1
|
Cheng R, Li Y, Cheng TY, Liu L. Feeding on different hosts displays different hemolymph protein compositions in Haemaphysalis qinghaiensis tick. EXPERIMENTAL & APPLIED ACAROLOGY 2025; 94:36. [PMID: 39930279 DOI: 10.1007/s10493-025-01000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 02/25/2025]
Abstract
Tick hemolymph plays an important role in the transportation of nutrients as well as metabolites. The hemolymph consists of plasma and blood cells, and proteins are the main components of plasma. This study aimed to investigate the protein composition of the hemolymph of Haemaphysalis qinghaiensis and to explore the effects of different hosts on the hemolymph protein composition of ticks, which could provide a reference for the screening of tick-protective antigens. Hemolymph was collected from the engorged females of the H. qinghaiensis ticks from the Bos grunniens (HqB) and Ovis aries (HqO) hosts. We identified 17 host-derived high-confidence proteins and 156 tick-derived high-confidence proteins from HqB. Fifteen host-derived high-confidence proteins and 155 tick-derived high-confidence proteins were identified from HqO. There were significant differences in the composition and abundance of the host-derived protein in the hemolymph from the two sources, with fibrinogen, alpha-1-antiproteinase, α-2-macroglobulin, and an uncharacterized protein present only in HqB, while ubiquitin-60S ribosomal protein L 40 was found only at HqO. Besides, the abundance of these proteins also varied significantly. The 163 tick-derived proteins identified are classified as enzymes, inhibitors, transporters, immunity-related proteins, cytoskeletal proteins, heat shock proteins, nuclear proteins, other proteins, uncharacterized proteins, and secreted proteins. The KGD sequence of A1 in the uncharacterized protein suggested that the unidentified protein may be associated with anti-coagulants, but further research was needed to confirm the function of these uncovered proteins. HqB and HqO shared a total of 148 tick-derived proteins, with eight proteins present only in HqB and seven only in HqO. The abundance of 65 shared proteins was significantly higher in HqO. In conclusion, the hemolymph proteins of H. qinghaiensis tick were composed of host-derived and tick-derived proteins. Different blood meals had a large effect on the composition and abundance of both host-derived and tick-derived proteins.
Collapse
Affiliation(s)
- Rong Cheng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yong Li
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Tian-Yin Cheng
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| | - Lei Liu
- Research Center for Parasites and Vectors (RCPV), College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
2
|
Wu J, Zhou X, Chen Q, Chen Z, Zhang J, Yang L, Sun Y, Wang G, Dai J, Feng T. Defensins as a promising class of tick antimicrobial peptides: a scoping review. Infect Dis Poverty 2022; 11:71. [PMID: 35725522 PMCID: PMC9208123 DOI: 10.1186/s40249-022-00996-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Ticks are hematophagous parasites that transmit an extensive range of pathogens to their vertebrate hosts. Ticks can destroy invading microorganisms or alleviate infection via their rudimentary but orchestrated innate immune system. Antimicrobial peptides (AMPs) are important components of tick innate immunity. Among these humoral effector molecules, defensins are well-studied and widely identified in various species of Ixodidae (hard ticks) and Argasidae (soft ticks). This review was aimed at presenting the characterization of tick defensins from structure-based taxonomic status to antimicrobial function. MAIN TEXT All published papers written in English from 2001 to May 2022 were searched through PubMed and Web of Science databases with the combination of relevant terms on tick defensins. Reports on identification and characterization of tick defensins were included. Of the 329 entries retrieved, 57 articles were finally eligible for our scoping review. Tick defensins mainly belong to the antibacterial ancient invertebrate-type defensins of the cis-defensins superfamily. They are generally small, cationic, and amphipathic, with six cysteine residues forming three intra-molecular disulfide bonds. Tick defensins primarily target membranes of a variety of pathogens, including Gram-positive and Gram-negative bacteria, fungi, viruses, and protozoa. Since tick defensins have a high degree of variability, we summarize their common biological properties and enumerate representative peptides. Along with the various and potent antimicrobial activities, the role of tick defensins in determining vector competence is discussed. CONCLUSIONS Due to their broad-spectrum antimicrobial activities, tick defensins are considered novel candidates or targets for controlling infectious diseases.
Collapse
Affiliation(s)
- Jiahui Wu
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Xia Zhou
- School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Qiaoqiao Chen
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinyu Zhang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Lele Yang
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yuxuan Sun
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Guohui Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China.
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.
| | - Tingting Feng
- Institute of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Wang J, Ji M, Yuan B, Luo A, Jiang Z, Zhu T, Liu Y, Kamau PM, Jin L, Lai R. Peptide OPTX-1 From Ornithodoros papillipes Tick Inhibits the pS273R Protease of African Swine Fever Virus. Front Microbiol 2021; 12:778309. [PMID: 34925282 PMCID: PMC8678048 DOI: 10.3389/fmicb.2021.778309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/12/2021] [Indexed: 11/22/2022] Open
Abstract
African swine fever virus (ASFV) is a large double-stranded DNA virus and causes high mortality in swine. ASFV can be transmitted by biological vectors, including soft ticks in genus Ornithodoros but not hard ticks. However, the underlying mechanisms evolved in the vectorial capacity of soft ticks are not well-understood. Here, we found that a defensin-like peptide toxin OPTX-1 identified from Ornithodoros papillipes inhibits the enzyme activity of the ASFV pS273R protease with a Ki =0.821±0.526μM and shows inhibitory activity on the replication of ASFV. The analogs of OPTX-1 from hard ticks show more inhibitory efficient on pS273R protease. Considering that ticks are blood-sucking animals, we tested the effects of OPTX-1 and its analogs on the coagulation system. At last, top 3D structures represented surface analyses of the binding sites of pS273R with different inhibitors that were obtained by molecular docking based on known structural information. In summary, our study provides evidence that different inhibitory efficiencies between soft tick-derived OPTX-1 and hard tick-derived defensin-like peptides may determine the vector and reservoir competence of ticks.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Mengyao Ji
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bingqian Yuan
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Anna Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhenyuan Jiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Tengyu Zhu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ren Lai
- School of Life Sciences, University of Science and Technology of China, Hefei, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Sino-African Joint Research Center, and Engineering Laboratory of Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Tianjin University, Tianjin, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
4
|
Li F, Gao Z, Wang K, Zhao Y, Wang H, Zhao M, Zhao Y, Bai L, Yu Z, Yang X. A novel defensin-like peptide contributing to antimicrobial and antioxidant capacity of the tick Dermacentor silvarum (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2021; 83:271-283. [PMID: 33452939 DOI: 10.1007/s10493-020-00584-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Defensins are the most diverse groups of antimicrobial peptides in invertebrate animals. In ticks, defensins show great potential as targets for tick control, and display future prospect for therapeutic drug development. In the present study, a novel defensin-like gene (Ds-defensin) contributing to the antimicrobial and antioxidant capacity of the tick Dermacentor silvarum was characterized. The full-length of the Ds-defensin gene was 382 bp, which displayed tissue-specific expression and was highly abundant in the salivary glands and carcasses of the adults. It encodes a 71-amino acid defensin-like protein, and the protein precursor is characterized by a 22-amino acid signal peptide and a 34-amino acid mature peptide. The peptide displayed potent activity against most of the tested gram-positive bacteria, including Staphylococcus aureus, S. carnosus and Nocardia asteroides, and one tested gram-negative bacterium, Psychrobacter faecalis. Scanning electron microscopy revealed that the cell wall and surface of treated bacteria became rough and gradually formed pores after a 30-min exposure to the Ds-defensin peptide. Additionally, the peptide also showed significant antioxidant capacity. The above results implied that the defensin-like peptide may play an important role in tick defense and the interaction with microorganisms.
Collapse
Affiliation(s)
- Fengjiao Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhihua Gao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Kuang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yinan Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Hui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Meichen Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yawen Zhao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Lingqian Bai
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xiaolong Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
5
|
Pereira De Oliveira R, Hutet E, Lancelot R, Paboeuf F, Duhayon M, Boinas F, Pérez de León AA, Filatov S, Le Potier MF, Vial L. Differential vector competence of Ornithodoros soft ticks for African swine fever virus: What if it involves more than just crossing organic barriers in ticks? Parasit Vectors 2020; 13:618. [PMID: 33298119 PMCID: PMC7725119 DOI: 10.1186/s13071-020-04497-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/23/2020] [Indexed: 11/26/2022] Open
Abstract
Background Several species of soft ticks in genus Ornithodoros are known vectors and reservoirs of African swine fever virus (ASFV). However, the underlying mechanisms of vector competence for ASFV across Ornithodoros species remain to be fully understood. To that end, this study compared ASFV replication and dissemination as well as virus vertical transmission to descendants between Ornithodorosmoubata, O. erraticus, and O. verrucosus in relation to what is known about the ability of these soft tick species to transmit ASFV to pigs. To mimic the natural situation, a more realistic model was used where soft ticks were exposed to ASFV by allowing them to engorge on viremic pigs. Methods Ornithodoros moubata ticks were infected with the ASFV strains Liv13/33 (genotype I) or Georgia2007/1 (genotype II), O. erraticus with OurT88/1 (genotype I) or Georgia2007/1 (genotype II), and O. verrucosus with Ukr12/Zapo (genotype II), resulting in five different tick–virus pairs. Quantitative PCR (qPCR) assays targeting the VP72 ASFV gene was carried out over several months on crushed ticks to study viral replication kinetics. Viral titration assays were also carried out on crushed ticks 2 months post infection to confirm virus survival in soft ticks. Ticks were dissected. and DNA was individually extracted from the following organs to study ASFV dissemination: intestine, salivary glands, and reproductive organs. DNA extracts from each organ were tested by qPCR. Lastly, larval or first nymph-stage progeny emerging from hatching eggs were tested by qPCR to assess ASFV vertical transmission. Results Comparative analyses revealed higher rates of ASFV replication and dissemination in O. moubata infected with Liv13/33, while the opposite was observed for O. erraticus infected with Georgia2007/1 and for O. verrucosus with Ukr12/Zapo. Intermediate profiles were found for O. moubata infected with Georgia2007/1 and for O. erraticus with OurT88/1. Vertical transmission occurred efficiently in O. moubata infected with Liv13/33, and at very low rates in O. erraticus infected with OurT88/1. Conclusions This study provides molecular data indicating that viral replication and dissemination in Ornithodoros ticks are major mechanisms underlying ASFV horizontal and vertical transmission. However, our results indicate that other determinants beyond viral replication also influence ASFV vector competence. Further research is required to fully understand this process in soft ticks.
Collapse
Affiliation(s)
- Rémi Pereira De Oliveira
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France.,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France.,Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Evelyne Hutet
- Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Renaud Lancelot
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France.,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France
| | - Frédéric Paboeuf
- Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Maxime Duhayon
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France.,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France
| | - Fernando Boinas
- Center for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, Lisbon, 1300-477, Portugal
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, US Department of Agriculture-Agriculture Research Service (USDA-ARS), Kerrville, TX, USA
| | - Serhii Filatov
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine (NSC IECVM), Kharkiv, Ukraine
| | - Marie-Frédérique Le Potier
- Swine Virology and Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan, France
| | - Laurence Vial
- UMR Animals, Health, Territories, Risks and Ecosystems (ASTRE), French Agricultural Research Center for International Development (CIRAD), Montpellier, France. .,UMR ASTRE, CIRAD, National Research Institute for Agriculture, Food and the Environment (INRAE), University of Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Yuan C, Wu J, Peng Y, Li Y, Shen S, Deng F, Hu Z, Zhou J, Wang M, Zou Z. Transcriptome analysis of the innate immune system of Hyalomma asiaticum. J Invertebr Pathol 2020; 177:107481. [PMID: 33035534 DOI: 10.1016/j.jip.2020.107481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 01/16/2023]
Abstract
Ticks are considered to be the second most important vectors of human infectious diseases. The innate immune system is the key factor that affects its vector competence. Hyalomma asiaticum is the primary vector of Crimean-Congo hemorrhagic fever virus (CCHFV). However, the immune system of H. asiaticum remains virtually unknown. Here, a high throughput full-length mRNA sequencing method was adopted to define the immunotranscriptome of H. asiaticum infected with the fungal pathogen Beauveria bassiana and gram-negative bacterium Enterobacter cloacae. The analysis yielded 22,300 isoforms with an average length of 3233 bps. In total, 68 potential immunity-related genes were identified based on similarity to the homologs known to be involved in immunity. These included most members of the Toll and JAK/STAT signaling pathways, but not the IMD signaling pathway. Moreover, two copies of Dicer-2 and five copies of Argonaute-2 were detected. These genes are postulated to be involved in the RNA interference (RNAi) pathway, which is an important defense against RNA viruses. Overall, this study provides the foundation for understanding the immune response of H. asiaticum to CCHFV.
Collapse
Affiliation(s)
- Chuanfei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia Wu
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yun Peng
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
7
|
Salivary gland proteome analysis of developing adult female Haemaphysalis longicornis ticks: molecular motor and TCA cycle-related proteins play an important role throughout development. Parasit Vectors 2019; 12:613. [PMID: 31888749 PMCID: PMC6937756 DOI: 10.1186/s13071-019-3864-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Background Ticks are notorious blood-feeding arthropods that can spread a variety of deadly diseases. The salivary gland is an important organ for ticks to feed on blood, and this organ begins to develop rapidly when ixodid ticks suck blood. When these ticks reach a critical weight, the salivary glands stop developing and begin to degenerate. The expression levels of a large number of proteins during the development and degeneration of salivary glands change, which regulate the biological functions of the salivary glands. Furthermore, to the best of our knowledge, there are only a few reports on the role of molecular motor and TCA cycle-related proteins in the salivary glands of ticks. Results We used iTRAQ quantitative proteomics to study the dynamic changes in salivary gland proteins in female Haemaphysalis longicornis at four feeding stages: unfed, partially fed, semi-engorged and engorged. Using bioinformatics methods to analyze the dynamic changes of a large number of proteins, we found that molecular motor and TCA cycle-related proteins play an important role in the physiological changes of the salivary glands. The results of RNAi experiments showed that when dynein, kinesin, isocitrate dehydrogenase and citrate synthase were knocked down independently, the weight of the engorged female ticks decreased by 63.5%, 54.9%, 42.6% and 48.6%, respectively, and oviposition amounts decreased by 83.1%, 76.0%, 50.8%, and 55.9%, respectively, and the size of type III acini of females salivary glands decreased by 35.6%, 33.3%, 28.9%, and 20.0%, respectively. Conclusions The results showed that the expression of different types of proteins change in different characteristics in salivary glands during the unfed to engorged process of female ticks. Corresponding expression changes of these proteins at different developmental stages of female ticks are very important to ensure the orderly development of the organ. By analyzing these changes, some proteins, such as molecular motor and TCA cycle-related proteins, were screened and RNAi carried out. When these mRNAs were knocked down, the female ticks cannot develop normally. The research results provide a new protein target for the control of ticks and tick-borne diseases.
Collapse
|