1
|
Hsu TK, Chen YY, Li SW, Shih HY, Chou HY, Hsu JCK, Wang HC, Chen LL. Characterization and genome analysis of a novel phage BP15 infecting Vibrio parahaemolyticus. Sci Rep 2025; 15:2801. [PMID: 39843514 PMCID: PMC11754480 DOI: 10.1038/s41598-025-85513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
Vibrio parahaemolyticus is pathogenic to both humans and marine animals. Antimicrobial-resistant (AMR) bacteria have been reported to cause mortalities in shrimp, with phage therapy presenting an alternative and eco-friendly biocontrol strategy for controlling bacterial diseases. Therefore, this study aimed to isolate and characterize phages for their applicability in lysing Vibrio parahaemolyticus. A novel phage vB_VpaS_BP15 (BP15) belonged to the subfamily Queuovirinae with an icosahedral head measuring 69.11 ± 5.38 nm in length and 65.40 ± 6.89 nm in width, and a non-contractile sheathed tail measuring 139.81 ± 14.79 nm. The one-step growth curve indicated a latent period of 30 min and a burst size of 120 PFUs per cell. Phage BP15 exhibited tolerance to a range of temperatures and pH values. Infection dynamic curves demonstrated that BP15 was highly effective against BCRC12959 at MOIs ranging from 0.01 to 10; even at a low multiplicity of infection (MOI) of 0.001, BP15 still caused growth retention. Phage BP15 possessed a circular double-stranded DNA of 59,584 bp with a G + C content of 46.7% and lacked tRNA genes, virulence genes, and lysogeny genes. These findings highlight the promising potential of phage BP15 as a biocontrol agent against Vibrio parahaemolyticus in Taiwan.
Collapse
Affiliation(s)
- Te-Ken Hsu
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
- Innocreate Bioscience Co., Ltd, New Taipei City, Taiwan, ROC
| | - Yi-Yin Chen
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Shiao-Wen Li
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan, ROC
| | - Hui-Yu Shih
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
| | - Hsin-Yiu Chou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan, ROC
| | - Jeff Chia-Kai Hsu
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC
- Innocreate Bioscience Co., Ltd, New Taipei City, Taiwan, ROC
| | - Han-Ching Wang
- Department of Biotechnology and Bioindustry Sciences, College of Biosciences and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
- International Center for the Scientific Development of Shrimp Aquaculture, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Li-Li Chen
- Institute of Marine Biology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung, 20224, Taiwan, ROC.
| |
Collapse
|
2
|
Yu Z, Liu G, Li S, Hong Y, Zhao S, Zhou M, Tan X. Effects of Fermented Pomegranate Peel Polyphenols on the Growth Performance, Immune Response, Hepatopancreatic Health, and Disease Resistance in White Shrimp ( Litopenaeus vannamei). AQUACULTURE NUTRITION 2024; 2024:9966772. [PMID: 39633958 PMCID: PMC11617047 DOI: 10.1155/anu/9966772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/07/2024]
Abstract
This study evaluated the growth performance, immune response, hepatopancreatic health, and disease resistance in Litopenaeus vannamei fed diets supplemented with fermented pomegranate peel polyphenols (FPPP) for 45 days. Five diets were formulated to contain various levels of FPPP: FP0 (no FPPP), FPPP inclusion at 0.015% (FP1), 0.030% (FP2), 0.060% (FP3), and 0.120% (FP4). The results indicated there were no significant variations in weight gain rate (WGR), specific growth rate (SGR), and feed conversion rate (FCR) of shrimp in all treatment groups (p > 0.05), but the survival (SR) of shrimp was significantly higher in all groups with the addition of FPPP (p < 0.05). Compared with FP0 group, the contents of total protein (TP) and globulin (GLB) in serum biochemical indexes of FP3 and FP4 groups were significantly increased, and the content of blood urea nitrogen (BUN) was significantly decreased (p < 0.05). Compared with FP0 group, the activities of superoxide dismutase (SOD), catalase (CAT), alkaline phosphatase (AKP), acid phosphatase (ACP), and lysozyme (LZM) in the hepatopancreas and serum of FP3 and FP4 groups were significantly increased (p < 0.05). Similarly, the activities of glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and phenoloxidase (PO) in the hepatopancreas and serum of FP2 group were significantly higher than those of FP0 group (p < 0.05). In addition, the content of malondialdehyde (MDA) in the hepatopancreas and serum of shrimp in FPPP-added groups was decreased (p < 0.05). Compared with FP0 group, the expression levels of SOD, CAT, glutathione S-transferase (GST), LZM, prophenoloxidase (ProPO), penaeidin-3 (Pen3), Crustin, immune deficiency (Imd), Toll, and Relish genes were significantly upregulated in the hepatopancreas of shrimp in FP3 and FP4 groups (p < 0.05). Additionally, increasing the addition level of FPPP resulted in a more compact hepatosomal arrangement of the shrimp's hepatopancreas, a more visible star-shaped lumen structure, and a significantly higher number of B cells. Finally, the cumulative SR of shrimp in FPPP groups was significantly higher than that in FP0 group after 7 days of infection with Vibrio alginolyticus (p < 0.05). In summary, dietary supplementation of FPPP can improve SR, immunity, and hepatopancreatic health and resistance to Vibrio alginolyticus of L. vannamei.
Collapse
Affiliation(s)
- Zhoulin Yu
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Guangye Liu
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Sijie Li
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, China
| | - Shuyan Zhao
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co. Ltd., Jieyang, China
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaohong Tan
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
3
|
Yu Z, Hong Y, Zhao S, Zhou M, Tan X. Antibacterial Effect of Fermented Pomegranate Peel Polyphenols on Vibrio alginolyticus and Its Mechanism. BIOLOGY 2024; 13:934. [PMID: 39596889 PMCID: PMC11591687 DOI: 10.3390/biology13110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
Vibrio alginolyticus frequently breaks out in aquatic animal breeding operations involving shrimp, and it can endanger human health through food and wound infections. The antibacterial effect and mechanism of fermented pomegranate peel polyphenols (FPPPs) on V. alginolyticus were investigated. The results indicated that FPPPs had a strong inhibitory effect on the growth of V. alginolyticus, and their minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were 2 and 4 mg/mL. FPPPs significantly reduced biofilm formation and biofilm metabolic activity in V. alginolyticus, down-regulated the expression levels of lafA, lafK, fliS and flaK genes involved in flagellar synthesis and inhibited swimming and swarming motility (p < 0.05). Meanwhile, under the treatment of FPPPs, the activities of catalase (CAT) and superoxide dismutase (SOD) in V. alginolyticus were significantly reduced, and the levels of reactive oxygen species (ROS) and extracellular malondialdehyde (MDA) were significantly increased (p < 0.05). FPPPs also resulted in a significant increase in alkaline phosphatase (AKP) activity, protein and nucleic acid content, as well as conductivity from V. alginolyticus cultures. Scanning electron microscopy (SEM) images further revealed that V. alginolyticus treated with FPPPs showed leakage of intracellular substances, abnormal cell morphology and damage to cell walls and cell membranes, with the severity of the damage in a clear dose-dependent manner. Therefore, FPPPs can be used as a promising food-grade antibacterial agent, notably in seafood to control V. alginolyticus.
Collapse
Affiliation(s)
- Zhoulin Yu
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Yucong Hong
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co., Ltd., Jieyang 515500, China; (Y.H.); (S.Z.)
| | - Shuyan Zhao
- Guangdong Provincial Key Laboratory of Aquatic Larvae Feed, Guangdong Yuequn Biotechnology Co., Ltd., Jieyang 515500, China; (Y.H.); (S.Z.)
| | - Meng Zhou
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Xiaohong Tan
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| |
Collapse
|
4
|
Yu J, Lü W, Zhang L, Chen X, Xu R, Jiang Q, Zhu X. Effects of Vibrio harveyi infection on the biochemistry, histology and transcriptome in the hepatopancreas of ivory shell (Babylonia areolata). FISH & SHELLFISH IMMUNOLOGY 2024; 153:109856. [PMID: 39179186 DOI: 10.1016/j.fsi.2024.109856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024]
Abstract
The ivory shell (Babylonia areolata) is one of the most promising high quality marine products. However, ivory shell is susceptible to Vibrio harveyi infection during the culture period. In this study, we investigated the biochemical indicators, histological changes and transcriptomic response in the hepatopancreas of ivory shells from the PBS control group (PC) and infection group (A3) with 1 × 109 CFU/mL V. harveyi after 24 h. Results showed that compared to the PC group, biochemical indicators, including malondialdehyde (MDA), reactive oxygen species (ROS), acid phosphatase (ACP), and Caspase 3 (Casp-3) were significantly increased (p < 0.05) in A3 group after V. harveyi infection for 24 h. Compared with the PC group, the hepatopancreas of A3 group were seriously damaged, the columnar epithelial cells of the tissue were enlarged, the space of digestive cells was increased, and vacuolar cavities appeared. A total of 95,581 unigenes were obtained and 2949 (1787 up-regulated and 1162 down-regulated) differential expressed genes (DEGs) were identified in the A3 group. GO and KEGG enrichment analysis showed that DEGs were mainly enriched in immune system process (GO:0002376), antioxidant activity (GO:0016209), lysosome (ko04142), toll and IMD signaling pathway (ko04624), and etc. These biological functions and pathways are associated with immune and inflammatory responses and apoptosis. 12 DEGs were randomly selected for real-time quantitative PCR (RT-qPCR) validation, and the expression profiles of these DEGs were consistent with the transcriptome data, confirming the accuracy and reliability of the transcriptome results. In summary, V. harveyi infection of ivory shells inducing oxidative stress, leading to severe hepatopancreatic damage, stimulating glutathione production to neutralize excessive ROS, and stimulating antimicrobial peptides production to counteract the deleterious effects of bacterial infection, which in turn modifying the immune and inflammatory response, ultimately resulting in apoptosis. This study provided valuable information to explore the immune regulation mechanism after V. harveyi infection and established molecular basis to support the prevention of V. harveyi infection.
Collapse
Affiliation(s)
- Jiaxing Yu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
| | - Wengang Lü
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China; Guangdong Scientific and Technological Innovation Center of Invertebrates, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Linfeng Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
| | - Xiaoyu Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
| | - Rui Xu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
| | - Qicheng Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China
| | - Xiaowen Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, People's Republic of China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, 524088, People's Republic of China.
| |
Collapse
|
5
|
Nasri N, Mansouri-Tehrani HA, Dini G, Keyhanfar M. Synthesis of alga-coated copper oxide nanoparticles with potential applications in shrimp farming. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109754. [PMID: 38977113 DOI: 10.1016/j.fsi.2024.109754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Copper (Cu) is a crucial element that plays a vital role in facilitating proper biological activities in living organisms. In this study, copper oxide nanoparticles (CuO NPs) were synthesized using a straightforward precipitation chemical method from a copper nitrate precursor at a temperature of 85 °C. Subsequently, these NPs were coated with the aqueous extract of Sargassum angustifolium algae. The size, morphology, and coating of the NPs were analyzed through various methods, revealing dimensions of approximately 50 nm, a multidimensional shaped structure, and successful algae coating. The antibacterial activity of both coated and uncoated CuO NPs against Vibrio harveyi, a significant pathogen in Litopenaeus vannamei, was investigated. Results indicated that the minimum inhibitory concentration (MIC) for uncoated CuO NPs was 1000 μg/mL, whereas for coated CuO NPs, it was 500 μg/mL. Moreover, the antioxidant activity of the synthesized NPs was assessed. Interestingly, uncoated CuO NPs exhibited superior antioxidant activity (IC50 ≥ 16 μg/mL). The study also explored the cytotoxicity of different concentrations (10-100 μg/mL) of both coated and uncoated CuO NPs. Following 48 h of incubation, cell viability assays on shrimp hemocytes and human lymphocytes were conducted. The findings indicated that CuO NPs coated with alga extract at a concentration of 10 μg/mL increased shrimp hemocyte viability. In contrast, uncoated CuO NPs at a concentration of 25 μg/mL and higher, as well as CuO NPs at a concentration of 50 μg/mL and higher, led to a decrease in shrimp hemocyte survival. Notably, this study represents the first quantitative assessment of the toxicity of CuO NPs on shrimp cells, allowing for a comparative analysis with human cells.
Collapse
Affiliation(s)
- Negar Nasri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Hajar-Alsadat Mansouri-Tehrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Ghasem Dini
- Department of Nanotechnology, Faculty of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Mehrnaz Keyhanfar
- Department of Medicine and Public Health, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
6
|
Kamer AMA, El Maghraby GM, Shafik MM, Al-Madboly LA. Silver nanoparticle with potential antimicrobial and antibiofilm efficiency against multiple drug resistant, extensive drug resistant Pseudomonas aeruginosa clinical isolates. BMC Microbiol 2024; 24:277. [PMID: 39060955 PMCID: PMC11282727 DOI: 10.1186/s12866-024-03397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The study aims to investigate the effect of combining silver nanoparticles (AGNPs) with different antibiotics on multi-drug resistant (MDR) and extensively drug resistant (XDR) isolates of Pseudomonas aeruginosa (P. aeruginosa) and to investigate the mechanism of action of AGNPs. METHODS AGNPs were prepared by reduction of silver nitrate using trisodium citrate and were characterized by transmission electron microscope (TEM) in addition to an assessment of cytotoxicity. Clinical isolates of P. aeruginosa were collected, and antimicrobial susceptibility was conducted. Multiple Antibiotic Resistance (MAR) index was calculated, and bacteria were categorized as MDR or XDR. Minimum inhibitory concentration (MIC) of gentamicin, ciprofloxacin, ceftazidime, and AGNPs were determined. The mechanism of action of AGNPs was researched by evaluating their effect on biofilm formation, swarming motility, protease, gelatinase, and pyocyanin production. Real-time PCR was performed to investigate the effect on the expression of genes encoding various virulence factors. RESULTS TEM revealed the spherical shape of AGNPs with an average particle size of 10.84 ± 4.64 nm. AGNPS were safe, as indicated by IC50 (42.5 µg /ml). The greatest incidence of resistance was shown against ciprofloxacin which accounted for 43% of the bacterial isolates. Heterogonous resistance patterns were shown in 63 isolates out of the tested 107. The MAR indices ranged from 0.077 to 0.84. Out of 63 P. aeruginosa isolates, 12 and 13 were MDR and XDR, respectively. The MIC values of AGNPs ranged from 2.65 to 21.25 µg /ml. Combination of AGNPs with antibiotics reduced their MIC by 5-9, 2-9, and 3-10Fold in the case of gentamicin, ceftazidime, and ciprofloxacin, respectively, with synergism being evident. AGNPs produced significant inhibition of biofilm formation and decreased swarming motility, protease, gelatinase and pyocyanin production. PCR confirmed the finding, as shown by decreased expression of genes encoding various virulence factors. CONCLUSION AGNPs augment gentamicin, ceftazidime, and ciprofloxacin against MDR and XDR Pseudomonas isolates. The efficacy of AGNPs can be attributed to their effect on the virulence factors of P. aeruginosa. The combination of AGNPs with antibiotics is a promising strategy to attack resistant isolates of P. aeruginosa.
Collapse
Affiliation(s)
- Amal M Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Gharbia government, El Geish street, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Maha Mohamed Shafik
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Gharbia government, El Geish street, Tanta, Egypt.
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Gharbia government, El Geish street, Tanta, Egypt
| |
Collapse
|
7
|
Haridevamuthu B, Chandran A, Raj D, Almutairi BO, Arokiyaraj S, Dhanaraj M, Seetharaman S, Arockiaraj J. Growth performance and immunomodulatory effect of Terminalia catappa L. diet on Litopenaeus vannamei against Vibrio parahaemolyticus challenge. AQUACULTURE INTERNATIONAL 2024; 32:2549-2570. [DOI: 10.1007/s10499-023-01284-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/16/2023] [Indexed: 10/16/2023]
|
8
|
Fan C, Dai W, Zhang H, Liu S, Lin Z, Xue Q. Genomic and Proteomic Analyses of Extracellular Products Reveal Major Virulence Factors Likely Accounting for Differences in Pathogenicity to Bivalves between Vibrio mediterranei Strains. Animals (Basel) 2024; 14:692. [PMID: 38473077 DOI: 10.3390/ani14050692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Vibrio mediterranei, a bacterial pathogen of bivalves, has exhibited strain-dependent virulence. The mechanisms behind the variations in bivalve pathogenicity between V. mediterranei strains have remained unclear. However, a preliminary analysis of the extracellular product (ECP) proteomes has revealed differences in protein compositions between low- and high-virulence strains; in addition to 1265 shared proteins, 127 proteins have been identified to be specific to one low-virulence strain and 95 proteins to be specific to two high-virulence strains. We further studied the ECP proteins of the three V. mediterranei strains from functional perspectives using integrated genomics and proteomics approaches. The results showed that lipid metabolism, transporter activity and membrane transporter pathways were more enriched in the ECPs of the two high-virulence strains than in those of the low-virulence strain. Additionally, 73 of the 95 high-virulence strain-specific proteins were found to have coding genes in the genome but were not expressed in the low-virulence strain. Moreover, comparisons with known virulence factors in the Virulence Factor Database (VFDB) and the Pathogen-Host Interactions Database (PHI-base) allowed us to predict more than 10 virulence factors in the categories of antimicrobial activity/competitive advantage, the effector delivery system and immune modulation, and the high-virulence strain-specific ECP proteins consisted of a greater percentage of known virulence factors than the low-virulence strain. Particularly, two virulence factors, MtrC and KatG, were identified in the ECPs of the two high-virulence strains but not in those of the low-virulence strain. Most coding genes of the ECP proteins including known virulence factors were identified on chromosome 1 of V. mediterranei. Our findings indicate that variations in virulence factor composition in the bacterial ECPs may partially account for the differences in the bivalve pathogenicity between V. mediterranei strains.
Collapse
Affiliation(s)
- Congling Fan
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wenfang Dai
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, Ningbo 315604, China
| | - Haiyan Zhang
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, Ningbo 315604, China
| | - Sheng Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, Ningbo 315604, China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, Ningbo 315604, China
| | - Qinggang Xue
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, Ningbo 315604, China
| |
Collapse
|
9
|
Chakrapani S, Panigrahi A, Palanichamy E, Thangaraj SK, Radhakrishnan N, Panigrahi P, Nagarathnam R. Evaluation of Therapeutic Efficiency of Stylicin against Vibrio parahaemolyticus Infection in Shrimp Penaeus vannamei through Comparative Proteomic Approach. Probiotics Antimicrob Proteins 2024; 16:76-92. [PMID: 36459385 DOI: 10.1007/s12602-022-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/04/2022]
Abstract
The shrimp immune system defends and protects against infection by its naturally expressing antimicrobial peptides. Stylicin is a proline-rich anionic antimicrobial peptide (AMP) that exhibits potent antimicrobial activity. In this study, stylicin gene was isolated from Penaeus vannamei, cloned into vector pET-28a ( +), and overexpressed in Escherichia coli SHuffle T7 cells. The protein was purified and tested for its antibiofilm activity against shrimp pathogen Vibrio parahaemolyticus. It was resulted that the recombinant stylicin significantly reduced the biofilm formation of V. parahaemolyticus at a minimum inhibitory concentration (MIC) of 200 µg. Cell aggregation was observed by using scanning electron microscopy and confocal laser scanning microscopy, and it was resulted that stylicin administration significantly affects the cell structure and biofilm density of V. parahaemolyticus. In addition, real-time PCR confirmed the downregulation (p < 0.05) of genes responsible for growth and colonization. The efficacy of stylicin was tested by injecting it into shrimp challenged with V. parahaemolyticus and 7 days after infection, stylicin-treated animals recovered and survived better in both treatments (T2-100 µg stylicin, - 68.8%; T1-50 µg stylicin, 60%) than in control (7%) (p < 0.01). Comparative proteomic and mass spectrometry analysis of shrimp hemolymph resulted that the expressed proteins were involved in cell cycle, signal transduction, immune pathways, and stress-related proteins representing infection and recovery, and were significantly different in the stylicin-treated groups. The result of this study suggests that the stylicin can naturally boost immunity and can be used as a choice for treating V. parahaemolyticus infections in shrimp.
Collapse
Affiliation(s)
- Saranya Chakrapani
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Akshaya Panigrahi
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India.
| | - Esakkiraj Palanichamy
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Sathish Kumar Thangaraj
- Aquatic Animal Health & Environment Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Naveenkumar Radhakrishnan
- Crustacean Culture Division, ICAR - Central Institute of Brackishwater Aquaculture, 75, Santhome High Road, R. A. Puram, Chennai, 600028, India
| | - Puspamitra Panigrahi
- Centre for Clean Energy and Nano Convergence (CENCON), Hindustan Institute of Technology & Science, Rajiv Gandhi Salai (OMR), Padur, Kelambakkam, Chennai, 603103, Tamil Nadu, India
| | | |
Collapse
|
10
|
See MS, Musa N, Liew HJ, Harun NO, Rahmah S. Sweet orange peel waste as a feed additive in growth promoting and protective effect against Aeromonas hydrophila of juvenile bagrid catfish Mystus nemurus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119677. [PMID: 38042084 DOI: 10.1016/j.jenvman.2023.119677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
Sweet orange Citrus sinensis peel is a phytobiotic agricultural waste with bioactive compounds that have potential functional properties as a growth promoter and immune stimulator. This study aims to evaluate the dietary effects of sweet orange peel (SOP) as a feed additive on growth enhancement of juvenile bagrid catfish Mystus nemurus and their disease resistance ability against Aeromonas hydrophila infection. Four experimental diets were formulated to contain 0 (SOP0, control), 4 (SOP4), 8 (SOP8) and 12 g/kg (SOP12) SOP. After 90 d of the feeding experiment, improvement in weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio were observed in the fish fed with SOP4. While fish survival was not significantly affected, hepatosomatic and viscerosomatic indices were significantly higher in fish fed with SOP12. Muscle protein was higher in fish fed with SOP4, SOP8, and SOP12 than in control but muscle lipids showed an opposite trend. A 14-d post-challenge test against A. hydrophila revealed no significant effect on the fish survival. Nevertheless, fish fed SOP4 encountered delayed bacterial infection compared to other treatments and fish fed with SOP0 and SOP4 performed numerically better survival. Infected fish showed skin depigmentation, haemorrhagic signs at the abdomen and anus, internal bleeding, and stomach and intestine enlargement. In conclusion, SOP4 could be recommended as a growth promoter while slightly delaying A. hydrophila infection in M. nemurus.
Collapse
Affiliation(s)
- Ming She See
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Najiah Musa
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia; Aquatic Health and Disease, Research Interest Group, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Hon Jung Liew
- Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Nor Omaima Harun
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Sharifah Rahmah
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia; Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia; Aquatic Health and Disease, Research Interest Group, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
11
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Chitinases as key virulence factors in microbial pathogens: Understanding their role and potential as therapeutic targets. Int J Biol Macromol 2023; 249:126021. [PMID: 37506799 DOI: 10.1016/j.ijbiomac.2023.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chitinases are crucial for the survival of bacterial and fungal pathogens both during host infection and outside the host in the environment. Chitinases facilitate adhesion onto host cells, act as virulence factors during infection, and provide protection from the host immune system, making them crucial factors in the survival of microbial pathogens. Understanding the mechanisms behind chitinase action is beneficial to design novel therapeutics to control microbial infections. This review explores the role of chitinases in the pathogenesis of bacterial, fungal, and viral infections. The mechanisms underlying the action of chitinases of bacterial, fungal, and viral pathogens in host cells are thoroughly reviewed. The evolutionary relationships between chitinases of various bacterial, fungal, and viral pathogens are discussed to determine their involvement in processes, such as adhesion and host immune system modulation. Gaining a better understanding of the distribution and activity of chitinases in these microbial pathogens can help elucidate their role in the invasion and infection of host cells.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
12
|
Kamer AMA, Abdelaziz AA, Al-Monofy KB, Al-Madboly LA. Antibacterial, antibiofilm, and anti-quorum sensing activities of pyocyanin against methicillin-resistant Staphylococcus aureus: in vitro and in vivo study. BMC Microbiol 2023; 23:116. [PMID: 37095436 PMCID: PMC10124065 DOI: 10.1186/s12866-023-02861-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) infections are considered a major public health problem, as the treatment options are restricted. Biofilm formation and the quorum sensing (QS) system play a pivotal role in S. aureus pathogenicity. Hence, this study was performed to explore the antibacterial effect of pyocyanin (PCN) on MRSA as well as its effect on MRSA biofilm and QS. RESULTS Data revealed that PCN exhibited strong antibacterial activity against all test MRSA isolates (n = 30) with a MIC value equal to 8 µg/ml. About 88% of MRSA biofilms were eradicated by PCN treatment using the crystal violet assay. The disruption of MRSA biofilm was confirmed using confocal laser scanning microscopy, which showed a reduction in bacterial viability (approximately equal to 82%) and biofilm thickness (approximately equal to 60%). Additionally, the disruption of the formation of microcolonies and the disturbance of the connection between bacterial cells in the MRSA biofilm after PCN treatment were examined by scanning electron microscopy. The 1/2 and 1/4 MICs of PCN exerted promising anti-QS activity without affecting bacterial viability; Agr QS-dependent virulence factors (hemolysin, protease, and motility), and the expression of agrA gene, decreased after PCN treatment. The in silico analysis confirmed the binding of PCN to the AgrA protein active site, which blocked its action. The in vivo study using the rat wound infection model confirmed the ability of PCN to modulate the biofilm and QS of MRSA isolates. CONCLUSION The extracted PCN seems to be a good candidate for treating MRSA infection through biofilm eradication and Agr QS inhibition.
Collapse
Affiliation(s)
- Amal M Abo Kamer
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ahmed A Abdelaziz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Khaled B Al-Monofy
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Lamiaa A Al-Madboly
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
13
|
Benala M, Vaiyapuri M, Sivam V, Raveendran K, Mothadaka MP, Badireddy MR. Genome Characterization and Infectivity Potential of Vibriophage-ϕLV6 with Lytic Activity against Luminescent Vibrios of Penaeus vannamei Shrimp Aquaculture. Viruses 2023; 15:v15040868. [PMID: 37112848 PMCID: PMC10141217 DOI: 10.3390/v15040868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Shrimp aquaculture, especially during the hatchery phase, is prone to economic losses due to infections caused by luminescent vibrios. In the wake of antimicrobial resistance (AMR) in bacteria and the food safety requirements of farmed shrimp, aqua culturists are seeking alternatives to antibiotics for shrimp health management, and bacteriophages are fast emerging as natural and bacteria-specific antimicrobial agents. This study analyzed the whole genome of vibriophage-ϕLV6 that showed lytic activity against six luminescent vibrios isolated from the larval tanks of P. vannamei shrimp hatcheries. The Vibriophage-ϕLV6 genome was 79,862 bp long with 48% G+C content and 107 ORFs that coded for 31 predicted protein functions, 75 hypothetical proteins, and a tRNA. Pertinently, the vibriophage-ϕLV6 genome harbored neither AMR determinants nor virulence genes, indicating its suitability for phage therapy. There is a paucity of whole genome-based information on vibriophages that lyse luminescent vibrios, and this study adds pertinent data to the database of V. harveyi infecting phage genomes and, to our knowledge, is the first vibriophage genome report from India. Transmission electron microscopy (TEM) of vibriophage-ϕLV6 revealed an icosahedral head (~73 nm) and a long, flexible tail (~191 nm) suggesting siphovirus morphology. The vibriophage-ϕLV6 phage at a multiplicity of infection (MOI) of 80 inhibited the growth of luminescent V. harveyi at 0.25%, 0.5%, 1%, 1.5%, 2%, 2.5%, and 3% salt gradients. In vivo experiments conducted with post-larvae of shrimp showed that vibriophage-ϕLV6 reduced luminescent vibrio counts and post-larval mortalities in the phage-treated tank compared to the bacteria-challenged tank, suggesting the potentiality of vibriophage-ϕLV6 as a promising candidate in treating luminescent vibriosis in shrimp aquaculture. The vibriophage-ϕLV6 survived for 30 days in salt (NaCl) concentrations ranging from 5 ppt to 50 ppt and was stable at 4 °C for 12 months.
Collapse
Affiliation(s)
- Manikantha Benala
- Visakhapatnam Research Centre of ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Visakhapatnam 530003, India
- Department of Microbiology and FST, School of Science, GITAM, Visakhapatnam 530045, India
| | - Murugadas Vaiyapuri
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin 682029, India
| | - Visnuvinayagam Sivam
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin 682029, India
| | - Karthika Raveendran
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin 682029, India
| | - Mukteswar Prasad Mothadaka
- Visakhapatnam Research Centre of ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Visakhapatnam 530003, India
- ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Willingdon Island, Cochin 682029, India
| | - Madhusudana Rao Badireddy
- Visakhapatnam Research Centre of ICAR-Central Institute of Fisheries Technology (ICAR-CIFT), Visakhapatnam 530003, India
- Correspondence: ; Tel.: +91-900-024-7825; Fax: +91-891-2567040
| |
Collapse
|
14
|
Xiao C, Qiao Y, Yang G, Feng L. Antibiotics resistance evolution of isolated Vibrio parahaemolyticus from mariculture under the continuous culture of sub-inhibitory concentrations of Ulva fasciata hydroponic solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160124. [PMID: 36372171 DOI: 10.1016/j.scitotenv.2022.160124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The outbreak of vibriosis from Vibrio (V.) parahaemolyticus is widespread in the mariculture, and live macroalgae has been considered to be effective and eco-friendly approach for the control of vibriosis. Three V. parahaemolyticus strains with β-lactam antibiotics resistance (resistant to ampicillin (AM), amoxicillin (AMX)) were isolated from mariculture in study, and the antibiotics resistance evolution mechanism was examined at the sub-inhibitory concentration (SIC) of hydroponic solution of Ulva (U.) fasciata (HSUF). The HSUF with the highest density (20 g fresh weight U. fasciata L-1) demonstrated the strongest inhibitory rates (47.0 %-65.8 %) on the three strains during the stable phase (8-24 h) of growth curve, which indicated that the HSUF (≤20 g L-1) could be considered to be at SIC for V. parahaemolyticus strains. After continuous subculture of V. parahaemolyticus with three dilutes (1/2 (HT), 1/20 (MT) and 1/50 (LT)) of HSUF (20 g L-1), all the strains of 20th generation were still resistant to AM and AMX. However, the LT condition reduced MIC of AM (2-16 times) and AMX (0-2 times) to strains, while MT and HT showed significantly various effect of β-lactam antibiotics resistance on different strains. The biofilm formation and ROS content of V. parahaemolyticus were almost positively correlated to the concentrations of HSUF. Transcriptome sequencing analysis of a representative strain showed that the lower concentrations of HSUF caused more down-regulated DEGs of the strains, and more down-regulated (vmeA, vmeB, sapA, mrdA) DEGs of strains were related to the pathway of β-lactam antibiotics resistance at LT condition. Thus, low concentration of HSUF was seemed to have better improvement for V. parahaemolyticus strains resistant to β-lactam antibiotics, which were mainly related to the impairment of biofilm formation, ROS and efflux pump.
Collapse
Affiliation(s)
- Changyan Xiao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yan Qiao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Guangfeng Yang
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, People's Republic of China
| | - Lijuan Feng
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China; National-Local Joint Engineering Laboratory of Harbor Oil & Gas Storage and Transportation Technology, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
15
|
Fan C, Liu S, Dai W, He L, Xu H, Zhang H, Xue Q. Characterization of Vibrio mediterranei Isolates as Causative Agents of Vibriosis in Marine Bivalves. Microbiol Spectr 2023; 11:e0492322. [PMID: 36728415 PMCID: PMC10101119 DOI: 10.1128/spectrum.04923-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Marine bivalves include species important globally for aquaculture and estuary ecology. However, epizootics of variable etiologies often pose a threat to the marine fishery industry and ecosystem by causing significant mortalities in related species. One of such diseases is larval vibriosis caused by bacteria of the genus Vibrio, which frequently occurs and causes mass mortalities in bivalve larvae and juveniles in hatcheries. During a mass mortality of razor clam, Sinonovacula constricta, juveniles in a shellfish hatchery in 2019, Vibrio mediterranei was identified as a dominant bacterial species in diseased animals and their rearing water. In this study, we selected and characterized 11 V. mediterranei isolates and studied their pathogenicity to the larvae and juveniles of S. constricta and Crossostrea sikamea. We found that V. mediterranei isolates showed various degrees of pathogenicity to the experimental animals by immersion. Injection of the extracellular products (ECPs) of the strains into clam juveniles resulted in similar pathogenicity with strain immersion. Furthermore, the measurements of enzyme activity suggested the existence of virulence factors in the ECPs of disease-causing V. mediterranei strains. Additionally, proteomic analysis revealed that more than 700 differentially expressed proteins were detected in the ECPs among V. mediterranei strains with different levels of virulence, and the higher expressed proteins in the ECPs of highly virulent strains were involved mainly in the virulence-related pathways. This research represented the first characterization of the V. mediterranei strains as causative agents for larval bivalve vibriosis. The mechanisms underlying the pathogenicity and related strain variability are under further study. IMPORTANCE In the marine environment, Vibrio members have a significant impact on aquatic organisms. Larval vibriosis, caused by bacteria of the genus Vibrio, often poses a threat to the marine fishery industry and ecosystem by causing the mortality of bivalves. However, the emerging pathogens of larval vibriosis in bivalves have not been explored fully. Vibrio mediterranei, the dominant bacterium isolated from moribund clam juveniles in a mortality event, may be responsible for the massive mortality of bivalve juveniles and vibriosis occurrence. Thus, it is necessary to study the pathogenic mechanisms of V. mediterranei to bivalve larvae. We found that V. mediterranei was the pathogen of larval bivalve vibriosis, and its extracellular products contributed a critical role for virulence in juveniles. This research is the first report of V. mediterranei as a causative agent for vibriosis in bivalve juveniles. Our results provide valuable information for understanding the pathogenic mechanism of V. mediterranei to bivalve larvae.
Collapse
Affiliation(s)
- Congling Fan
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Sheng Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China
| | - Wenfang Dai
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China
| | - Lin He
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Hongqiang Xu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China
| | - Haiyan Zhang
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China
| | - Qinggang Xue
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, China
| |
Collapse
|
16
|
Field Efficacy of a Feed-Based Inactivated Vaccine against Vibriosis in Cage-Cultured Asian Seabass, Lates calcarifer, in Malaysia. Vaccines (Basel) 2022; 11:vaccines11010009. [PMID: 36679854 PMCID: PMC9865705 DOI: 10.3390/vaccines11010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Vibrio spp. are important aquaculture pathogens that cause vibriosis, affecting large numbers of marine fish species. This study determines the field efficacy of a feed-based inactivated vaccine against vibriosis in cage-cultured Asian seabass. A total of 4800 Asian seabass, kept in a field environment, were separated equally into two groups (vaccinated and non-vaccinated) in duplicate. Fish of Group 1 were orally administered the feed-based vaccine on weeks 0 (prime vaccination), 2 (booster), and 6 (second booster) at 4% body weight, while the non-vaccinated fish of Group 2 were fed with a commercial formulated pellet without the vaccine. Fish gut, mucus, and serum were collected, the length and weight of the fish were noted, while the mortality was recorded at 2-week intervals for a period of 16 weeks. The non-specific lysozyme activities were significantly (p < 0.05) higher in the fish of Group 1 than the non-vaccinated fish of Group 2. Similarly, the specific IgM antibody levels in serum and mucus were significantly (p < 0.05) higher in Group 1 than in Group 2, as seen in the second week, with the highest level 8 weeks after primary immunization. At week 16, the growth performance was significantly (p < 0.05) better in Group 1 and showed lower bacterial isolation in the gut than Group 2. Despite the statistical insignificance (p > 0.05), the survival rate was slightly higher in Group 1 (71.3%) than Group 2 (67.7%). This study revealed that feed-based vaccination improves growth performance, stimulates innate and adaptive immune responses, and increases protection of cultured Asian seabass, L. calcarifer, against vibriosis.
Collapse
|
17
|
Dai L, Xiong Z, Hou D, Wang Y, Li T, Long X, Chen H, Sun C. Pathogenicity and transcriptome analysis of a strain of Vibrio owensii in Fenneropenaeus merguiensis. FISH & SHELLFISH IMMUNOLOGY 2022; 130:194-205. [PMID: 36087819 DOI: 10.1016/j.fsi.2022.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Vibrio is an important conditional pathogen in shrimp aquaculture. This research reported a dominant bacteria strain E1 isolated from a shrimp tank with the method of biofloc culture, which was further identified as Vibrio owensii. To understand the interaction between V. owensii and the host shrimp, we studied the pathogenicity of the V. owensii and the molecular mechanisms of the Fenneropenaeus merguiensis immunity during the Vibrio invasion. Drug susceptibility tests showed that V. owensii was resistant to antibiotics streptomycin oxacillin, tetracycline, minocycline, and aztreonam, but highly sensitive to cefazolin, cefotaxime, and ciprofloxacin, and moderately sensitive to cefotaxime, ampicillin, and piperacillin. Lethal concentration 50 (LC50) test was performed to evaluate the toxicity of V. owensii to F. merguiensis. The LC50 of V. owensii infected F. merguiensis after 24, 48, 72, 96, 120, 144 and 168 h were 1.21 × 107, 1.68 × 106, 6.36 × 105, 2.15 × 105, 7.58 × 104, 5.55 × 104 and 4.33 × 104 CFU/mL. In order to explore the molecular response mechanism of F. merguiensis infected with V. owensii, the hepatopancreas of F. merguiensis were sequenced at 24 hpi and 48 hpi, and a total 40,181 of unigenes were obtained. Through comparative transcriptomic analysis, 86 differentially expressed genes (DEGs) (including 38 up-regulated DEGs, and 48 down-regulated DEGs) and 305 DEGs (including 150 up-regulated DEGs, and 155 down-regulated DEGs) were identified at 24 hpi and 48 hpi, respectively. Annotation and classification analysis of these 391 DEGs showed that most of the DEGs were annotated to metableolic and immune pathways, which indicated that F. merguiensis responded to the invasion through the regulation of material metableolism and immune system genes during V. owensii infection. In the KEGG enrichment analysis, some pathways related to immune response were significantly influenced by V. owensii infection, including phagosome, MAPK signalling pathway and PI3K-Akt signalling pathway. In addition, some pathways related to the warburg effect were also significantly enriched after V. owensii infection, including pyruvate metableolism, glycolysis/gluconeogenesis, and citrate cycle (TAC cycle). Further analysis showed that C-type lectins and ficolin were also play important roles in the immune response of F. merguiensis against V. owensii infection. The current research preliminarily revealed the immune response of F. merguiensis to V. owensii infection at the molecular level, which provided valuable information to further understand the disease control and the interaction between shrimp and Vibrio.
Collapse
Affiliation(s)
- Linxin Dai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhiwang Xiong
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yue Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Ting Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xinxin Long
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Haozhen Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China; Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, Guangdong, China.
| |
Collapse
|
18
|
Thillaichidambaram M, Narayanan K, Selvaraj S, Sundararaju S, Chockalingam Muthiah R, Figge MJ. Isolation and characterization of Vibrio owensii from Palk Bay and its infection study against post larvae of Litopenaeus vannamei. Microb Pathog 2022; 172:105751. [PMID: 36084904 DOI: 10.1016/j.micpath.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022]
Abstract
Vibrio is heterotrophic ubiquitous marine bacteria that plays dual role as putative halobiont and potential pathogen. Environment and diseases are inextricable hence the role of vibrio as a potential pathogen in the natural environment must be comprehended. Hence the present study aims at investigating the pathogenicity of Vibrio owensii on the post larvae of Litopenaeus vannamei. V. owensii isolated from the marine natural habitat of the Palk Bay province in India was highly resistant to ampicillin, methicillin, tetracycline and vancomycin. The strain also lacked pathogenicity against the post larvae of L. vannamei due to the absence of major virulence factors viz. Chitinase, phospholipase and hemolytic activity. Presumably this is the first report on the occurrence of V. owensii in the Indian waters therefore there arises a need to carry out more serious research on the pathogenicity of this species on other commercial crustaceans reared in the Indian aquaculture settings in order to apprehend its role as potential pathogen or the contrary.
Collapse
Affiliation(s)
- Muneeswaran Thillaichidambaram
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Kalyanaraman Narayanan
- Molecular Biology Lab., Meenakshi Mission Hospital and Research Centre (MMHRC), Madurai, 625107, Tamil Nadu, India
| | - Sureshkumar Selvaraj
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, 641 021, Tamil Nadu, India
| | | | - Ramakritinan Chockalingam Muthiah
- Department of Marine and Coastal Studies, School of Energy, Environment and Natural Resources, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India.
| | - Marian J Figge
- The Netherlands Culture Collection of Bacteria, Westerdijk Fungal Biodiversity Institute, KNAW Utrecht, Netherlands.
| |
Collapse
|
19
|
Si MR, Li YD, Jiang SG, Yang QB, Jiang S, Yang LS, Huang JH, Chen X, Zhou FL. Identification of multifunctionality of the PmE74 gene and development of SNPs associated with low salt tolerance in Penaeus monodon. FISH & SHELLFISH IMMUNOLOGY 2022; 128:7-18. [PMID: 35843525 DOI: 10.1016/j.fsi.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Members of the E74-like factor (ELF) subfamily are involved in the immune stress process of organisms by regulating immune responses and the development of immune-related cells. PmE74 of Penaeus monodon was characterized and functionally analyzed in this study. The full length of PmE74 was 3106 bp, with a 5'-UTR of 297 bp, and a 3'-UTR of 460 bp. The ORF (Open reading frame) was 2349 bp and encoded 782 amino acids. Domain analysis showed that PmE74 contains a typical Ets domain. Multiple sequence alignment and phylogenetic tree analysis showed that PmE74 clustered with Litopenaeus vannamei E74 and displayed significant similarity (98.98%). PmE74 was expressed in all tissues tested in P. monodon, with the highest levels of expression observed in the testis, intestine, and epidermis. Different pathogen stimulation studies have revealed that PmE74 expression varies in response to different pathogen stimuli. A 96-h acute low salt stress study revealed that PmE74 in the hepatopancreas was upregulated and downregulated in the salinity 17 group and considerably downregulated in the salinity 3 group, whereas PmE74 in gill tissue was considerably downregulated in both groups. Further, by knocking down PmE74 and learning the trends of its linkage genes PmAQP1, PmNKA, PmE75, PmFtz-f1, PmEcR, and PmRXR in response to low salt stress, it was further indicated that PmE74 could have a vital role in the regulation of low salt stress. The SNP test revealed that PmE74-In1-53 was significantly associated with low salt tolerance traits in P. monodon (P < 0.05). The findings of this study can aid in the advancement of molecular marker-assisted breeding in P. monodon, as well as provide fundamental data and methodologies for further investigation of its low salt tolerance strains in P. monodon.
Collapse
Affiliation(s)
- Meng-Ru Si
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yun-Dong Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
| | - Shi-Gui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
| | - Qi-Bin Yang
- Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
| | - Song Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
| | - Li-Shi Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
| | - Jian-Hua Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
| | - Xu Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
| | - Fa-Lin Zhou
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences/Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China; Tropical Fishery Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
| |
Collapse
|
20
|
Isolation and Characterization of a Newly Discovered Phage, V-YDF132, for Lysing Vibrio harveyi. Viruses 2022; 14:v14081802. [PMID: 36016424 PMCID: PMC9413028 DOI: 10.3390/v14081802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
A newly discovered lytic bacteriophage, V-YDF132, which efficiently infects the pathogenic strain of Vibrio harveyi, was isolated from aquaculture water collected in Yangjiang, China. Electron microscopy studies revealed that V-YDF132 belonged to the Siphoviridae family, with an icosahedral head and a long noncontractile tail. The phage has a latent period of 25 min and a burst size of 298 pfu/infected bacterium. V-YDF132 was stable from 37 to 50 °C. It has a wide range of stability (pH 5-11) and can resist adverse external environments. In addition, in vitro the phage V-YDF132 has a strong lytic effect on the host. Genome sequencing results revealed that V-YDF132 has a DNA genome of 84,375 bp with a GC content of 46.97%. In total, 115 putative open reading frames (ORFs) were predicted in the phage V-YDF132 genome. Meanwhile, the phage genome does not contain any known bacterial virulence genes or antimicrobial resistance genes. Comparison of the genomic features of the phage V-YDF132 and phylogenetic analysis revealed that V-YDF132 is a newly discovered Vibrio phage. Multiple genome comparisons and comparative genomics showed that V-YDF132 is in the same genus as Vibrio phages vB_VpS_PG28 (MT735630.2) and VH2_2019 (MN794238.1). Overall, the results indicate that V-YDF132 is potentially applicable for biological control of vibriosis.
Collapse
|
21
|
Novriadi R, Roigé O, Segarra S. Effects of Dietary Nucleotide Supplementation on Performance, Profitability, and Disease Resistance of Litopenaeus vannamei Cultured in Indonesia under Intensive Outdoor Pond Conditions. Animals (Basel) 2022; 12:ani12162036. [PMID: 36009626 PMCID: PMC9404417 DOI: 10.3390/ani12162036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
This study evaluated the effects of dietary nucleotide supplementation in Pacific white shrimp, Litopenaeus vannamei, cultured in Indonesia. A total of 22,500 shrimp receiving diets in which fish meal (FM) had been partially replaced with vegetable protein sources were classified into five study groups (4500 shrimp/group) and received different diets for 110 days: 10FM (control group; 10% FM), 6FM (6% FM—low FM and no nucleotide supplementation), 10FMN (10% FM; 0.1% nucleotides), 8FMN (8% FM; 0.1% nucleotides) and 6FMN (6% FM; 0.1% nucleotides). Growth performance, body composition, total hemocyte count (THC), lysozyme activity, and hepatopancreas histopathology were assessed. Organoleptic evaluation and profitability assessments were also performed. In addition, shrimp resistance to a Vibrio harveyi challenge was studied in shrimps after having received the diets for 30 days. Results showed that reducing FM had a negative impact on growth performance and hepatopancreas morphology. Adding nucleotides resulted in better performance and profitability, a healthier histomorphological appearance of the hepatopancreas, and significantly higher survival rates upon challenge with V. harveyi, while it did not negatively affect organoleptic parameters. In conclusion, nucleotide supplementation could be useful for optimizing performance, profitability, and disease resistance in shrimp cultured under intensive outdoor pond conditions.
Collapse
Affiliation(s)
- Romi Novriadi
- Aquaculture Department, Jakarta Technical University of Fisheries, Politeknik Ahli Usaha Perikanan, Ministry of Marine Affairs and Fisheries, Jl. Raya Pasar Minggu, Jati Padang, Jakarta 12520, Indonesia
| | - Oriol Roigé
- R&D Bioiberica S.A.U., Av. Dels Països Catalans 34, 08950 Esplugues de Llobregat, Spain
| | - Sergi Segarra
- R&D Bioiberica S.A.U., Av. Dels Països Catalans 34, 08950 Esplugues de Llobregat, Spain
- Correspondence: ; Tel.: +34-9349-04908
| |
Collapse
|
22
|
Yasin A, Begum MK, Eshik MME, Punom NJ, Ahmmed S, Rahman MS. Molecular identification and antibiotic resistance patterns of diverse bacteria associated with shrimp PL nurseries of Bangladesh: suspecting Acinetobacter venetianus as future threat. PeerJ 2022; 10:e12808. [PMID: 35223199 PMCID: PMC8868018 DOI: 10.7717/peerj.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
Shrimp aquaculture has been accomplished with breeding and nursing of shrimp in an artificial environment to fulfill the increasing demand of shrimp consumption worldwide. However, the microbial diseases appear as a serious problem in this industry. The study was designed to identify the diverse bacteria from shrimp PL (post-larvae) nurseries and to profile antibiotic resistance patterns. The rearing water (raw seawater, treated and outlet water) and shrimp PL were collected from eight nurseries of south-west Bangladesh. Using selective agar plates, thirty representative isolates were selected for 16S rRNA gene sequencing, antibiotic susceptibility test and MAR index calculation. Representative isolates were identified as Aeromonas caviae, Pseudomonas monteilii, Shewanella algae, Vibrio alginolyticus, V. brasiliensis, V. natriegens, V. parahaemolyticus, V. shilonii, V. xuii, Zobellella denitrificans which are Gram-negative, and Bacillus licheniformis and B. pumilus which are Gram-positive. Notably, six strains identified as Acinetobacter venetianus might be a concern of risk for shrimp industry. The antibiotic resistance pattern reveals that the strain YWO8-97 (identified as P. monteilii) was resistant to all twelve antibiotics. Ceftazidime was the most powerful antibiotic since most of the studied strains were sensitive against it. The six strains of A. venetianus showed multiple antibiotic resistance patterns. MAR index were ranged from 0.08 to 1.0, and values of 26 isolates were more than 0.2 which means prior high exposure to the antibiotics. From the present study, it can be concluded that shrimp PL nurseries in southern part of Bangladesh are getting contaminated with antibiotic resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Abdullah Yasin
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Mst. Khadiza Begum
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Md. Mostavi Enan Eshik
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Nusrat Jahan Punom
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Shawon Ahmmed
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh,Brackishwater Station, Bangladesh Fisheries Research Institute (BFRI), Khulna, Bangladesh
| | - Mohammad Shamsur Rahman
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|