1
|
Sokolov NA, Boots M, Bartlett LJ. Avoiding the tragedies of parasite tolerance in Darwinian beekeeping. Proc Biol Sci 2025; 292:20242433. [PMID: 39904384 PMCID: PMC11793967 DOI: 10.1098/rspb.2024.2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Bee declines have been partly attributed to the impacts of invasive or emerging parasite outbreaks. For western honeybees, Apis mellifera, major losses are associated with the virus-vectoring mite, Varroa destructor. In response, beekeepers have focused breeding efforts aimed at conferring resistance to this key parasite. One method of many is survival-based beekeeping where colonies that survive despite significant Varroa infestations produce subsequent colonies. We argue that this 'hands-off' approach will not always lead to Varroa resistance evolving but rather tolerance. Tolerance minimizes host fitness costs of parasitism without reducing parasite abundance, whereas resistance either prevents parasitism outright or keeps parasitism intensity low. With clear epidemiological distinctions, and as honeybee disease dynamics impact other wild bees owing to shared pathogens, we discuss why tolerance outcomes in honeybee breeding have important implications for wider pollinator health. Crucially, we argue that unintentional selection for tolerance will not only lead to more spillover from honeybees but may also select for pathogens that are more virulent in wild bees leading to 'tragedies of tolerance'. These tragedies can be avoided through successful breeding regimes that specifically select for low Varroa. We emphasize how insights from evolutionary ecology can be applied in ecologically responsible honeybee management.
Collapse
Affiliation(s)
- Nina A. Sokolov
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA94720, USA
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA94720, USA
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
| | - Lewis J. Bartlett
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA30602, USA
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA30602, USA
| |
Collapse
|
2
|
Maurer C, Schauer A, Yañez O, Neumann P, Gajda A, Paxton RJ, Pellissier L, Schweiger O, Szentgyörgyi H, Vanbergen AJ, Albrecht M. Species traits, landscape quality and floral resource overlap with honeybees determine virus transmission in plant-pollinator networks. Nat Ecol Evol 2024; 8:2239-2251. [PMID: 39367259 PMCID: PMC11618065 DOI: 10.1038/s41559-024-02555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
Emerging infectious diseases pose a threat to pollinators. Virus transmission among pollinators via flowers may be reinforced by anthropogenic land-use change and concomitant alteration of plant-pollinator interactions. Here, we examine how species' traits and roles in flower-visitation networks and landscape-scale factors drive key honeybee viruses-black queen cell virus (BQCV) and deformed wing virus-in 19 wild bee and hoverfly species, across 12 landscapes varying in pollinator-friendly (flower-rich) habitat. Viral loads were on average more than ten times higher in managed honeybees than in wild pollinators. Viral loads in wild pollinators were higher when floral resource use overlapped with honeybees, suggesting these as reservoir hosts, and increased with pollinator abundance and viral loads in honeybees. Viral prevalence decreased with the amount of pollinator-friendly habitat in a landscape, which was partly driven by reduced floral resource overlap with honeybees. Black queen cell virus loads decreased with a wild pollinator's centrality in the network and the proportion of visited dish-shaped flowers. Our findings highlight the complex interplay of resource overlap with honeybees, species traits and roles in flower-visitation networks and flower-rich pollinator habitat shaping virus transmission.
Collapse
Affiliation(s)
- Corina Maurer
- Agroecology and Environment, Agroscope, Zürich, Switzerland.
- Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland.
| | - Alexandria Schauer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Gajda
- Warsaw University of Life Sciences, Institute of Veterinary Medicine, Laboratory of Bee Diseases, Warsaw, Poland
| | - Robert J Paxton
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Loïc Pellissier
- Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Oliver Schweiger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Helmholtz Centre for Environmental Research-UFZ, Department of Community Ecology, Halle (Saale), Germany
| | | | - Adam J Vanbergen
- Agroécologie, INRAE, Institut Agro, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | | |
Collapse
|
3
|
Cilia G, Caringi V, Zavatta L, Bortolotti L. Pathogen occurrence in different developmental stages of the invasive Vespa velutina nigrithorax (Buysson, 1905). PEST MANAGEMENT SCIENCE 2024; 80:5909-5917. [PMID: 39054884 DOI: 10.1002/ps.8325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The yellow-legged hornet (Vespa velutina nigrithorax) is a predatory species native to South-East Asia. The hornet is invasive in Europe, spreading to several countries and becoming a pest for Apis mellifera due to its behaviour of preying in front of apiaries. The aim of this study was (i) to investigate the presence of honey bee pathogens within the developmental stages of V. velutina after neutralizing a nest in Bologna province (Emilia-Romagna, Italy) and (ii) to analyze the mitochondrial DNA to determine if the population derived from the population initially introduced in Europe. RESULTS The results indicated that deformed wing virus (82.76%) and Nosema ceranae (67.28%) were the most prevalent pathogens. Deformed wing virus, N. ceranae and sacbrood virus were found in all investigated stages, while chronic bee paralysis virus and Kashmir bee virus were exclusively found in foraging adults. All detected viruses were found to be replicative, highlighting active infection in the hosts. The mtDNA analysis demonstrated that the origin derived from the invasive population arrived in France. CONCLUSION This study underscores the importance of further research to understand the effect of interspecific transmission, especially concerning the potential role of these pathogens as a biocontrol for the invasive V. velutina nigrithorax. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Giovanni Cilia
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Valeria Caringi
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| | - Laura Zavatta
- Department of Agricultural and Food Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment, Bologna, Italy
| |
Collapse
|
4
|
Dobelmann J, Manley R, Wilfert L. Caught in the act: the invasion of a viral vector changes viral prevalence and titre in native honeybees and bumblebees. Biol Lett 2024; 20:20230600. [PMID: 38715462 PMCID: PMC11135380 DOI: 10.1098/rsbl.2023.0600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 05/31/2024] Open
Abstract
Novel transmission routes change pathogen landscapes and may facilitate disease emergence. The varroa mite is a virus vector that switched to western honeybees at the beginning of the last century, leading to hive mortality, particularly in combination with RNA viruses. A recent invasion of varroa on the French island of Ushant introduced vector-mediated transmission to one of the last varroa-naive native honeybee populations and caused rapid changes in the honeybee viral community. These changes were characterized by a drastic increase in deformed wing virus type B prevalence and titre in honeybees, as well as knock-on effects in bumblebees, particularly in the year following the invasion. Slow bee paralysis virus also appeared in honeybees and bumblebees, with a 1 year delay, while black queen cell virus declined in honeybees. This study highlights the rapid and far-reaching effects of vector-borne transmission that can extend beyond the directly affected host species, and that the direction of the effect depends on the pathogen's virulence.
Collapse
Affiliation(s)
- Jana Dobelmann
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, Ulm89081, Germany
| | | | - Lena Wilfert
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, Ulm89081, Germany
| |
Collapse
|
5
|
Tiritelli R, Flaminio S, Zavatta L, Ranalli R, Giovanetti M, Grasso DA, Leonardi S, Bonforte M, Boni CB, Cargnus E, Catania R, Coppola F, Di Santo M, Pusceddu M, Quaranta M, Bortolotti L, Nanetti A, Cilia G. Ecological and social factors influence interspecific pathogens occurrence among bees. Sci Rep 2024; 14:5136. [PMID: 38429345 PMCID: PMC10907577 DOI: 10.1038/s41598-024-55718-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 03/03/2024] Open
Abstract
The interspecific transmission of pathogens can occur frequently in the environment. Among wild bees, the main spillover cases are caused by pathogens associated with Apis mellifera, whose colonies can act as reservoirs. Due to the limited availability of data in Italy, it is challenging to accurately assess the impact and implications of this phenomenon on the wild bee populations. In this study, a total of 3372 bees were sampled from 11 Italian regions within the BeeNet project, evaluating the prevalence and the abundance of the major honey bee pathogens (DWV, BQCV, ABPV, CBPV, KBV, Nosema ceranae, Ascosphaera apis, Crithidia mellificae, Lotmaria passim, Crithidia bombi). The 68.4% of samples were positive for at least one pathogen. DWV, BQCV, N. ceranae and CBPV showed the highest prevalence and abundance values, confirming them as the most prevalent pathogens spread in the environment. For these pathogens, Andrena, Bombus, Eucera and Seladonia showed the highest mean prevalence and abundance values. Generally, time trends showed a prevalence and abundance decrease from April to July. In order to predict the risk of infection among wild bees, statistical models were developed. A low influence of apiary density on pathogen occurrence was observed, while meteorological conditions and agricultural management showed a greater impact on pathogen persistence in the environment. Social and biological traits of wild bees also contributed to defining a higher risk of infection for bivoltine, communal, mining and oligolectic bees. Out of all the samples tested, 40.5% were co-infected with two or more pathogens. In some cases, individuals were simultaneously infected with up to five different pathogens. It is essential to increase knowledge about the transmission of pathogens among wild bees to understand dynamics, impact and effects on pollinator populations. Implementing concrete plans for the conservation of wild bee species is important to ensure the health of wild and human-managed bees within a One-Health perspective.
Collapse
Grants
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
- project BeeNet (Italian National Fund under FEASR 2014-2020) Ministero dell'agricoltura, della sovranità alimentare e delle foreste
Collapse
Affiliation(s)
- Rossella Tiritelli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Simone Flaminio
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Av. Champ de Mars 6, 7000, Mons, Belgium
| | - Laura Zavatta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy.
- Departement of Agriculture and Food Sciences, University of Bologna, Via Giuseppe Fanin 42, 40127, Bologna, Italy.
| | - Rosa Ranalli
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- ZooPlantLab, Department of Biotecnology and Biosciences, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126, Milan, Italy
| | - Manuela Giovanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Donato Antonio Grasso
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Stefano Leonardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Marta Bonforte
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Chiara Benedetta Boni
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Elena Cargnus
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Delle Scienze 206, 31000, Udine, Italy
| | - Roberto Catania
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia 100, 95123, Catania, Italy
| | - Francesca Coppola
- Department of Veterinary Sciences, University of Pisa, Viale Delle Piagge 2, 56124, Pisa, Italy
| | - Marco Di Santo
- Maiella National Park, Via Badia 28, 67039, Sulmona, Italy
| | - Michelina Pusceddu
- Department of Agricultural Sciences, University of Sassari, Viale Italia 39A, 07100, Sassari, Italy
- National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Marino Quaranta
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Laura Bortolotti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Antonio Nanetti
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| | - Giovanni Cilia
- CREA Research Centre for Agriculture and Environment (CREA-AA), Via di Corticella 133, 40128, Bologna, Italy
| |
Collapse
|
6
|
Jones LJ, Miller DA, Schilder RJ, López‐Uribe MM. Body mass, temperature, and pathogen intensity differentially affect critical thermal maxima and their population-level variation in a solitary bee. Ecol Evol 2024; 14:e10945. [PMID: 38362170 PMCID: PMC10867875 DOI: 10.1002/ece3.10945] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/16/2023] [Accepted: 12/21/2023] [Indexed: 02/17/2024] Open
Abstract
Climate change presents a major threat to species distribution and persistence. Understanding what abiotic or biotic factors influence the thermal tolerances of natural populations is critical to assessing their vulnerability under rapidly changing thermal regimes. This study evaluates how body mass, local climate, and pathogen intensity influence heat tolerance and its population-level variation (SD) among individuals of the solitary bee Xenoglossa pruinosa. We assess the sex-specific relationships between these factors and heat tolerance given the differences in size between sexes and the ground-nesting behavior of the females. We collected X. pruinosa individuals from 14 sites across Pennsylvania, USA, that varied in mean temperature, precipitation, and soil texture. We measured the critical thermal maxima (CTmax) of X. pruinosa individuals as our proxy for heat tolerance and used quantitative PCR to determine relative intensities of three parasite groups-trypanosomes, Spiroplasma apis (mollicute bacteria), and Vairimorpha apis (microsporidian). While there was no difference in CTmax between the sexes, we found that CTmax increased significantly with body mass and that this relationship was stronger for males than for females. Air temperature, precipitation, and soil texture did not predict mean CTmax for either sex. However, population-level variation in CTmax was strongly and negatively correlated with air temperature, which suggests that temperature is acting as an environmental filter. Of the parasites screened, only trypanosome intensity correlated with heat tolerance. Specifically, trypanosome intensity negatively correlated with the CTmax of female X. pruinosa but not males. Our results highlight the importance of considering size, sex, and infection status when evaluating thermal tolerance traits. Importantly, this study reveals the need to evaluate trends in the variation of heat tolerance within and between populations and consider implications of reduced variation in heat tolerance for the persistence of ectotherms in future climate conditions.
Collapse
Affiliation(s)
- Laura J. Jones
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Douglas A. Miller
- Earth and Environmental Systems InstituteThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rudolf J. Schilder
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of BiologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Margarita M. López‐Uribe
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
7
|
Zbrozek M, Fearon ML, Weise C, Tibbetts EA. Honeybee visitation to shared flowers increases Vairimorpha ceranae prevalence in bumblebees. Ecol Evol 2023; 13:e10528. [PMID: 37736280 PMCID: PMC10511299 DOI: 10.1002/ece3.10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/23/2023] Open
Abstract
Vairimorpha (=Nosema) ceranae is a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competent V. ceranae hosts and previous work in experimental flight cages suggests V. ceranae can be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence of V. ceranae among multiple bee species has not been explored. Here, we analyzed the number and duration of pollinator visits to particular components of squash flowers-including the petals, stamen, and nectary-at six farms in southeastern Michigan, USA. We also determined the prevalence of V. ceranae in honeybees and bumblebees at each site. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar were linked with greater V. ceranae prevalence in bumblebees. Honeybee visitation patterns appear to have a disproportionately large impact on V. ceranae prevalence in bumblebees even though honeybees are not the most frequent flower visitors. Floral visitation by squash bees or other pollinators was not linked with V. ceranae prevalence in bumblebees. Further, V. ceranae prevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species. These results suggest that honeybee visitation behaviors on shared floral resources may be an important contributor to increased V. ceranae spillover to bumblebees in the field. Understanding how V. ceranae prevalence is influenced by pollinator behavior in the shared floral landscape is critical for reducing parasite spillover into declining wild bee populations.
Collapse
Affiliation(s)
- Maryellen Zbrozek
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Michelle L. Fearon
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Chloe Weise
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Elizabeth A. Tibbetts
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
8
|
Jones LJ, Singh A, Schilder RJ, López-Uribe MM. Squash bees host high diversity and prevalence of parasites in the northeastern United States. J Invertebr Pathol 2022; 195:107848. [PMID: 36343669 DOI: 10.1016/j.jip.2022.107848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
The squash bee Eucera (Peponapis) pruinosa is emerging as a model species to study how stressors impact solitary wild bees in North America. Here, we describe the prevalence of trypanosomes, microsporidians and mollicute bacteria in E. pruinosa and two other species, Bombus impatiens and Apis mellifera, that together comprise over 97% of the pollinator visitors of Cucurbita agroecosystems in Pennsylvania (United States). Our results indicate that all three parasite groups are commonly detected in these bee species, but E. pruinosa often exhibit higher prevalences. We further describe novel trypanosome parasites detected in E. pruinosa, however it is unknown how these parasites impact these bees. We suggest future work investigates parasite replication and infection outcomes.
Collapse
Affiliation(s)
- Laura J Jones
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Avehi Singh
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Rudolf J Schilder
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Margarita M López-Uribe
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Entomology, Center for Pollinator Research, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
9
|
Effects of planted pollinator habitat on pathogen prevalence and interspecific detection between bee species. Sci Rep 2022; 12:7806. [PMID: 35551218 PMCID: PMC9098541 DOI: 10.1038/s41598-022-11734-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Shared resources can instigate pathogen spread due to large congregations of individuals in both natural and human modified resources. Of current concern is the addition of pollinator habitat in conservation efforts as it attracts bees of various species, potentially instigating interspecific sharing of pathogens. Common pathogens have been documented across a wide variety of pollinators with shared floral resources instigating their spread in some, but not all, cases. To evaluate the impact of augmented pollinator habitat on pathogen prevalence, we extracted RNA from samples of eight bee species across three families and screened these samples for nine pathogens using RT-qPCR. We found that some habitat characteristics influenced pathogen detection; however, we found no evidence that pathogen detection in one bee species was correlated with pathogen detection in another. In fact, pathogen detection was rare in wild bees. While gut parasites were detected in 6 out of the 8 species included in this study, viruses were only detected in honey bees. Further, virus detection in honey bees was low with a maximum 21% of samples testing positive for BQCV, for example. These findings suggest factors other than the habitat itself may be more critical in the dissemination of pathogens among bee species. However, we found high relative prevalence and copy number of gut parasites in some bee species which may be of concern, such as Bombus pensylvanicus. Long-term monitoring of pathogens in different bee species at augmented pollinator habitat is needed to evaluate if these patterns will change over time.
Collapse
|
10
|
Tehel A, Streicher T, Tragust S, Paxton RJ. Experimental cross species transmission of a major viral pathogen in bees is predominantly from honeybees to bumblebees. Proc Biol Sci 2022; 289:20212255. [PMID: 35168401 PMCID: PMC8848241 DOI: 10.1098/rspb.2021.2255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cross-species transmission of a pathogen from a reservoir to a recipient host species, spillover, can have major impacts on biodiversity, domestic species and human health. Deformed wing virus (DWV) is a panzootic RNA virus in honeybees that is causal in their elevated colony losses, and several correlative field studies have suggested spillover of DWV from managed honeybees to wild bee species such as bumblebees. Yet unequivocal demonstration of DWV spillover is lacking, while spillback, the transmission of DWV from a recipient back to the reservoir host, is rarely considered. Here, we show in fully crossed laboratory experiments that the transmission of DWV (genotype A) from honeybees to bumblebees occurs readily, yet we neither detected viral transmission from bumblebees to honeybees nor onward transmission from experimentally infected to uninoculated bumblebees. Our results support the potential for viral spillover from honeybees to other bee species in the field when robbing resources from heterospecific nests or when visiting the same flowers. They also underscore the importance of studies on the virulence of DWV in wild bee species so as to evaluate viral impact on individual and population fitness as well as viral adaption to new host species.
Collapse
Affiliation(s)
- Anja Tehel
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Tabea Streicher
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Simon Tragust
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany
| | - Robert J. Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|