1
|
Aslam M, Nedvěd O, Sloggett JJ. Intraspecific Variation in the Alkaloids of Adalia decempunctata (Coleoptera, Coccinellidae): Sex, Reproduction and Colour Pattern Polymorphism. J Chem Ecol 2024; 50:790-798. [PMID: 39276200 PMCID: PMC11543752 DOI: 10.1007/s10886-024-01544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024]
Abstract
In this paper, we examine intraspecific variation in the quantity of alkaloid chemical defence in field collected individuals of the polymorphic ladybird beetle Adalia decempunctata (10-spot ladybird). Like its more widely studied relative Adalia bipunctata (2-spot ladybird), A. decempunctata possesses the alkaloids adaline and adalinine, which are, respectively, the major and minor alkaloids of A. bipunctata. We focused especially on alkaloid concentration in relation to colour pattern morph, sex, and the relationship between female and egg parameters. There was a marked sexual dimorphism in the balance of the two alkaloids, with adaline predominating in females and adalinine predominating in males: in males, on average, over 70% of total alkaloid was adalinine. Females had a lower proportion of adalinine (< 10%) than their eggs (> 15%) and relationships between egg alkaloid and female alkaloid or fecundity were weak or non-existent. Colour pattern morph had a borderline (although not) significant relationship with adaline concentration and total alkaloid concentration, which could be further explored with laboratory reared individuals. The sexual dimorphism in alkaloid content, which seems likely due to differences in synthesis, might be related to their relative costs to the two sexes and might provide insight into the evolution of alkaloid diversity in ladybirds.
Collapse
Affiliation(s)
- Muhammad Aslam
- Maastricht Science Programme, Maastricht University, Maastricht, the Netherlands
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Oldřich Nedvěd
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Institute of Entomology, Biology Centre of Czech Academy of Sciences, České Budějovice, Czech Republic
| | - John J Sloggett
- Maastricht Science Programme, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Trzebny A, Nahimova O, Dabert M. High temperatures and low humidity promote the occurrence of microsporidians (Microsporidia) in mosquitoes (Culicidae). Parasit Vectors 2024; 17:187. [PMID: 38605410 PMCID: PMC11008030 DOI: 10.1186/s13071-024-06254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND In the context of climate change, a growing concern is that vector-pathogen or host-parasite interactions may be correlated with climatic factors, especially increasing temperatures. In the present study, we used a mosquito-microsporidian model to determine the impact of environmental factors such as temperature, humidity, wind and rainfall on the occurrence rates of opportunistic obligate microparasites (Microsporidia) in hosts from a family that includes important disease vectors (Culicidae). METHODS In our study, 3000 adult mosquitoes collected from the field over 3 years were analysed. Mosquitoes and microsporidia were identified using PCR and sequencing of the hypervariable V5 region of the small subunit ribosomal RNA gene and a shortened fragment of the cytochrome c oxidase subunit I gene, respectively. RESULTS DNA metabarcoding was used to identify nine mosquito species, all of which were hosts of 12 microsporidian species. The prevalence of microsporidian DNA across all mosquito samples was 34.6%. Microsporidian prevalence in mosquitoes was more frequent during warm months (> 19 °C; humidity < 65%), as was the co-occurrence of two or three microsporidian species in a single host individual. During warm months, microsporidian occurrence was noted 1.6-fold more often than during the cold periods. Among the microsporidians found in the mosquitoes, five (representing the genera Enterocytospora, Vairimorpha and Microsporidium) were positively correlated with an increase in temperature, whereas one (Hazardia sp.) was significantly correlated with a decrease in temperature. Threefold more microsporidian co-occurrences were recorded in the warm months than in the cold months. CONCLUSIONS These results suggest that the susceptibility of mosquitoes to parasite occurrence is primarily determined by environmental conditions, such as, for example, temperatures > 19 °C and humidity not exceeding 62%. Collectively, our data provide a better understanding of the effects of the environment on microsporidian-mosquito interactions.
Collapse
Affiliation(s)
- Artur Trzebny
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Olena Nahimova
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Genetics and Cytology Department, School of Biology, V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
3
|
Steele T, Singer RD, Bjørnson S. Alkaloid content in microsporidia-infected Adalia bipunctata (Coleoptera: Coccinellidae) life stages, and pathogen spore load in adults after exposure to physical stress. J Invertebr Pathol 2023; 200:107969. [PMID: 37423339 DOI: 10.1016/j.jip.2023.107969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The two-spotted lady beetle, Adalia bipunctata L., displays warning colouration that is reinforced by the production of adaline and adalinine. These alkaloids are thought to provide defense against predation throughout all life stages of A. bipunctata and may play a role in the insect immune system. Vairimorpha (Nosema) adaliae, a microsporidium described from A. bipunctata, has minimal effects on its host (delayed larval development) when reared under optimum conditions but stress factors are shown to affect the development of microsporidiosis. The objectives of this study were to determine the effects of V. adaliae on relative alkaloid content (adaline) during A. bipunctata development, and to evaluate the combined effects of physical stress and infection on adult beetles (relative alkaloid content and infection load). First-instar larvae were isolated from uninfected and V. adaliae-infected colonies. Eggs and first-instar larvae were immediately prepared for alkaloid analysis, whereas late-instar larvae, pupae and adults were systematically processed when each reached their designated developmental stage. Upon eclosion, a subsample of beetles was exposed to varying amounts of physical agitation: control (no shaking), alternate shaking (every other day), and daily shaking. Immediately following these stress trials, alkaloid samples were collected for analysis and spore loads were assessed. Overall, relative adaline proportions increased from egg to adult. Uninfected individuals had significantly higher relative proportions of adaline than did infected individuals during early development; however, adaline content was higher in infected A. bipunctata from the third-instar onwards, when compared to their uninfected counterparts. Following exposure to physical agitation on alternate days, uninfected adults had a significantly higher relative proportion of adaline than did infected adults. Interestingly, exposure to different levels of agitation had no significant effect on alkaloid production for either uninfected or infected beetles. Mean spore counts were significantly higher for adults that were exposed to daily shaking when compared to individuals from the control and alternate shaking groups. From a biological perspective, one would expect to observe differences in alkaloid production through coccinellid development, as each successive life stage faces different external pressures and risks. When infected with the microsporidium V. adaliae, however, adaline production was reduced during early development but increased significantly in late life stages.
Collapse
Affiliation(s)
- T Steele
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada.
| | - R D Singer
- Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - S Bjørnson
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| |
Collapse
|
4
|
Willis AR, Reinke AW. Factors That Determine Microsporidia Infection and Host Specificity. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:91-114. [PMID: 35544000 DOI: 10.1007/978-3-030-93306-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microsporidia are a large phylum of obligate intracellular parasites that infect an extremely diverse range of animals and protists. In this chapter, we review what is currently known about microsporidia host specificity and what factors influence microsporidia infection. Extensive sampling in nature from related hosts has provided insight into the host range of many microsporidia species. These field studies have been supported by experiments conducted in controlled laboratory environments which have helped to demonstrate host specificity. Together, these approaches have revealed that, while examples of generalist species exist, microsporidia specificity is often narrow, and species typically infect one or several closely related hosts. For microsporidia to successfully infect and complete their life cycle within a compatible host, several steps must occur, including spore germination, host cell invasion, and proliferation of the parasite within the host tissue. Many factors influence infection, including temperature, seasonality, nutrient availability, and the presence or absence of microbes, as well as the developmental stage, sex, and genetics of the host. Several studies have identified host genomic regions that influence resistance to microsporidia, and future work is likely to uncover molecular mechanisms of microsporidia host specificity in more detail.
Collapse
Affiliation(s)
- Alexandra R Willis
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
How Diet Leads to Defensive Dynamism: Effect of the Dietary Quality on Autogenous Alkaloid Recovery Rate in a Chemically Defended Beetle. J Chem Ecol 2021; 48:99-107. [PMID: 34799770 DOI: 10.1007/s10886-021-01326-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
The impact of different diets on chemical defense has been extensively studied in animals that sequester defensive chemicals from food. However, there are fewer studies of diet-mediated variation in autogenously produced defenses. Ladybird beetles, which use autogenously synthesized defensive alkaloids, are used as models in a wide diversity of studies of chemical defense, specifically in studies of intraspecific variation in color pattern and chemical defense. Many aphidophagous ladybirds consume a wide diversity of aphid prey, which vary in quality and thus could affect the synthesis of chemical defense. We measured alkaloid recovery rate after reflex bleeding by the ladybird Adalia bipunctata on two different aphid diets, the high quality Acyrthosiphon pisum and the lower quality Aphis fabae. Alkaloids reaccumulated in ladybirds more slowly when they were fed A. fabae than when they were fed A. pisum and females generally had more alkaloid than males, but reaccumulated alkaloid more slowly. Recovery times were more than 12 days. There appeared to be a weak positive relationship between alkaloid level and time since reflex bleeding for eggs of A. pisum- but not A. fabae-fed females. Our findings on diet and alkaloid synthesis in ladybirds suggest that chemical defense levels are very dynamic, indicating that studies conducted at a single point in time, such as those focused on ladybird color pattern, fail to consider a wide diversity of temporal variation that occurs in the field. This is likely true for many autogenously produced chemical defense systems in a diversity of other organisms.
Collapse
|
6
|
Lima DJP, Santana AEG, Birkett MA, Porto RS. Recent progress in the synthesis of homotropane alkaloids adaline, euphococcinine and N-methyleuphococcinine. Beilstein J Org Chem 2021; 17:28-41. [PMID: 33488829 PMCID: PMC7801782 DOI: 10.3762/bjoc.17.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/27/2020] [Indexed: 11/23/2022] Open
Abstract
The 9-azabicyclo[3.3.1]nonane ring system is present in several insect- and plant-derived alkaloids. (-)-Adaline (1) and (+)-euphococcinine (2), found in secretions of Coccinelid beetles, and (+)-N-methyleuphococcinine (3), isolated from the Colorado blue spruce Picea pungens, are members of this alkaloid family. Their unique bicyclic system with a quaternary stereocenter, and the potent biological activity exerted by these homotropane alkaloids, make them attractive synthetic targets. This work aims briefly to review the chemical ecology of Adalia bipunctata and the recent methodologies to obtain adaline (1), euphococcinine (2), and N-methyleuphococcinine (3).
Collapse
Affiliation(s)
- Dimas J P Lima
- Chemistry and Biotechnology Institute, Federal University of Alagoas, 57072970, Maceió, Brazil
| | - Antonio E G Santana
- Center of Engineering and Agrarian Science, Federal University of Alagoas, 57100-000, Rio Largo, Brazil
| | - Michael A Birkett
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, United Kingdon
| | - Ricardo S Porto
- Chemistry and Biotechnology Institute, Federal University of Alagoas, 57072970, Maceió, Brazil
| |
Collapse
|
7
|
Steele T, Singer RD, Bjørnson S. Effects of food availability on microsporidiosis and alkaloid production in the two-spotted lady beetle, Adalia bipunctata L. J Invertebr Pathol 2020; 175:107443. [PMID: 32687835 DOI: 10.1016/j.jip.2020.107443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
The effects of food availability and infection with the microsporidium Nosema adaliae on alkaloid production in the two-spotted lady beetle, Adalia bipunctata L., was examined. Alkaloid production (relative percent adaline in reflex-fluid) and pathogen load (spore counts) were quantified for both uninfected and N. adaliae-infected A. bipunctata. Alkaloid content was significantly higher for beetles fed irregularly than for those fed daily. For beetles infected with N. adaliae, spore counts were significantly higher for those fed irregularly compared to those fed daily. These results suggest that adaline content in reflex-fluid is influenced by infection and that irregular food supply increases pathogen load.
Collapse
Affiliation(s)
- T Steele
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada.
| | - R D Singer
- Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| | - S Bjørnson
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
| |
Collapse
|