1
|
Panagi I, Muench JH, Ronneau A, Diaz-Del-Olmo I, Aliyath A, Yu XJ, Mak H, Jin E, Zeng J, Esposito D, Jennings E, Pillay TD, Günster RA, Maslen SL, Rittinger K, Thurston TLM. Bacterial effectors mediate kinase reprogramming through mimicry of conserved eukaryotic motifs. EMBO Rep 2025:10.1038/s44319-025-00472-y. [PMID: 40355646 DOI: 10.1038/s44319-025-00472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
Bacteria have evolved numerous biochemical processes that underpin their biology and pathogenesis. The small, non-enzymatic bacterial (Salmonella) effector SteE mediates kinase reprogramming, whereby the canonical serine/threonine host kinase GSK3 gains tyrosine-directed activity towards neosubstrates, promoting Salmonella virulence. Yet, both the mechanism behind the switch in GSK3's activity and the diversity of this phenomenon remain to be determined. Here we show that kinase reprogramming of GSK3 is mediated by putative homologues from diverse Gram-negative pathogens. Next, we identify both the molecular basis of how SteE targets GSK3 and uncover that the SteE-induced tyrosine activity conferred on GSK3 requires an L/xGxP motif. This motif, found in several CMGC kinases that undergo auto-tyrosine phosphorylation, was previously shown to mediate GSK3 autophosphorylation on a tyrosine. Together, we suggest that the SteE family of intrinsically disordered proteins mediates kinase reprogramming via several short linear motifs that each appear to mimic eukaryotic signalling motifs. With this insight comes the potential for the rationale design of synthetic reprogramming proteins.
Collapse
Affiliation(s)
- Ioanna Panagi
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Janina H Muench
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alexi Ronneau
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Ines Diaz-Del-Olmo
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Bacterial Pathogenesis and Immune Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Agnel Aliyath
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Xiu-Jun Yu
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Hazel Mak
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Enkai Jin
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Jingkun Zeng
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Diego Esposito
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Elliott Jennings
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Timesh D Pillay
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Regina A Günster
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Teresa L M Thurston
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Imperial College London, London, SW7 2AZ, UK.
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
- Bacterial Pathogenesis and Immune Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
2
|
Simmons T, Nadal‐Jimenez P, Hurst GDD. The Honeybee Associate Galleria mellonella Can Acquire Arsenophonus apicola Through Oral and Parenteral Infection Routes. Environ Microbiol 2025; 27:e70088. [PMID: 40223198 PMCID: PMC11994876 DOI: 10.1111/1462-2920.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 04/15/2025]
Abstract
Members of the genus Arsenophonus are classically considered to be vertically transmitted endosymbiotic associates of invertebrates. Acquisition of Arsenophonus apicola by Apis mellifera honeybees through social and environmental pathways raises the possibility that this species can infect a broader range of host species. In this study, we tested whether a natural inhabitant of bee hives, the wax moth Galleria mellonella, was a suitable host for A. apicola. We first demonstrated A. apicola colonised G. mellonella larvae following injection at doses as low as 104 CFU. A similar capacity of A. apicola to infect G. mellonella orally was evidenced, impacting waxworm development and mortality. Microscopy indicated that A. apicola crossed from gut to hemocoel in the G. mellonella crop, inducing melanisation. PCR screening of Galleria individuals in an apiary sample confirmed exposure of Galleria in the hive context. We conclude that A. apicola is capable of infecting and damaging hive associates. These findings raise two onward avenues of research: first, to investigate whether A. apicola's presence could protect hives against Galleria infestations, and second, to utilise model insect G. mellonella for immunity research to uncover the interplay between A. apicola and insect host defences whilst elucidating virulence factors utilised by A. apicola during infection.
Collapse
Affiliation(s)
- Trefor Simmons
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - Pol Nadal‐Jimenez
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| | - Gregory D. D. Hurst
- Institute of Infection, Veterinary and Ecological SciencesUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
3
|
Siozios S, Nadal-Jimenez P, Azagi T, Sprong H, Frost CL, Parratt SR, Taylor G, Brettell L, Liew KC, Croft L, King KC, Brockhurst MA, Hypša V, Novakova E, Darby AC, Hurst GDD. Genome dynamics across the evolutionary transition to endosymbiosis. Curr Biol 2024; 34:5659-5670.e7. [PMID: 39549700 DOI: 10.1016/j.cub.2024.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 04/12/2024] [Accepted: 10/15/2024] [Indexed: 11/18/2024]
Abstract
Endosymbiosis-where a microbe lives and replicates within a host-is an important contributor to organismal function that has accelerated evolutionary innovations and catalyzed the evolution of complex life. The evolutionary processes associated with transitions to endosymbiosis, however, are poorly understood. Here, we leverage the wide diversity of host-associated lifestyles of the genus Arsenophonus to reveal the complex evolutionary processes that occur during the transition to a vertically transmitted endosymbiotic lifestyle from strains maintained solely by horizontal (infectious) transmission. We compared the genomes of 38 strains spanning diverse lifestyles from horizontally transmitted pathogens to obligate interdependent endosymbionts. Among culturable strains, we observed those with vertical transmission had larger genome sizes than closely related horizontally transmitting counterparts, consistent with evolutionary innovation and the rapid gain of new functions. Increased genome size was a consequence of prophage and plasmid acquisition, including a cargo of type III effectors, alongside the concomitant loss of CRISPR-Cas genome defense systems, enabling mobile genetic element expansion. Persistent endosymbiosis was also associated with loss of type VI secretion, which we hypothesize to be a consequence of reduced microbe-microbe competition. Thereafter, the transition to endosymbiosis with strict vertical inheritance was associated with the expected relaxation of purifying selection, gene pseudogenization, metabolic degradation, and genome reduction. We argue that reduced phage predation in endosymbiotic niches drives the loss of genome defense systems driving rapid genome expansion upon the adoption of endosymbiosis and vertical transmission. This remodeling enables rapid horizontal gene transfer-mediated evolutionary innovation and precedes the reductive evolution traditionally associated with adaptation to endosymbiosis.
Collapse
Affiliation(s)
- Stefanos Siozios
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK.
| | - Pol Nadal-Jimenez
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK
| | - Tal Azagi
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, 3720 BA Bilthoven, the Netherlands
| | - Hein Sprong
- Centre for Infectious Diseases Research, National Institute for Public Health and the Environment, 3720 BA Bilthoven, the Netherlands
| | - Crystal L Frost
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK
| | - Steven R Parratt
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK
| | - Graeme Taylor
- Department of Biology, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Laura Brettell
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Kwee Chin Liew
- NSW Health Pathology Infectious Diseases Department, Wollongong Hospital, Wollongong, NSW, Australia
| | - Larry Croft
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| | - Kayla C King
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK; Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology & Immunology, University of British Columbia, 1365 - 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Michael A Brockhurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Václav Hypša
- Department of Parasitology, Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Eva Novakova
- Department of Parasitology, Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Alistair C Darby
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK
| | - Gregory D D Hurst
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L59 7ZB, UK.
| |
Collapse
|
4
|
Garrido-Bautista J, Norte AC, Moreno-Rueda G, Nadal-Jiménez P. Ecological determinants of prevalence of the male-killing bacterium Arsenophonus nasoniae. J Invertebr Pathol 2024; 203:108073. [PMID: 38346575 DOI: 10.1016/j.jip.2024.108073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Male-killing bacteria are found in a broad range of arthropods. Arsenophonus nasoniae is a male-killing bacterium, causing a 80% reduction of the male progeny in infected Nasonia vitripennis wasps. Although the discovery of A. nasoniae dates from the early 80's, knowledge about the biology and ecology of this endosymbiont is still scarce. One of these poorly studied features is the ecological factors underlying A. nasoniae incidence on its Nasonia spp. hosts in different geographical locations. Here, we studied the prevalence of A. nasoniae in Iberian wild populations of its host N. vitripennis. This wasp species is a common parasitoid of the blowfly Protocalliphora azurea pupae, which in turn is a parasite of hole-nesting birds, such as the blue tit (Cyanistes caeruleus). We also examined the effects of bird rearing conditions on the prevalence of A. nasoniae through a brood size manipulation experiment (creating enlarged, control and reduced broods). Both the wasp and bacterium presence were tested through PCR assays in blowfly pupae. We found A. nasoniae in almost half (47%) of nests containing blowflies parasitized by N. vitripennis. The prevalence of A. nasoniae was similar in the two geographical areas examined (central Portugal and southeastern Spain) and the probability of infection by A. nasoniae was independent of the number of blowfly pupae in the nest. Experimental manipulation of brood size did not affect the prevalence of A. nasoniae nor the prevalence of its host, N. vitripennis. These results suggest that the incidence of A. nasoniae in natural populations of N. vitripennis is high in the Iberian Peninsula, and the infestation frequency of nests by N. vitripennis carrying A. nasoniae is spatially stable in this geographical region independently of bird rearing conditions.
Collapse
Affiliation(s)
- Jorge Garrido-Bautista
- Department of Zoology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Ana Cláudia Norte
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - Gregorio Moreno-Rueda
- Department of Zoology, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Pol Nadal-Jiménez
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, L69 7ZB Liverpool, United Kingdom; Departments of Vector Biology, Tropical Disease Biology, and Centre for Neglected Topical Diseases, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
| |
Collapse
|