1
|
Stilo G, Beltramo C, Christoforou E, Partipilo T, Kormas K, Spatharis S, Peletto S. Blue mussel (Mytilus edulis L.) exposure to nylon microfibers leads to a shift in digestive gland microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125914. [PMID: 40032227 DOI: 10.1016/j.envpol.2025.125914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/02/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Microplastics are an increasingly prevalent form of pollution in coastal ecosystems. Current research focuses on understanding the impacts of such synthetic particles on the health and functioning of aquatic organisms. Recent studies have shown that invertebrates can accumulate microplastics in their tissue, impacting key functions such as growth, reproduction, feeding activity, and metabolism. Owing to their chemical composition, microplastics accumulating in the digestive tract of animals may alter the diversity and abundance of microbiota. Despite the important implications of such microbiota shifts on digestive ability and fitness, investigations on microplastics as causative agents are so far limited. In this study, we tested the effect of microfibers, on the digestive gland microbiota of the blue mussel Mytilus edulis after a 52-day exposure. Our findings show that exposure to microplastics can alter the composition of the digestive gland microbiota, with significant decreases in the classes of Actinobacteria, Bacteroidia, and significant increases for Alphaproteobacteria and Gammaproteobacteria. Furthermore, an increase in the number of genera containing potential pathogenic species for bivalves, such as Francisella and Vibrio, was detected. This suggests that accumulated microplastics pose a dual threat to filter-feeding organisms and the ecosystem services they provide. Further comparative studies are necessary to establish whether the microbiota shift is linked to the specific chemical composition of microplastics or whether there is an indirect link such as physiological stress resulting from ingestion.
Collapse
Affiliation(s)
- G Stilo
- Department of Life Sciences and Systems Biology, University of Turin, Viale Mattioli 25, 10125, Turin, Italy.
| | - C Beltramo
- S.S. Genetics e Genomics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - E Christoforou
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, G12 8QQ, Glasgow, UK
| | - T Partipilo
- S.S. Genetics e Genomics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| | - K Kormas
- Department of Ichthyology & Aquatic Environment, University of Thessaly, 384 46, Volos, Greece
| | - S Spatharis
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, G12 8QQ, Glasgow, UK
| | - S Peletto
- S.S. Genetics e Genomics, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Turin, Italy
| |
Collapse
|
2
|
Garcia C, Charles M, Chollet B, Nadeau A, Serpin D, Quintric L, Pépin JF, Houssin M, Lupo C. Understanding the role of Francisella halioticida in mussel mortalities in France: an integrative approach. DISEASES OF AQUATIC ORGANISMS 2024; 158:81-99. [PMID: 38661140 DOI: 10.3354/dao03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Since 2014, mass mortalities of mussels Mytilus spp. have occurred in production areas on the Atlantic coast of France. The aetiology of these outbreaks remained unknown until the bacterium Francisella halioticida was detected in some mussel mortality cases. This retrospective study was conducted to assess the association between F. halioticida and these mussel mortalities. Mussel batches (n = 45) from the Atlantic coast and English Channel were selected from archived individual samples (n = 863) collected either during or outside of mortality events between 2014 and 2017. All mussels were analysed by real-time PCR assays targeting F. halioticida; in addition, 185 were analysed using histological analysis and 178 by 16S rRNA metabarcoding. F. halioticida DNA was detected by real-time PCR and 16S rRNA metabarcoding in 282 and 34 mussels, respectively. Among these individuals, 82% (real-time PCR analysis) and 76% (16S rRNA metabarcoding analysis) were sampled during a mortality event. Histological analyses showed that moribund individuals had lesions mainly characterized by necrosis, haemocyte infiltration and granulomas. Risk factor analysis showed that mussel batches with more than 20% of PCR-positive individuals were more likely to have been sampled during a mortality event, and positive 16S rRNA metabarcoding batches increased the strength of the association with mortality by 11.6 times. The role of F. halioticida in mussel mortalities was determined by reviewing the available evidence. To this end, a causation criteria grid, tailored to marine diseases and molecular pathogen detection tools, allowed more evidence to be gathered on the causal role of this bacterium in mussel mortalities.
Collapse
Affiliation(s)
- Céline Garcia
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, F-17390 La Tremblade, France
| | | | - Bruno Chollet
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, F-17390 La Tremblade, France
| | - Aurélie Nadeau
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, F-17390 La Tremblade, France
| | - Delphine Serpin
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, F-17390 La Tremblade, France
| | - Laure Quintric
- Ifremer, IRSI, SEBIMER Service Bio-informatique d'Ifremer, 29280 Plouzané, France
| | | | | | - Coralie Lupo
- Ifremer, ASIM Adaptation et Santé des Invertébrés Marins, F-17390 La Tremblade, France
| |
Collapse
|