1
|
Margaoan R, Papa G, Nicolescu A, Cornea-Cipcigan M, Kösoğlu M, Topal E, Negri I. Environmental pollution effect on honey bees and their derived products: a comprehensive analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10370-10391. [PMID: 38847955 PMCID: PMC11996992 DOI: 10.1007/s11356-024-33754-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/17/2024] [Indexed: 04/15/2025]
Abstract
Several factors, including environmental degradation, air pollution, intense urbanization, excessive agriculture, and climate change, endanger the well-being of animals and plants. One of the major issues with an increasingly negative impact is agricultural contamination with pesticides and antibiotics. Seed coatings with neonicotinoid insecticides used as a protective layer against pests are shown to exceed the permissible limits in most cases. Neonicotinoid compounds bind to nicotinic acetylcholine receptors, therefore affecting the honey bees' brain. Heavy metals in higher concentrations are lethal for honey bees, and the residue in bee products might pose a threat to human health. Highly effective acaricides used to treat Varroa destructor infestations in honey bee colonies have negative effects on honey bee reproduction, olfaction, and honey production. Furthermore, amitraz and fluvalinate are mostly found in the highest amounts and lead to decreased honey production and reduced colony reproduction, along with decreased learning ability and memory. However, scientific studies have shown that honey bees act as a reliable bio-indicator of environmental pollution. In response to the growing demand for bee products, the effects of adulteration and improper storage conditions have gotten worse and represent a new risk factor. In light of the shifting global economy, it is important to analyze consumer expectations and adjust manufacturing accordingly. By ensuring the manufacture of high-quality, traceable products devoid of drug residues, consumers will be better protected from subsequent health problems. This review's objectives are based on the necessity of identifying the risks associated with honey bees and bee products.
Collapse
Affiliation(s)
- Rodica Margaoan
- Department of Animal Production and Food Safety, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Giulia Papa
- Department of Sustainable Crop Production-DIPROVES, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Alexandru Nicolescu
- Department of Horticulture and Landscape, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337, Cluj-Napoca, Romania.
| | - Mihaiela Cornea-Cipcigan
- Department of Horticulture and Landscape, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mustafa Kösoğlu
- Apiculture Research Center, Aegean Agricultural Research Institute, 35661, Izmir, Turkey
| | - Erkan Topal
- Izmir Food Control Laboratory Directorate, Bornova, 35100, Izmir, Turkey
| | - Ilaria Negri
- Department of Sustainable Crop Production-DIPROVES, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
2
|
El-Sayed ASA, Fathy NAM, Labib M, El-Baz AF, El-Sheikh AA, Moustafa AH. Biological control of nosemosis in Apis mellifera L. with Acacia nilotica extract. Sci Rep 2024; 14:28340. [PMID: 39550385 PMCID: PMC11569257 DOI: 10.1038/s41598-024-78874-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Nosemosis is one of the most devastating diseases of Apis mellifera (Honey bees) caused by the single-celled spore-forming fungi Nosema apis, N. ceranae and N. neumanii, causing a severe loss on the colony vitality and productivity. Fumagillin, a MetAP2 inhibitor, was a certified treatment for controlling nosemosis, nevertheless, due to its deleterious effects on honey bees and humans, it is prohibited. So, searching for novel biological agents with affordable selectivity to target Nosema species infecting Apis mellifera, with nil toxicity to bees and humans is the main objective of this study. Nosema species were isolated from naturally infected honey bees. The methanolic extracts of Acacia nilotica, Elaeis guineensis, and Catharanthus roseus were tested to selectively control the growth of Nosema spp of honeybees. The spores of Nosema species were molecularly and morphologically identified. Among the tested plant extracts, the methanolic extracts (0.1%) of A. nilotica had the most activity towards Nosema spp causing about 37.8 and 32.5% reduction in the spores' load at 5- and 9-days post-infection, respectively, compared to the untreated control. At 0.1%, the A. nilotica methanolic extract exhibited the highest inhibitory effect for Nosema spores, without any obvious bee mortality. Catharanthus roseus displayed a reduction of spores by 27.02%, with bee mortality rate of 27.02%. At 1% for 5 dpi, the A. nilotica extracts led to 18.18% bee mortality, while the C. roseus extracts resulted in 100% mortality, as revealed from the toxicity and quantification bioassays. So, the extracts of A. nilotica and C. roseus had a significant effect in controlling the N. apis and N. ceranae titer compared to the infected untreated control at both time points. The titer of N. apis and N. ceranae was noticeably decreased by more than 80% and 90%, in response to A. nilotica, compared to the control. From the metabolic profiling by GC-MS analysis, the most frequent active compounds of A. nilotica were 2,4,6-trihy-droxybenzoic acid, 1,2-dihydroxybenzene, myristic acid, and linoleic acid. These compounds were analyzed in silico to assess their binding affinity to the ATP binding protein, methionine aminopeptidase and polar tube protein of Nosema species as target enzymes. The compound 2,4,6-trihydroxybenzoic acid had the lowest energy to bind with ATP binding protein, methionine aminopeptidase and polar tube protein of Nosema, followed by 1,2-dihydroxybenzene and myristic acid, compared to fumagilin. So, from the experimental and molecular docking analysis, the extracts of A. nilotica had the highest activity to attack the cellular growth machinery of Nosema species without an obvious effect to the honeybees, ensuring their prospective promising application.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| | - Nahla A M Fathy
- Enzymology and Fungal Biotechnology Lab (EFBL), Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Mai Labib
- Agriculture Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, 12619, Egypt
| | - Ashraf F El-Baz
- Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City, 22857/79, Egypt
| | - Aly A El-Sheikh
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt
| | - Ahmed H Moustafa
- Chemistry Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
Rodrigues H, Leite M, Oliveira B, Freitas A. Antibiotics in honey: a comprehensive review on occurrence and analytical methodologies. OPEN RESEARCH EUROPE 2024; 4:125. [PMID: 39534880 PMCID: PMC11555330 DOI: 10.12688/openreseurope.17664.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Honey is a food of great nutritional importance and has always been used for human consumption. The production of honey and other beekeeping products depends on the proper functioning of this extremely important sector, as it has a direct impact on other sectors such as agriculture. The decline in bee colony numbers has been linked, among other factors, to bacterial diseases affecting bees, including American and European foulbrood, and Nosema spp. disease. In this matter, prophylactic or therapeutic use of veterinary drugs in apiculture is common but can lead to their accumulation in bees and in honey. Consumption of contaminated honey can have adverse effects such as allergic or hypersensitivity reactions, carcinogenicity, reproductive effects, and teratogenicity. Commission Regulation (EU) N ⍛ 37/2010 sets MRLs for antibiotics in various foods, but these limits are not set for api-products. The lack of harmonized rules has led some countries to set recommended concentrations and minimum performance limits. Nonetheless, to achieve this goal, development of accurate and precise analytical methodologies is crucial. In recent years, the analysis of antibiotics in honey has led to the development of methods in an extensive range of families, including aminoglycosides, amphenicols, lincosamides, macrolides, nitroimidazoles, quinolones, sulfonamides, tetracyclines and nitrofurans. This review work entails an in-depth exploration of occurrence studies, extraction methodologies, and analytical techniques for the determination of antibiotics in apiculture products. It was found that the most used extraction methods include solid-phase extraction, dispersed solid or liquid phase extraction and QuEChERS. Due to the complexity of the honey matrix, samples are often diluted or acidified using McIlvaine buffer, H 2O, MeOH, acidified ACN and TCA solution. This is usually followed by a purification step using SPE cartridges or PSA. Golden analytical methodologies include high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer (MS/MS) with Orbitrap or Q-ToF detectors.
Collapse
Affiliation(s)
- Helena Rodrigues
- University of Porto, Faculty of Pharmacy, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
- National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vila do Conde, 4485-655, Portugal
| | - Marta Leite
- National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vila do Conde, 4485-655, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, Porto, Portugal, Porto, Portugal
| | - Beatriz Oliveira
- University of Porto, Faculty of Pharmacy, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, Porto, Portugal, Porto, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vila do Conde, 4485-655, Portugal
- REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, Porto, Portugal, Porto, Portugal
| |
Collapse
|
4
|
de Oliveira AH, Rubinger MMM, da Silva Rabello A, Albuini-Oliveira NM, Vidigal AEC, de Oliveira MRL, Tavares EDC, Serrão JE. Action of dithiocarbimates salts on the honey bee and its pathogen Nosema ceranae. AMB Express 2024; 14:82. [PMID: 39023846 PMCID: PMC11258116 DOI: 10.1186/s13568-024-01734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Apis mellifera, crucial pollinators for both native and cultivated plants, also yield various products such as honey, wax, royal jelly, and propolis, extensively utilized in the food, pharmaceuticals, and cosmetics industries. Nosema ceranae, a prevalent microsporidian worldwide, stands as a significant pathogen for A. mellifera, showing resistance to conventional antibiotics. Consequently, the exploration of novel compounds for N. ceranae control becomes imperative. Dithiocarbimate derivatives emerge as promising antifungal candidates under evaluation for combating various pathogens, particularly those affecting plants. This study assessed the toxicity profile of six dithiocarbimate derivatives on A. mellifera worker survival and N. ceranae pathogen. Among these, four compounds exhibited minimal bee mortality and proceeded to further evaluation against N. ceranae. In vitro assays demonstrated their inhibitory effects on spore germination. Remarkably, the most potent compound suppressed N. ceranae spores by 62% at a concentration of 20 µmol L-1in vivo. Thus, these dithiocarbimate derivatives represent promising new antifungal agents for combatting nosemosis in honey bee populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Eder do Couto Tavares
- Instituto de Física e Química, Universidade Federal de Itajubá, Itajubá, 37500-906, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, 36570-977, Brazil.
| |
Collapse
|
5
|
Glavinic U, Jovanovic NM, Dominikovic N, Lakic N, Ćosić M, Stevanovic J, Stanimirovic Z. Potential of Wormwood and Oak Bark-Based Supplement in Health Improvement of Nosema ceranae-Infected Honey Bees. Animals (Basel) 2024; 14:1195. [PMID: 38672343 PMCID: PMC11047348 DOI: 10.3390/ani14081195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Nosema ceranae, a microsporidian parasite, as one of the stressors that contribute to honey bee decline, has a significant negative impact on the longevity, productivity, and reproductive capacity of honey bee colonies. There are several different strategies for Nosema infection control, including natural-based and antibiotic-based products. In this study, we tested wormwood and oak bark-based supplement "Medenko forte" on survival, Nosema infection, oxidative stress, and expression of immune-related genes in artificially N. ceranae-infected bees. The results revealed a positive influence on the survival of Nosema-infected bees, irrespectively of the moment of supplement application (day 1, day 3, or day 6 after bee emergence), as well as reduction of Nosema loads and, consequently, Nosema-induced oxidative stress. Supplementation had no negative effects on bee immunity, but better anti-Nosema than immune-stimulating effects were affirmed based on expression levels of abaecin, defensin, hymenoptaecin, apidaecin, and vitellogenin genes. In conclusion, the tested supplement "Medenko forte" has great potential in the health protection of Nosema-infected bees. However, further investigations need to be performed to elucidate its mechanisms of action.
Collapse
Affiliation(s)
- Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| | - Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Nina Dominikovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| | - Nada Lakic
- Department of Statistics, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia;
| | - Milivoje Ćosić
- Institute of Forestry, Kneza Viseslava 3, 11000 Belgrade, Serbia;
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (N.D.); (J.S.); (Z.S.)
| |
Collapse
|
6
|
Gok Yurttas A, Çinar K, Khan Z, Elgün T, Mayack C. Inactivation of Nosema spp. with zinc phthalocyanine. J Invertebr Pathol 2024; 203:108074. [PMID: 38350524 DOI: 10.1016/j.jip.2024.108074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/12/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
Most honey bee pathogens, such as Vairimorpha (Nosema), cannot be rapidly and definitively diagnosed in a natural setting, consequently there is typically the spread of these diseases through shared and re-use of beekeeping equipment. Furthermore, there are no viable treatment options available for Nosema spores to aid in managing the spread of this bee disease. We therefore aimed to develop a new method using novel Zinc Phthalocyanine (ZnPc) as a photosensitizer for the photodynamic inactivation of Nosema spores that could be used for the decontamination of beekeeping equipment. Nosema spores were propagated for in vitro testing using four caged Apis mellifera honey bees. The ZnPc treatment was characterized, encapsulated with a liposome, and then used as either a 10 or 100 µM treatment for the freshly harvested Nosema spores, for either a 30 and or 60-minute time period, under either light or dark conditions, in-vitro, in 96-well plates. In the dark treatment, after 30-min, the ZnPc 100 µM treatment, caused a 30 % Nosema mortality, while this increased to 80 % at the same concentration after the light treatment. The high rate of anti-spore effects, in a short period of time, supports the notion that this could be an effective treatment for managing honey bee Nosema infections in the future. Our results also suggest that the photo activation of the treatment could be applied in the field setting and this would increase the sterilization of beekeeping equipment against Nosema.
Collapse
Affiliation(s)
- Asiye Gok Yurttas
- Department of Biochemistry, Faculty of Pharmacy, Istanbul Health and Technology University, Istanbul, Turkey.
| | - Kamil Çinar
- Department of Physics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey.
| | - Zaeema Khan
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey.
| | - Tuğba Elgün
- Medical Biology, Faculty of Medicine, Istanbul Biruni University, Istanbul, Turkey.
| | - Christopher Mayack
- Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey; US Department of Agriculture, Invasive Species and Pollinator Health Research Unit (ISPHRU), Western Regional Research Center (WRRC) in the Pacific West Area (PWA), USDA ARS Bee Lab Trailer 1, United States.
| |
Collapse
|
7
|
Açık MN, Karagülle B, Yakut S, Öztürk Y, Kutlu MA, Kalın R, Çetinkaya B. Production, characterization and therapeutic efficacy of egg yolk antibodies specific to Nosema ceranae. PLoS One 2024; 19:e0297864. [PMID: 38335158 PMCID: PMC10857605 DOI: 10.1371/journal.pone.0297864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 02/12/2024] Open
Abstract
Nosema disease, caused by Nosema ceranae, one of the single-celled fungal microsporidian parasites, is one of the most important and common diseases of adult honey bees. Since fumagillin, which has been used for decades in the control of Nosema disease in honey bees (Apis mellifera), poses a toxic threat and its efficacy against N. ceranae is uncertain, there is an urgent need to develop alternative prophylactic and curative strategies for the treatment of this disease. The main aim of this study was to investigate the therapeutic potential of specific egg yolk immunoglobulins (IgY) on Nosema disease. For this purpose, the presence of N. ceranae was determined by microscopic and PCR methods in honey bees collected from Nosema suspicious colonies by conducting a field survey. Layered Ataks chickens, divided into four groups each containing 20 animals, were vaccinated with live and inactivated vaccines prepared from field isolates of N. ceranae. Eggs were collected weekly for 10 weeks following the last vaccination. IgY extraction was performed using the PEG precipitation method from egg yolks collected from each group, and the purity of the antibodies was determined by SDS-PAGE and Western Blot. The presence of N. ceranae-specific IgYs was investigated by Western Blot and indirect ELISA methods. It was determined that specific IgYs showed high therapeutic efficacy on Nosema disease in naturally infected bee colonies. In addition, honey bees collected from infected colonies were brought to the laboratory and placed in cages with 30 bees each, and the effectiveness of IgYs was investigated under controlled conditions. It was detected that specific IgY reduced the Nosema spore load and the number of infected bees significantly in both the field and experimental study groups treated for seven days. It was concluded that chicken IgYs, an innovative and eco-friendly method, had a significant potential for use as an alternative to antifungal drugs.
Collapse
Affiliation(s)
- Mehmet Nuri Açık
- Department of Microbiology, Faculty of Veterinary Medicine, University of Bingol, Bingol, Turkiye
| | - Burcu Karagülle
- Department of Microbiology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkiye
| | - Seda Yakut
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Bingol, Bingol, Turkiye
| | - Yasin Öztürk
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Necmettin Erbakan, Konya, Turkiye
| | - Mehmet Ali Kutlu
- Department of Plant and Animal Production, Vocational School of Food, Agriculture and Livestock, University of Bingol, Bingol, Turkiye
| | - Recep Kalın
- Department of Microbiology, Faculty of Veterinary Medicine, Cumhuriyet University, Sivas, Turkiye
| | - Burhan Çetinkaya
- Department of Microbiology, Faculty of Veterinary Medicine, University of Firat, Elazig, Turkiye
| |
Collapse
|
8
|
Svobodová K, Krištůfek V, Kubásek J, Krejčí A. Alcohol extract of the gypsy mushroom (Cortinarius caperatus) inhibits the development of Deformed wing virus infection in western honey bee (Apis mellifera). JOURNAL OF INSECT PHYSIOLOGY 2024; 152:104583. [PMID: 37979771 DOI: 10.1016/j.jinsphys.2023.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Deformed wing virus (DWV) transmitted by the parasitic mite Varroa destructor is one of the most significant factors contributing to massive losses of managed colonies of western honey bee (Apis mellifera) subspecies of European origin reported worldwide in recent decades. Despite this fact, no antiviral treatment against honey bee viruses is currently available for practical applications and the level of viral infection can only be controlled indirectly by reducing the number of Varroa mites in honey bee colonies. In this study, we investigated the antiviral potential of the gypsy mushroom (Cortinarius caperatus) to reduce DWV infection in honey bees. Our results indicate that the alcohol extract of C. caperatus prevented the development of DWV infection in cage experiments as well as after direct application to honey bee colonies in a field experiment. The applied doses did not shorten the lifespan of honey bees. The reduced levels of DWV in C. caperatus-treated honey bees in cage experiments were accompanied by significant changes in the gene expression of Tep7, Bap1, and Vago. The C. caperatus treatment was not effective against the trypanosomatid Lotmaria passim. No residues of C.caperatus were found in honey harvested in the spring from colonies supplemented with the mushroom extract for their winter feeding. These findings suggest that C. caperatus alcohol extract could be a potential natural remedy to treat DWV infection in honey bees.
Collapse
Affiliation(s)
- Karolína Svobodová
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Václav Krištůfek
- Czech Academy of Sciences, Biology Centre, Institute of Soil Biology, Ceske Budejovice, Czech Republic
| | - Jiří Kubásek
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Alena Krejčí
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic.
| |
Collapse
|
9
|
Farhadi Z, Sadeghi AA, Motamedi Sedeh F, Chamani M. The effects of thymol, oxalic acid (Api-Bioxal) and hops extract (Nose-Go) on viability, the Nosema sp. spore load and the expression of vg and sod-1 genes in infected honey bees. Anim Biotechnol 2023; 34:4736-4745. [PMID: 36905146 DOI: 10.1080/10495398.2023.2187409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
This study was done to investigate the effects of thymol, fumagillin, oxalic acid (Api-Bioxal) and hops extract (Nose-Go) on Nosema sp. spore load, the expression of vitellogenin (vg) and superoxide-dismutase-1 (sod-1) genes and mortality of bees infected with N. ceranae. Five healthy colonies were assigned as the negative control, and 25 Nosema sp. infected colonies were assigned to five treatment groups including: the positive control: no additive to sirup; fumagillin 26.4 mg/L, thymol 0.1 g/L, Api-Bioxal 0.64 g/L and Nose-Go 5.0 g/L sirup. The reduction in the number of Nosema sp. spores in fumagillin, thymol, Api-Bioxal and Nose-Go compared to the positive control was 54, 25, 30 and 58%, respectively. Nosema sp. infection in all infected groups increased (p < .05) Escherichia coli population compared to the negative control. Nose-Go had a negative effect on lactobacillus population compared to other substances. Nosema sp. infection decreased vg and sod-1 genes expression in all infected groups compared to the negative control. Fumagillin and Nose-Go increased the expression of vg gene, and Nose-Go and thymol increased the expression of sod-1 gene than the positive control. Nose-Go has the potential to treat nosemosis if the necessary lactobacillus population is provided in the gut.
Collapse
Affiliation(s)
- Zahra Farhadi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farahnaz Motamedi Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Jovanovic NM, Glavinic U, Ristanic M, Vejnovic B, Ilic T, Stevanovic J, Stanimirovic Z. Effects of Plant-Based Supplement on Oxidative Stress of Honey Bees ( Apis mellifera) Infected with Nosema ceranae. Animals (Basel) 2023; 13:3543. [PMID: 38003159 PMCID: PMC10668651 DOI: 10.3390/ani13223543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most important approaches in the prevention and treatment of nosemosis is the use of herbal preparations as food supplements for bees. Therefore, the aim of this study was to investigate the effects of a plant-based supplement branded as "B+" on honeybees in a laboratory experiment. Four experimental groups were established: treated group (T), N. ceranae-infected and treated group (IT), N. ceranae-infected group (I) and non-infected group (NI). Survival, N. ceranae spore load and oxidative stress parameters together with expression levels of antioxidant enzyme genes and vitellogenin gene were monitored. The mortality in the T, IT and NI groups was significantly (p < 0.001) lower than in than in the I group. Within Nosema-infected groups, the IT group had a significantly lower (p < 0.001) number of N. ceranae spores than the I group. In addition, expression levels of genes for antioxidant enzymes were lower (p < 0.001) in the IT group compared to the I group. The concentration of malondialdehyde and the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione S-transferase) were significantly lower (p < 0.001) in the IT group compared to the I group. No negative effects of the tested supplement were observed. All these findings indicate that the tested supplement exerted beneficial effects manifested in better bee survival, reduced N. ceranae spore number and reduced oxidative stress of bees (lower expression of genes for antioxidant enzymes and oxidative stress parameters).
Collapse
Affiliation(s)
- Nemanja M. Jovanovic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Branislav Vejnovic
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia;
| | - Tamara Ilic
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (N.M.J.); (T.I.)
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia; (U.G.); (M.R.); (Z.S.)
| |
Collapse
|
11
|
Trytek M, Buczek K, Zdybicka-Barabas A, Wojda I, Borsuk G, Cytryńska M, Lipke A, Gryko D. Effect of amide protoporphyrin derivatives on immune response in Apis mellifera. Sci Rep 2022; 12:14406. [PMID: 36002552 PMCID: PMC9402574 DOI: 10.1038/s41598-022-18534-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/16/2022] [Indexed: 12/29/2022] Open
Abstract
The intracellular microsporidian parasite Nosema ceranae is known to compromise bee health by induction of energetic stress and downregulation of the immune system. Porphyrins are candidate therapeutic agents for controlling Nosema infection without adverse effects on honeybees. In the present work, the impact of two protoporphyrin IX derivatives, i.e. PP[Asp]2 and PP[Lys]2, on Apis mellifera humoral immune response has been investigated in laboratory conditions in non-infected and N. ceranae-infected honeybees. Fluorescence spectroscopy analysis of hemolymph showed for the first time that porphyrin molecules penetrate into the hemocoel of honeybees. Phenoloxidase (PO) activity and the expression of genes encoding antimicrobial peptides (AMPs: abaecin, defensin, and hymenoptaecin) were assessed. Porphyrins significantly increased the phenoloxidase activity in healthy honeybees but did not increase the expression of AMP genes. Compared with the control bees, the hemolymph of non-infected bees treated with porphyrins had an 11.3- and 6.1-fold higher level of PO activity after the 24- and 48-h porphyrin administration, respectively. Notably, there was a significant inverse correlation between the PO activity and the AMP gene expression level (r = - 0.61696, p = 0.0143). The PO activity profile in the infected bees was completely opposite to that in the healthy bees (r = - 0.5118, p = 0.000), which was related to the changing load of N. ceranae spores in the porphyrin treated-bees. On day 12 post-infection, the spore loads in the infected porphyrin-fed individuals significantly decreased by 74%, compared with the control bees. Our findings show involvement of the honeybee immune system in the porphyrin-based control of Nosema infection. This allows the infected bees to improve their lifespan considerably by choosing an optimal PO activity/AMP expression variant to cope with the varying level of N. ceranae infection.
Collapse
Affiliation(s)
- Mariusz Trytek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Katarzyna Buczek
- Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Iwona Wojda
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Grzegorz Borsuk
- Institute of Biological Basis of Animal Production, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Agnieszka Lipke
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie Skłodowska Sq. 2, 20-031, Lublin, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|
12
|
Antifungal activity of "HO21-F", a formulation based on Olea europaea plant extract, in honey bees infected with Nosema ceranae. J Invertebr Pathol 2022; 193:107801. [PMID: 35863438 DOI: 10.1016/j.jip.2022.107801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/28/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
Nosema ceranae is a microsporidium parasite that silently affects honey bees, causing a disease called nosemosis. This parasite produces resistant spores and germinates in the midgut of honey bees, extrudes a polar tubule that injects an infective sporoplasm in the host cell epithelium, proliferates, and produces intestinal disorders that shorten honey bee lifespan. The rapid extension of this disease has been reported to be widespread among adult bees, and treatments are less effective and counterproductive weakening colonies. This work aimed to evaluate the antifungal activity of a prototype formulation based on a non-toxic plant extract (HO21-F) against N. ceranae. In laboratory, honey bees were infected artificially, kept in cages for 17 days and samples were taken at 7 and 14 days post infection (dpi). At the same time, in field conditions we evaluated the therapeutic effect of HO21-F for 28 days in naturally infected colonies. The effectiveness of the treatment has been demonstrated by a reduction of 83.6 % of the infection levels observed in laboratory conditions at concentrations of 0.5 and 1 g/L without affecting the survival rate. Besides, in-field conditions we reported a reduction of 88 % of the infection level at a concentration of 2.5 g/L, obtaining better antifungal effectiveness in comparison to other commercially available treatments. As a result, we observed that the use of HO21-F led to an increase in population size and honey production, both parameters associated with colony strength. The reported antifungal activity of HO21-F against N. ceranae, with a significant control of spore proliferation in worker bees, suggests the promising commercial application use of this product against nosemosis, and it will encourage new research studies to understand the mechanism of action, whether related to the spore-inhibition effect and/or a stimulating effect in natural response of colonies to counteract the disease.
Collapse
|
13
|
Use of Thymol in Nosema ceranae Control and Health Improvement of Infected Honey Bees. INSECTS 2022; 13:insects13070574. [PMID: 35886750 PMCID: PMC9319372 DOI: 10.3390/insects13070574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary In the European Union, there is no registered product for the control of the honey bee endoparasite Nosema ceranae. Thus, researchers are looking for options for Nosema treatment. The aim of this study was to investigate the effect of a natural essential-oil ingredient (thymol) derived from Thymus vulgaris on honey bees infected with N. ceranae. Thymol exerted certain positive effects (increasing bee survival, immunity, and antioxidative protection), as well as positively affecting the spore loads in Nosema-infected bees. However, when applied to Nosema-free bees, thymol caused certain health disorders; therefore, beekeepers should be careful with its use. Abstract Nosema ceranae is the most widespread microsporidian species which infects the honey bees of Apis mellifera by causing the weakening of their colonies and a decline in their productive and reproductive capacities. The only registered product for its control is the antibiotic fumagillin; however, in the European Union, there is no formulation registered for use in beekeeping. Thymol (3-hydroxy-p-cymene) is a natural essential-oil ingredient derived from Thymus vulgaris, which has been used in Varroa control for decades. The aim of this study was to investigate the effect of thymol supplementation on the expression of immune-related genes and the parameters of oxidative stress and bee survival, as well as spore loads in bees infected with the microsporidian parasite N. ceranae. The results reveal mostly positive effects of thymol on health (increasing levels of immune-related genes and values of oxidative stress parameters, and decreasing Nosema spore loads) when applied to Nosema-infected bees. Moreover, supplementation with thymol did not induce negative effects in Nosema-infected bees. However, our results indicate that in Nosema-free bees, thymol itself could cause certain disorders (affecting bee survival, decreasing oxidative capacity, and downregulation of some immune-related gene expressions), showing that one should be careful with preventive, uncontrolled, and excessive use of thymol. Thus, further research is needed to reveal the effect of this phytogenic supplement on the immunity of uninfected bees.
Collapse
|
14
|
Recent Advances in the Biocontrol of Nosemosis in Honey Bees (Apis mellifera L.). J Fungi (Basel) 2022; 8:jof8050424. [PMID: 35628680 PMCID: PMC9145624 DOI: 10.3390/jof8050424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022] Open
Abstract
Nosemosis is a disease triggered by the single-celled spore-forming fungi Nosema apis and Nosema ceranae, which can cause extensive colony losses in honey bees (Apis mellifera L.). Fumagillin is an effective antibiotic treatment to control nosemosis, but due to its toxicity, it is currently banned in many countries. Accordingly, in the beekeeping sector, there is a strong demand for alternative ecological methods that can be used for the prevention and therapeutic control of nosemosis in honey bee colonies. Numerous studies have shown that plant extracts, RNA interference (RNAi) and beneficial microbes could provide viable non-antibiotic alternatives. In this article, recent scientific advances in the biocontrol of nosemosis are summarized.
Collapse
|