknown. Here we identified the full complement of MAPK cascade components from 231 fungal species encompassing 9 fungal phyla. Using the largest data set to date, we found that MAPK family members could have two ancestors, while MAPKK and MAPKKK family members could have only one ancestor. The current MAPK, MAPKK, and MAPKKK subfamilies resulted from duplications and subsequent subfunctionalization during the emergence of the fungal kingdom. However, the gene structure diversification and gene expansion and loss have resulted in significant diversity in fungal MAPK cascades, correlating with the evolution of fungal species and lifestyles. In particular, a distinct evolutionary trajectory of MAPK cascades was identified in single-celled fungi in the Saccharomycetes. All MAPK, MAPKK, and MAPKKK subfamilies expanded in the Saccharomycetes; genes encoding MAPK cascade components have a similar exon–intron structure in this class that differs from those in other fungi.
Collapse
Affiliation(s)
- Chuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiangqiang Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxuan Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Qian
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | | |
Collapse
|
31
|
Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents. J Fungi (Basel) 2017; 3:jof3020030. [PMID: 29371548 PMCID: PMC5715920 DOI: 10.3390/jof3020030] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/28/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022] Open
Abstract
Chemical insecticides have been commonly used to control agricultural pests, termites, and biological vectors such as mosquitoes and ticks. However, the harmful impacts of toxic chemical insecticides on the environment, the development of resistance in pests and vectors towards chemical insecticides, and public concern have driven extensive research for alternatives, especially biological control agents such as fungus and bacteria. In this review, the mode of infection of Metarhizium fungus on both terrestrial and aquatic insect larvae and how these interactions have been widely employed will be outlined. The potential uses of Metarhizium anisopliae and Metarhizium acridum biological control agents and molecular approaches to increase their virulence will be discussed.
Collapse
|
32
|
Baral B. Entomopathogenicity and Biological Attributes of Himalayan Treasured Fungus Ophiocordyceps sinensis (Yarsagumba). J Fungi (Basel) 2017; 3:E4. [PMID: 29371523 PMCID: PMC5715966 DOI: 10.3390/jof3010004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/01/2023] Open
Abstract
Members of the entomophagous fungi are considered very crucial in the fungal domain relative to their natural phenomenon and economic perspectives; however, inadequate knowledge of their mechanisms of interaction keeps them lagging behind in parallel studies of fungi associated with agro-ecology, forest pathology and medical biology. Ophiocordyceps sinensis (syn. Cordyceps sinensis), an intricate fungus-caterpillar complex after it parasitizes the larva of the moth, is a highly prized medicinal fungus known widely for ages due to its peculiar biochemical assets. Recent technological innovations have significantly contributed a great deal to profiling the variable clinical importance of this fungus and other related fungi with similar medicinal potential. However, a detailed mechanism behind fungal pathogenicity and fungal-insect interactions seems rather ambiguous and is poorly justified, demanding special attention. The goal of the present review is to divulge an update on the published data and provides promising insights on different biological events that have remained underemphasized in previous reviews on fungal biology with relation to life-history trade-offs, host specialization and selection pressures. The infection of larvae by a fungus is not a unique event in Cordyceps; hence, other fungal species are also reviewed for effective comparison. Conceivably, the rationale and approaches behind the inheritance of pharmacological abilities acquired and stored within the insect framework at a time when they are completely hijacked and consumed by fungal parasites, and the molecular mechanisms involved therein, are clearly documented.
Collapse
Affiliation(s)
- Bikash Baral
- Research, Community Development and Conservation Center (C3DR), Pokhara 33700, Nepal.
- Department of Biochemistry, University of Turku, Turku, Finn-20014, Finland.
| |
Collapse
|
33
|
Wang M, Zhang M, Li L, Dong Y, Jiang Y, Liu K, Zhang R, Jiang B, Niu K, Fang X. Role of Trichoderma reesei mitogen-activated protein kinases (MAPKs) in cellulase formation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:99. [PMID: 28435444 PMCID: PMC5397809 DOI: 10.1186/s13068-017-0789-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/12/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Despite being the most important cellulase producer, the cellulase-regulating carbon source signal transduction processes in Trichoderma reesei are largely unknown. Elucidating these processes is the key for unveiling how external carbon sources regulate cellulase formation, and ultimately for the improvement of cellulase production and biofuel production from lignocellulose. RESULTS In this work, the role of the mitogen-activated protein kinase (MAPK) signal transduction pathways on cellulase formation was investigated. The deletion of yeast FUS3-like tmk1 in T. reesei leads to improved growth and significantly improved cellulase formation. However, tmk1 deletion has no effect on the transcription of cellulase-coding genes. The involvement of the cell wall integrity maintenance governing yeast Slt2-like Tmk2 in cellulase formation was investigated by overexpressing tmk3 in T. reesei Δtmk2 to restore cell wall integrity. Transcriptional analysis found little changes in cellulase-coding genes between T. reesei parent, Δtmk2, and Δtmk2::OEtmk3 strains. Cell wall integrity decreased in T. reesei Δtmk2 over the parent strain and restored in Δtmk2::OEtmk3. Meanwhile, cellulase formation is increased in T. reesei Δtmk2 and then decreased in T. reesei Δtmk2::OEtmk3. CONCLUSIONS These investigations elucidate the role of Tmk1 and Tmk2 on cellulase formation: they repress cellulase formation, respectively, by repressing growth and maintaining cell wall integrity, while neither MAPK regulates the transcription of cellulase-coding genes. This work, together with the previous investigations, suggests that all MAPKs are involved in cellulase formation, while Tmk3 is the only MAPK involved in signal transduction for the regulation of cellulase expression on the transcriptional level.
Collapse
Affiliation(s)
- Mingyu Wang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Meiling Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Yanmei Dong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Yi Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Kuimei Liu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Ruiqin Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Baojie Jiang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Kangle Niu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| | - Xu Fang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Jinan, China
| |
Collapse
|
34
|
Chen X, Xu C, Qian Y, Liu R, Zhang Q, Zeng G, Zhang X, Zhao H, Fang W. MAPK cascade-mediated regulation of pathogenicity, conidiation and tolerance to abiotic stresses in the entomopathogenic fungus Metarhizium robertsii. Environ Microbiol 2016; 18:1048-62. [PMID: 26714892 DOI: 10.1111/1462-2920.13198] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023]
Abstract
Metarhizium robertsii has been used as a model to study fungal pathogenesis in insects, and its pathogenicity has many parallels with plant and mammal pathogenic fungi. MAPK (Mitogen-activated protein kinase) cascades play pivotal roles in cellular regulation in fungi, but their functions have not been characterized in M. robertsii. In this study, we identified the full complement of MAPK cascade components in M. robertsii and dissected their regulatory roles in pathogenesis, conidiation and stress tolerance. The nine components of the Fus3, Hog1 and Slt2-MAPK cascades are all involved in conidiation. The Fus3- and Hog1-MAPK cascades are necessary for tolerance to hyperosmotic stress, and the Slt2- and Fus3-MAPK cascades both mediate cell wall integrity. The Hog1 and Slt2-MAPK cascades contribute to pathogenicity; the Fus3-MAPK cascade is indispensable for fungal pathogenesis. During its life cycle, M. robertsii experiences multiple microenvironments as it transverses the cuticle into the haemocoel. RNA-seq analysis revealed that MAPK cascades collectively play a major role in regulating the adaptation of M. robertsii to the microenvironmental change from the cuticle to the haemolymph. The three MAPKs each regulate their own distinctive subset of genes during penetration of the cuticle and haemocoel colonization, but they function redundantly to regulate adaptation to microenvironmental change.
Collapse
Affiliation(s)
- Xiaoxuan Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ying Qian
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ran Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiangqiang Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Guohong Zeng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xin Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hong Zhao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Weiguo Fang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
35
|
Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 2015; 16:867. [PMID: 26503342 PMCID: PMC4624584 DOI: 10.1186/s12864-015-2089-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background The migratory locust, Locusta migratoria manilensis, is an immensely destructive agricultural pest that forms a devastating and voracious gregarious phase. The fungal insect pathogen, Metarhizium acridum, is a specialized locust pathogen that has been used as a potent mycoinsecticide for locust control. Little, however, is known about locust immune tissue, i.e. fat body and hemocyte, responses to challenge by this fungus. Methods RNA-seq (RNA sequencing) technology were applied to comparatively examine the different roles of locust fat body and hemocytes, the two major contributors to the insect immune response, in defense against M. acridum. According to the sequence identity to homologies of other species explored immune response genes, immune related unigenes were screened in all transcriptome wide range from locust and the differential expressed genes were identified in these two tissues, respectively. Results Analysis of differentially expressed locust genes revealed 4660 and 138 up-regulated, and 1647 and 23 down-regulated transcripts in the fat body and hemocytes, respectively after inoculation with M. acridum spores. GO (Gene Ontology) enrichment analysis showed membrane biogenesis related proteins and effector proteins significantly differentially expressed in hemocytes, while the expression of energy metabolism and development related transcripts were enriched in the fat body after fungal infection. A total of 470 immune related unigenes were identified, including members of the three major insect immune pathways, i.e. Toll, Imd (immune deficiency) and JAK/STAT (janus kinase/signal transduction and activator of transcription). Of these, 58 and three were differentially expressed in the insect fat body or hemocytes after infection, respectively. Of differential expressed transcripts post challenge, 43 were found in both the fat body and hemocytes, including the LmLys4 lysozyme, representing a microbial cell wall targeting enzyme. Conclusions These data indicate that locust fat body and hemocytes adopt different strategies in response to M. acridum infection. Fat body gene expression after M. acridum challenge appears to function mainly through activation of innate immune related genes, energy metabolism and development related genes. Hemocyte responses attempt to limit fungal infection primarily through regulation of membrane related genes and activation of cellular immune responses and release of humoral immune factors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Jianhong Chen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Zhengyi Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Sai Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
36
|
Kusch S, Ahmadinejad N, Panstruga R, Kuhn H. In silico analysis of the core signaling proteome from the barley powdery mildew pathogen (Blumeria graminis f.sp. hordei). BMC Genomics 2014; 15:843. [PMID: 25277210 PMCID: PMC4195978 DOI: 10.1186/1471-2164-15-843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Compared to other ascomycetes, the barley powdery mildew pathogen Blumeria graminis f.sp. hordei (Bgh) has a large genome (ca. 120 Mbp) that harbors a relatively small number of protein-coding genes (ca. 6500). This genomic assemblage is thought to be the result of numerous gene losses, which likely represent an evolutionary adaptation to a parasitic lifestyle in close association with its host plant, barley (Hordeum vulgare). Approximately 8% of the Bgh genes are predicted to encode virulence effectors that are secreted into host tissue and/or cells to promote pathogenesis; the remaining proteome is largely uncharacterized at present. RESULTS We provide a comparative analysis of the conceptual Bgh proteome, with an emphasis on proteins with known roles in fungal development and pathogenicity, for example heterotrimeric G proteins and G protein coupled receptors; components of calcium and cAMP signaling; small monomeric GTPases; mitogen-activated protein cascades and transcription factors. The predicted Bgh proteome lacks a number of proteins that are otherwise conserved in filamentous fungi, including two proteins that are required for the formation of anastomoses (somatic hyphal connections). By contrast, apart from minor modifications, all major canonical signaling pathways are retained in Bgh. A family of kinases that preferentially occur in pathogenic species of the fungal clade Leotiomyceta is unusually expanded in Bgh and its close relative, Blumeria graminis f.sp. tritici. CONCLUSIONS Our analysis reveals characteristic features of the proteome of a fungal phytopathogen that occupies an extreme habitat: the living plant cell.
Collapse
Affiliation(s)
| | | | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany.
| | | |
Collapse
|
37
|
Ortiz-Urquiza A, Keyhani NO. Stress response signaling and virulence: insights from entomopathogenic fungi. Curr Genet 2014; 61:239-49. [DOI: 10.1007/s00294-014-0439-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 01/18/2023]
|
38
|
Cao Y, Du M, Luo S, Xia Y. Calcineurin modulates growth, stress tolerance, and virulence in Metarhizium acridum and its regulatory network. Appl Microbiol Biotechnol 2014; 98:8253-65. [DOI: 10.1007/s00253-014-5876-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
39
|
Leão MPC, Tiago PV, Andreote FD, de Araújo WL, de Oliveira NT. Differential expression of the pr1A gene in Metarhizium anisopliae and Metarhizium acridum across different culture conditions and during pathogenesis. Genet Mol Biol 2014; 38:86-92. [PMID: 25983629 PMCID: PMC4415565 DOI: 10.1590/s1415-475738138120140236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/30/2014] [Indexed: 01/17/2023] Open
Abstract
The entomopathogenic fungi of the genus Metarhizium have several
subtilisin-like proteases that are involved in pathogenesis and these have been used
to investigate genes that are differentially expressed in response to different
growth conditions. The identification and characterization of these proteases can
provide insight into how the fungus is capable of infecting a wide variety of insects
and adapt to different substrates. In addition, the pr1A gene has
been used for the genetic improvement of strains used in pest control. In this study
we used quantitative RT-PCR to assess the relative expression levels of the
pr1A gene in M. anisopliae and M.
acridum during growth in different culture conditions and during
infection of the sugar cane borer, Diatraea saccharalis Fabricius.
We also carried out a pathogenicity test to assess the virulence of both species
against D. saccharalis and correlated the results with the pattern
of pr1A gene expression. This analysis revealed that, in both
species, the pr1A gene was differentially expressed under the growth
conditions studied and during the pathogenic process. M. anisopliae
showed higher expression of pr1A in all conditions examined, when
compared to M. acridum. Furthermore, M. anisopliae
showed a greater potential to control D. saccharalis. Taken
together, our results suggest that these species have developed different strategies
to adapt to different growing conditions.
Collapse
Affiliation(s)
| | | | - Fernando Dini Andreote
- Departamento de Ciência do Solo, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Welington Luiz de Araújo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|